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Bacteriophages Limit the Existence Conditions for Conjugative
Plasmids
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Michael A. Brockhursta

Department of Biologya and Department of Mathematics,b University of York, York, United Kingdom; Institute of Integrative Biology, University of Liverpool, Liverpool,

United Kingdomc; SIMBIOS Centre, Abertay University, Dundee, United Kingdomd

ABSTRACT Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations,

yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathe-

matical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacterio-

phages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of

bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under

weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments

where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these

conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the

population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further

mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may

hitchhike with phage resistance mutations in the bacterial chromosome.

IMPORTANCE Conjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and be-

tween species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their

dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been stud-

ied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experi-

ments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their

ecological and evolutionary effects on bacteria and ultimately limit the conditions allowing plasmid existence. These results ad-

vance our understanding of bacterial adaptation and show that bacteriophages could be used to select against plasmids carrying

undesirable traits, such as antibiotic resistance.

Received 9 April 2015 Accepted 27 April 2015 Published 2 June 2015

Citation Harrison E, Wood AJ, Dytham C, Pitchford JW, Truman J, Spiers A, Paterson S, Brockhurst MA. 2015. Bacteriophages limit the existence conditions for conjugative

plasmids. mBio 6(3):e00586-15. doi:10.1128/mBio.00586-15.

Editor Alan G. Barbour, University of California Irvine

Copyright © 2015 Harrison et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Ellie Harrison, ellie.harrison@york.ac.uk.

As vectors of horizontal gene transfer, conjugative plasmids
play an important role in bacterial adaptation by trafficking

accessory traits of potential benefit to bacterial fitness between
cells (1). The dynamics of conjugative plasmids are therefore im-
portant to the ecology and evolution of bacteria. Plasmid dynam-
ics are derived, in part, from the balance between the costs of
plasmid maintenance and the benefits conferred by plasmid ac-
cessory genes: traits carried on the plasmid which are beneficial to
the host in particular environments. Theoretical conditions for
the existence of plasmids within bacterial populations can be de-
rived and their implications explored (2–6). Empirically, in envi-
ronments where the benefits outweigh the costs, plasmids will
persist near fixation through positive selection (7, 8). In the ab-
sence of positive selection, plasmids are expected to be purged
from populations by purifying selection (9), unless plasmid de-
cline is counteracted by sufficient conjugative transfer (10) and/or
amelioration of the costs of maintenance (11, 12). Our under-
standing of the existence conditions for plasmids is limited, be-

cause bacteria-plasmid dynamics are typically studied in isolation,
yet in nature bacteria are subject to interactions with other species.
Particularly important among these are interactions with bacte-
riophages, which are ubiquitous and cooccur with bacteria in
most environments, frequently outnumbering bacteria by as
much as 100 to 1 (13). Lytic phages in particular have both eco-
logical and population genetic effects on bacteria that are likely to
affect plasmid persistence. First, phages are a major cause of
bacterial mortality and thereby cause reductions in bacterial
density (14, 15), which could reduce opportunities for plasmid
conjugation and increase the probability of plasmid loss from
the bacterial population. Second, phages impose strong selec-
tion pressures on natural bacterial populations (16, 17) and can
drive recurrent selective sweeps of phage resistance mutations
(18). These population genetics effects may impact plasmid
dynamics in two non-mutually exclusive ways: plasmids may
hitchhike on selective sweeps of phage resistance mutations
(2), and/or there may be epistatic interactions between the
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costs of chromosomal phage resistance mutations and the cost
of plasmid carriage (19).

We investigated how the ecological and population genetic ef-
fects of lytic bacteriophages on bacteria affect the persistence of
conjugative plasmids by studying experimental evolution of the
plant-associated soil bacterium Pseudomonas fluorescens SBW25 (20)
and its naturally associated megaplasmid, pQBR103 (21), along with
the lytic phage SBW25�2 (18). pQBR103 carries a mercury resistance
operon that allows the host bacterium to reduce mercuric ions to
elemental mercury and thereby detoxify mercury-contaminated en-
vironments (22). We then used a combination of simple analytical
mathematical models and individual-based evolutionary simula-
tions to explain the observed dynamics. Mathematical models
have been previously used to predict the basic behavior of plasmid
population biology via conjugation and loss through segregation
(2, 3). Individual-based modeling of bacterial population biology
has been well explored (23, 24), but there are relatively few com-
putationally explicit models of plasmid dynamics (6). Use of a
tandem modeling approach allowed the more complex
individual-based simulations to be benchmarked against simpler,
general mathematical models that can be solved exactly, which is
rarely attempted in interdisciplinary modeling (25).

RESULTS

Experimental evolution. We first confirmed that plasmid carriage
per se did not affect susceptibility of bacteria to phages (see Fig. S1 in
the supplemental material). Next, six replicate populations were
propagated in either the presence or absence of phages by serial trans-
fer for c.130 bacterial generations in either mercury-free microcosms
or microcosms supplemented with 32 �M HgCl2. At 0 �M HgCl2,
pQBR103 imposes a net cost on bacterial fitness, whereas in the pres-
ence of mercuric ions plasmid carriage is beneficial (26). At 32 �M

HgCl2, plasmids remained at or near fixation regardless of phage
treatment, whereas at 0 �M HgCl2 plasmid prevalence declined over
time (Fig. 1) (mercury � time; z � 4.44, P � 0.0001). Although
phages reduced bacterial density in both mercury treatment groups
(see Fig. S2 in the supplemental material) (t16 ��8.062, P � 0.0001),
it was only with 0 �M HgCl2 that we observed clear differences in the
dynamics of plasmid prevalence attributable to phages; in the absence
of phages, plasmids gradually declined to intermediate frequencies in
all populations, whereas in the presence of phages, plasmids re-
mained at high frequencies for variable periods of time before rapidly
declining to 0 or very low frequency in 5 out of 6 replicate popula-
tions. Phages therefore drove a more rapid loss of plasmids at 0 �M
HgCl2 (phage versus time; z�3.102, P�0.002) and also led to higher
variability in endpoint plasmid prevalence among replicate popula-
tions (K1 � 12.167, P � 0.0005; range of plasmid prevalence under
0 �M HgCl2 at transfer 12, without phage, 69 to 88%; with phage, 0 to
85%).

Mathematical model. To explore whether phage-induced
mortality could explain these empirical dynamics, we developed a
simple mathematical model. An existing mathematical model
which captures the basic ecological dynamics (3) was used as a
basis for the following pair of ordinary differential equations
(ODEs), which describe the dynamics of a plasmid carrying acces-
sory genes conferring mercury resistance:

dF

dt
� ��F � �P��1 �

F � P

K
� � �PF � �bgF � �phageF � 	F

(1)

dP

dt
� �
 � ��P�1 �

F � P

K
� � �PF � �bgP � �phageP
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FIG 1 Prevalence of the pQBR103 plasmid over time in six replicate populations of each treatment. (a and b) The 32 �M HgCl2 environment without (a) or with
(b) coevolving phages. (c and d) The 0 �M HgCl2 environment without (c) or with (d) coevolving phages. Colors distinguish individual replicate populations.
Axes show the proportions of plasmid-carrying cells in the population (y axes) measured through time (x axes).
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where F and P are the concentrations of the plasmid-free and
plasmid-carrying bacteria, respectively. Parameters � and 
 are
their growth rates, and K is the carrying capacity. Transfer be-
tween types occurs through conjugation (where plasmids are
passed to non-plasmid-carrying bacteria, parameterized by the
rate �) and by segregation (the spontaneous loss of a plasmid upon

cell division, parameterized by �). Effects of phages and mercuric
ions are expressed as mortality effects, as phages require lysis of
their host for replication and mercuric ions are bactericidal (27).
All bacteria experience mortality via background effects (at the
rate �bg) and via exposure to phage (at rate �phage), while bacteria
in which the plasmid is absent suffer additional mortality via ex-
posure to mercuric ions (at rate 	). This model extends the work
of Lili et al. (3) by explicitly including plasmid segregation effects
and by separating the death terms to include both background
effects, predation by phage and the poisonous effects of mercuric
ions.

The location and linear stability of the steady states of this
model can be solved exactly, and the complete details are pre-
sented in the supplemental material. Figure 2 shows the behavior
of the model (produced via equation set 1), illustrating how plas-
mid prevalence is expected to vary with phage and mercury pres-
sure for parameter values describing the SBW25-pQBR103 inter-
action (Table 1). With high mercuric ion toxicity (	) or low
mortality (�), we observed retention of the plasmid; there was a
stable interior fixed point (F*, P*) with a mixed population of
plasmid-free cells and plasmid-carrying cells, respectively. In the
absence of either mercuric ion toxicity (	) or phage mortality
(�phage), plasmids confer no advantage and are predicted to be lost
from the system. Similarly, with high phage pressure and suffi-
ciently low mercuric ion toxicity (	), the plasmid is lost com-
pletely from the system. These two regimes—where plasmids are
either maintained or eliminated from the ecological system—are
separated by a line of transcritical bifurcations given by:

	 �
���K


 � � � �K
� �

� � 
 � � � �K


 � � � �K
(2)

which can be derived by analysis of either the fixed point position
or the eigenvalues of the Jacobian matrices of the relevant fixed
points. The phase plane dynamics of the model for parameters
corresponding to the four experimental treatments are shown in
Fig. 3. Exploration of the fixed parameters describing plasmid
behavior (i.e., conjugation rate, segregation rate, and cost) dem-

FIG 2 Plot of the stable fixed points of the mathematical model (equation set 1).
The axes are the parameters � and 	, which are the mortalities associated with
phage and mercury toxicity, respectively. Shading indicates the proportion of
plasmid-carrying bacteria in the population. At high mercury concentrations
and/or low phage mortality rates, plasmids are maintained at an interior fixed
point, i.e., they coexist with plasmid-free cells (red; shading indicates the propor-
tion of plasmid-containing cells, from high [dark] to low [light]). With a suffi-
ciently low mercury concentration and under high phage pressure, plasmids are
lost (blue). There is a line of transcritical bifurcations which separates these two
regions. In the vicinity of the transcritical bifurcation, the convergence to the fixed
point is slow enough that other factors (e.g., compensatory mutations [7, 12, 39–
41]) are likely to occur prior to the model’s prediction of the loss or retention of the
plasmid. The four corners of the plot correspond to the empirical treatments in
Fig. 1 and the phase planes in Fig. 3. Parameter values are from Table 1.

TABLE 1 Parameters for the mathematical modela

Parameter Variable measured Value Source

� Growth rate of a plasmid-free cell 1 h�1 Relative growth rates representing the cost of the plasmid

in the plasmid-containing clones

 Growth rate of a plasmid-carrying cell 0.8 h�1

[1 � (�bg/�)]� Measured carrying capacity of the

system in phage- and mercury-free

environments

7.3 � 109 cells/ml Estimated from CFU counts of phage-free, mercury-free

populations, averaged through time (see also Fig. S2 in

the supplemental material)
� Conjugation rate of the system 1.22 � 10�14 cell�1 h�1 Estimated within this system following the standard

methods of Simonsen et al. (47)
�bg Background mortality rate 0.1 h�1 Consistent with information in reference 3; the exact value

does not alter the qualitative dynamics
� Segregation rate 10�4 h�1 Segregation rate for a TOL plasmid in the Pseudomonas

genus (51)
� Mortality due to phage, plus

background mortality

0.7 h�1 Deduced from comparing the mathematical expressions at

steady state with and without phage versus the empirical

result that phage reduces population levels by 1/2 an

order of magnitude (see Text S1 in the supplemental

material for further details)
	 Mortality due to mercury 0.3 h�1 Estimated value; empirical results constrained to �0.174

(see Text S1 for further details)

a Parameter values for the mathematical model (equation set 1) were estimated directly from empirical data where possible or drawn from the literature.
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onstrated that this behavior is robust across a range of biologically
realistic parameter values, with only the position of the fixed
points (see Fig. S3 in the supplemental material) and, conse-
quently, the line of transcritical bifurcations dependent on param-
eter space (see Fig. S4 in the supplemental material).

While in the presence of mercuric ions our purely ecological
model captures the empirical dynamics of plasmids, the predicted
stable points in the absence of mercuric ions do not explain the
contrasting plasmid prevalence dynamics we observed. In the
0 �M HgCl2 phage-containing treatment, plasmids were initially
maintained near fixation for various periods of time before being
rapidly lost from the population (Fig. 1d). In contrast to the slow
consistent decline in plasmid prevalence observed in the 0 �M
HgCl2 phage-free treatment (Fig. 1c), these dynamics suggest that,
under such conditions, the system displays bistability (in the
mathematical sense of there being two stable points of attraction,
plasmid fixation and plasmid loss). This dynamic behavior cannot
be explained by our mathematical model (equation set 1), in
which solutions follow a simple trajectory to the single stable fixed
point in the system.

Testing for selective sweeps of bacterial resistance to phages.
We hypothesized that this unexplained dynamic behavior
could be due to the population genetic effects of bacteriophages
on the bacterial populations, specifically by causing recurrent
selective sweeps of phage resistance mutations on which
plasmid-containing, or plasmid-free, backgrounds can hitchhike.
To establish whether phages had caused selective sweeps of phage
resistance mutations, we estimated the rate of phage resistance

evolution at transfers 8, 12, and 16. To do this, we performed
time-shift assays (28–30), whereby contemporary phage popula-
tions were tested against bacterial clones from four transfers in the
past, the same transfer, and four transfers in the future. Positive
slopes of bacterial phage resistance against time-shift would indi-
cate that the operation of selective sweeps of mutations conferred
resistance to bacteriophages over time. Consistent with this, we
observed a highly significant positive relationship between time-
shift and bacterial resistance (see Fig. S5 in the supplemental ma-
terial) (time-shift � bacterial resistance, t60 � 4.81, P � 0.0001).

Modified mathematical model and evolutionary simula-
tions. To explore whether this selective process could, in princi-
ple, explain the apparent bistability in plasmid prevalence, we
made a simple modification to the mathematical model to incor-
porate the evolution of phage resistance. We assumed that resis-
tance was most likely to evolve in the numerically dominant class
and would therefore lead to positive frequency dependence in the
mortality terms (31). Explicitly, we modified the phage-associated
mortality rates in the original model (equation set 1) by introduc-
ing a weak dependence on the population fraction, leading to the
following equation set for the populations:

dF

dt
� ��F � �P��1 �

F � P

K
� � �PF � �phage�1 �

�F

F � P
�F

� �bgF � 	F

(3)

dP

dt
� �
 � ��P�1 �

F � P

K
� � �PF � �phage�1 �

�P

F � P
�P

� �bgP

where the new parameter, �, encodes the dependence of the mor-

tality term. If � is 0, then this model is identical to the equations
above (equation set 1). This biologically motivated change leads to
important changes in the behavior of the mathematical model.
The system now exhibits the bistability suggested by the empirical
data (see Fig. S6 in the supplemental material), such that for low
mercuric ion levels in the presence of phage there can be two fixed
points in the model with distinct basins of attraction. Complete
details of the changes induced in the null cline structure can be
found in Text S1 of the supplemental material.

The simple mathematical models developed above provide a
mathematical description of the observed empirical behavior, but
such models can only coarsely approximate the complex evolu-
tionary dynamics leading to the modified expressions in equa-
tion set 3. In particular, the assumption of positive frequency de-
pendence and the interplay between ecology and evolution need
careful justification. This is beyond the scope of the deterministic
ODE models. We therefore developed an individual-based model
(IBM) to simulate the evolutionary dynamics based upon an ex-
plicit two-locus model for chromosomal phage resistance and
plasmid-carried mercury resistance. The IBM includes “arms race
coevolution,” whereby both phage attack and bacterial defense
traits evolve in a unidirectional “ratchet-like” manner, as observed
in the empirical system (18), with a given mutation probability at
each replication. Note that our IBM is designed to explicitly test
the effects of allele frequency dynamics arising from coevolution
on plasmid prevalence dynamics; therefore, we assume no costs of
phage resistance or infectivity. The simulations are parameterized,
where possible, using values directly estimated from the empirical
system or, otherwise, using results of the ODE model to constrain
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FIG 3 Mathematical phase planes for the population dynamics. Axes show
total population values for plasmid-free (F; horizontal axes) and plasmid-
containing (P; vertical axes) populations, scaled to the carrying capacity in the
system without phage or mercury. The panels are arranged to correspond to
both the overall diagram in the empirical data (Fig. 1) and the � and 	 space
(Fig. 2). The top panels show the 32 �M HgCl2 environment without phage
(left; rapid fixation of P) and with phage (right; rapid fixation of P, reduced
population density). The bottom panels show the HgCl2-free environment
without phage (left; slow elimination of P) and with phage (right; rapid elim-
ination of P, reduced population density). The blue curves show the trajecto-
ries from a grid of initial conditions, the green arrows indicate the global flow
field, and the red circles show the stable fixed points to which trajectories are
attracted.
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parameter space. Consistent with our hypothesis, the establish-
ment of a two-locus model with coevolutionary dynamics leads to
positive frequency dependence and bistability in the IBM (Fig. 4),
thereby justifying the inclusion of this modification to the math-
ematical model (equation set 3).

Figure 5 shows two examples of the dynamics within individual
implementations of the IBM to illustrate how positive frequency
dependence drives bistability. Plasmids are transiently maintained
by hitchhiking to fixation with phage resistance mutations that
arise in plasmid-containing backgrounds. However, plasmid-free
cells are continuously generated through segregation and have a
growth rate advantage over plasmid carriers, leading to repeated
reinvasion and fluctuations in the ratio of plasmid-containing to
plasmid-free cells. With higher frequencies of plasmid-free cells,
the likelihood of successful phage resistance mutations occurring
in this background is increased. Where this does occur, plasmid-
free cells sweep to fixation, rapidly removing the plasmid from the
population. In contrast to the deterministic mathematical model
(equation set 3), the stochastic mutations and coevolutionary dy-
namics in the individual-based model enable the system to spon-
taneously jump from being dominated by plasmid-bearing bacte-
ria to plasmids being lost from the system. As a consequence, we
expect that the transient maintenance of the plasmid will lead to a
large variability in the time-scale of plasmid loss, as observed in
both the simulation (Fig. 4b) and with our empirical data
(Fig. 1d).

Testing for epistasis between costs of plasmid carriage and
phage resistance mutations. Finally, we sought to test whether
negative epistasis between the cost of phage resistance and the cost
of plasmid carriage may have contributed to accelerated plasmid
loss by exacerbating the cost of plasmid carriage. Eight spontane-
ous phage resistance mutants were generated, and their competi-
tive fitness was measured both with and without the plasmid (see
Fig. S7 in the supplemental material). In the absence of the plas-
mid, phage resistance mutations imposed a fitness cost of between
11% (�1.8% standard error [SE]; t2 � �10.04, P � 0.01) and 37%
(�12% SE; t2 � �4.42, P � 0.048). However, while the plasmid
reduced host fitness by 14.5% (�1.2% SE; t3.9 � 7.85, P � 0.0015)
in the ancestral, sensitive background, none of the plasmid-
bearing phage resistance mutants had significantly lower fitness

than their plasmid-free counterpart (P � 0.1). These data suggest
that the costs of plasmid carriage and phage resistance mutations
frequently demonstrate positive epistasis, which does not support
the hypothesis that plasmid dynamics are driven by negative epis-
tasis. Indeed, the observed positive epistasis would, if anything,
promote the long-term maintenance of plasmids in the popula-
tion, further supporting the idea that selective sweeps of phage
resistance mutations best explain the different dynamics of plas-
mid prevalence observed at 0 �M HgCl2.

DISCUSSION

Through their ecological and population genetics effects on bac-
terial populations, lytic bacteriophages limit the existence condi-
tions for plasmids by accelerating their loss under weak or absent
positive selection for accessory traits. This exacerbates the “plas-
mid paradox” (11, 32) by suggesting that plasmid persistence
through horizontal transmission is less likely than previously pre-
dicted, due to the realistic condition of phage predation. There has
been a strong thread of mathematical work on plasmid population
biology, in particular, in determining the existence conditions for
conjugative plasmids (3–5). However, these models have not con-
sidered the effects of bacteriophages on plasmid maintenance.
Here, we have used simple models to show the ecological condi-
tions under which plasmids can be lost from a system when under
strong selection pressure from lytic bacteriophages. We have fur-
ther demonstrated how the coevolution of phages and bacteria
results in a positive frequency-dependent hitchhiking effect on
plasmid populations by the use of individual-based simulation
modeling. These simulations are calibrated using simpler deter-
ministic mathematical models to give an unusual level of self-
consistency within our approach. Furthermore, the population
genetic dynamics derived from our simulation (see Fig. S8 in the
supplemental material) are consistent with those already observed
with this empirical system (33). The hierarchy of models so con-
structed enables us to understand the source of the underlying
processes that give rise to each effect: the loss of the plasmid from
the system is due to simple ecological dynamics; bistability
emerges as a result of positive frequency dependence; recurrent
sweeps of phage resistance mutations drive the transient mainte-
nance of the plasmid, followed ultimately by irreversible loss.
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FIG 4 The individual-based model. The IBM captures the bistability of the system when phage is present. (a) The proportion of plasmid-containing cells after
250 h for 12 implementations across a range of mercury toxicity values, demonstrating that prevalence is predominantly fixed near either 1 or 0. (b) Plasmid
frequencies through time for 12 replicate implementations under the poison � 0 condition (comparable to the results shown in Fig. 1d for the empirical data).
(c) The positive frequency dependence appearing naturally in the IBM. Values denote the difference in the mean defense value for plasmid-carrying and
plasmid-free cells, plotted against plasmid prevalence. Plasmid-carrying cells had a higher mean resistance to phage than plasmid-free cells when common and
lower mean resistance when rare.
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Our findings suggest that phages are likely to impose strong
indirect selection on conjugative plasmids. The ecological effects
of lytic phages on the dynamics of plasmid prevalence are likely to
apply generally, while the population genetics effects may be more
restricted to phages that undergo persistent arms race coevolution
with their bacterial hosts. Nevertheless, coevolutionary arms races
have been reported across a taxonomically broad range of
bacteria-phage associations (34, 35), suggesting that such dynam-
ics are probably more common than has been previously sug-
gested (36). Beyond the laboratory environment, changes to
community and physical structure may alter the exact dynam-
ics, for instance, conjugation rates can be several orders of
magnitude higher in structured environments (37). Crucially,
however, we have shown that the qualitative predictions of our
model remain robust over a wide range of biologically plausible
parameter values.

Given their ubiquity in natural communities and their wide-
spread ecological effects on bacterial populations (14, 15), phages
are potentially important drivers of bacteria-plasmid associations.
Bacteria-phage coevolution has been shown to limit bacterial re-
sponses to non-phage-associated selective pressures (38). Thus,
although bacterial compensatory evolution can help to stabilize
plasmids (12, 39–41), this process may be less likely to occur in the
presence of strong phage-imposed selection. By limiting the exis-
tence conditions for plasmids, we expect bacteriophages, in turn,
to also alter selection on key plasmid traits. For example, phage-
mediated plasmid purging is likely to select for the evolution of
higher rates of conjugal transfer and greater amelioration of the
physiological costs of carriage by plasmids, e.g., through gene loss
(42) or reduced gene expression (8), to counteract higher rates of
loss in the presence of phages. Our findings also have implications
for bacterial evolution more broadly. Hitchhiking of conjugative
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FIG 5 The dynamics of plasmid loss in the IBM simulation. (a) Plasmid dynamics in 12 iterations of the IBM. (b and c) Two iterations shown in detail
(highlighted in panel a as coarse dashed [panel b] and fine dashed [panel c] lines) to demonstrate the link between phage resistance evolution and plasmid loss.
In b and c, plasmid prevalence is shown by gray shading, and colored lines represent the frequencies of different phage resistance alleles present in the
plasmid-containing (fixed) and plasmid-free (dashed) portions of the population. Plasmids are transiently maintained in the population by hitchhiking on
sweeps of phage resistance mutations.
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plasmids on chromosomal mutations under strong selection
extends the importance of hitchhiking in bacterial evolution
from simply affecting other chromosomal traits in linkage (31,
43) to also affecting the dynamics of traits carried on mobile
genetic elements, as originally hypothesized by Bergstrom and
colleagues (2).

More rapid loss of plasmids in the time periods when or local-
ities where plasmid accessory traits are not of benefit to the bacte-
rial host suggests that accessory traits of potential benefit in other
times and places may be lost to selection, reducing evolutionary
potential. A case in point is accessory genes carrying antibiotic
resistance: recent theory suggests that pulses of antibiotic selection
can maintain conjugative resistance plasmids despite intervening
periods of decline (44). Our data suggest that phages could dra-
matically shorten the interval between bouts of antibiotic selec-
tion that would otherwise support stable plasmid persistence. As
such, our data potentially broaden the context for bacteriophage
therapy against antibiotic resistance plasmids beyond the small
subset of “male-specific” phages targeting plasmid-carried recep-
tor genes (45) to coevolving lytic phages in general.

MATERIALS AND METHODS

Strains and culture conditions. Experiments were conducted using the
Pseudomonas fluorescens strain SBW25-	Gm and its naturally associated
megaplasmid, pQBR103 (21), along with the lytic bacteriophage
SBW25�2 (18). SBW25-	Gm carries a gentamicin resistance marker
(constructed following methods described by Koch et al. [46]), which
allows the plasmid to be conjugated into this background following standard
methods (47). We observed no difference in phage adsorption rate (measured
as the reduction in phage density after 30 min of incubation with the host
[48]) or efficiency of plating of SBW25�2 between the plasmid-free and
plasmid-containing strains, suggesting no direct effect of plasmid carriage on
phage infection (see Fig. S1 in the supplemental material). All experiments
were conducted in King’s B broth (KB) at 28°C in 30-ml microcosms con-
taining 6 ml of medium with shaking at 180 rpm.

Selection experiments. Six replicate populations were founded for
each of four treatments from independent clones of SBW25-	Gm carry-
ing pQBR103. Treatments comprised mercury-free (KB) and mercury-
containing (KB with 32 �M HgCl2) environments in the presence or
absence of bacteriophage in a full factorial design. Each population was
established from 60 �l of an independent overnight culture (~107 cells
ml�1). Phage-containing treatments were inoculated with 6 �l of a 1011

phage/ml stock solution at the beginning of the experiment. Populations
were propagated by serial transfer of 1% of culture to fresh medium every
48 h for a total of 20 transfers. Every 4 transfers, populations were screened
for plasmid prevalence, and samples containing a final concentration of
20% glycerol were frozen at �80°C. Plasmid prevalence was estimated by
colony PCR: initially, 10 colonies were screened using primers targeting
the reductase gene merA (forward, 5=-TGCAAGACACCCCCTATTGGA
C-3=, and reverse, 5=-TTCGGCGACCAGCTTGATGAAC-3=), which
identify the presence of the mercury resistance operon, and primers iden-
tifying the putative origin of replication, oriV (forward, 5=-TGCCTAATC
GTGTGTAATGTC-3=, and reverse, 5=-ACTCTGGCCTGCAAGTTTC-
3=), which identify the presence of the plasmid. No instances of the loss of
one target and retention of the other were observed during the
experiment. Where fewer than 5 colonies were positive for the presence of
the plasmid, a further 90 colonies were screened.

Measuring the rate of phage resistance evolution in bacteria. The
rate of phage resistance evolution among bacteria was measured in the
phage-containing, mercury-free treatment. Bacteriophage were isolated
from each of the six replicate populations from transfers 8, 12, and 16 by
filter sterilizing liquid cultures. Twenty bacterial clones were isolated from
the same populations at transfers 4, 8, 12, 16, and 20. Each phage popu-
lation was challenged with clones from its contemporary, sympatric bac-

terial population as well as clones of the same evolving lineage from 4
transfers in the past and 4 transfers in the future. Clones were streaked
across lines of phage that had been previously dried onto a KB agar plate.
Colonies showing inhibition of growth were scored as susceptible, while
no inhibition of growth indicated resistance to phage.

Estimating epistasis between costs of plasmid carriage and phage
resistance. To test for epistasis between the costs of phage resistance mu-
tations and plasmid carriage, we first generated eight spontaneous phage
resistance mutants in SBW25 by using a modified version of the fluctua-
tion assay (49). Spontaneous mutants were used, as they represent an
unbiased sampling of resistance mutations (i.e., have not been subject to
selection) and are likely to be free of additional mutations unrelated to the
bacterium-phage interaction. The ancestral strain, SBW25-	Gm, was
grown overnight and used to found 80 populations, each in 200 �l KB, in
a 96-well plate at a starting density of ~2 � 106 cells/ml. Simultaneously,
eight phage-containing cultures were inoculated from freezer stocks. To
ensure a range of phage resistance mutations, we collected phage from five
evolved mercury-free populations as well as three ancestral bacteria-
phage cocultures. Following overnight growth at 28°C, the 8 phage cul-
tures were filter sterilized to provide 8 high-titer phage suspensions. Ten
independent 200-�l cultures were then diluted to concentrations of 1:10
and 1:100 into each of the 8 phage suspensions, and 100 �l was plated onto
KB agar. We then picked a single colony resistant to each of the phage
suspensions, taken from the first of the 10 cultures where there was only
one colony per plate.

The plasmid was conjugated into each of the phage-resistant mutants
in addition to three independent cultures of phage-sensitive SBW25-
	Gm. Single mercury-resistant colonies for each of the 11 cultures were
picked at random. These were confirmed to carry the plasmid by PCR and
where appropriate to be phage resistant by streaking across phage. We
then conducted competitive fitness assays for each of the 11 plasmid-free
and 11 plasmid-containing isolates in triplicate. Briefly, overnight cul-
tures of each strain were mixed at a 1:1 ratio with a lacZ-marked strain
isogenic to the ancestor, inoculated into KB, and grown for 48 h. Samples
were plated at 0 and 48 h onto KB supplemented with X-gal (5-bromo-4-
chloro-3-indolyl-
-D-galactopyranoside), and relative fitness was calcu-
lated as the ratio of Malthusian parameters of competing strains (50).

Statistical analyses. All analyses were conducted with the R statistical
package (R Foundation for Statistical Computing). Bacterial density and
plasmid prevalence were analyzed using linear mixed-effects models. The
former was analyzed using lme (package nlme) and the latter, which uses
count data, with lmer (package lme4) and using a binomial error struc-
ture. In both cases, phage treatment was modeled as a fixed effect, with
time and HgCl2 concentration as covariates and population as a random
effect. The data were further investigated by separate analyses for each
mercury treatment. The effects of phages in the mercury-free environ-
ment were analyzed separately in an lmer containing only these treat-
ments. Differences in the rate of plasmid loss were determined by the
interaction between phage treatment and time. Variance was tested using
Bartlett’s K test. The cost of plasmid carriage was tested for significance in
individual phage-resistant backgrounds by using Welch’s two-sample
t test.
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