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Summary

This paper describes a novel solution method for the transported probability density function
(PDF) equation for scalars (compositions). In contrast to conventional solution methods based
on the Monte Carlo approach, we use a finite-volume method combined with adaptive mesh
refinement (AMR) applied in both physical and compositional space. The obvious advantage of
this over a uniform grid is that fine meshes are only used where the solution requires high
resolution. The efficiency of the method is demonstrated by a number of tests involving a
turbulent jet flow with up to two scalars (both reacting and non-reacting). We find that the AMR
calculation can be at a fraction of the computer cost of a uniform grid calculation with the same
accuracy.

Keywords: transported PDF; adaptive mesh refinement; finite-volume method; Reynolds-
averaged Navier-Stokes; molecular mixing

1. Introduction

Transported PDF methods are currently the most promising and rigorous means for linking
turbulent flow calculations with finite-rate chemistry. In principle, they can be used to provide a
complete statistical description of a turbulent flow field by modelling the PDF for both the
velocity and scalar fields [1]. In this paper, our aims are somewhat rather less ambitious: we
merely consider the scalar PDF for the mixing and reaction of scalars in a turbulent jet flow.

It is well known that finite-difference or finite-volume methods are viable for the transported
PDF equation solution on a uniform grid for simple flows with a small number of scalars (e.g.
[2]), but the computational cost becomes prohibitive as the number of variables increases.
Pope [1] estimates that the cost increases exponentially with the number of scalars, whereas it
is claimed that it only increases linearly with the number of scalars for the Monte Carlo
methods. It is for this reason that all current solution methods for the PDF transport equation
are based on the Monte Carlo techniques.

However, Sabel'nikov and Soulard [3] have carried out a detailed review of all current Monte
Carlo methods used in the simulation of turbulent reacting flows and compared them with
finite-difference methods on uniform grids. They found that the exponential rise in CPU time
with the number of scalars applies equally to both the Monte Carlo and the finite-difference
method, if one insists on maintaining the same accuracy as the number of scalars increases.
In a previous paper [4], we also found this to be true for both the adaptive mesh refinement
(AMR) and the Monte Carlo method applied to compositional space alone. This means that
PDF methods can strictly only be applied to practical reacting flow situations involving large
numbers of chemical species if they are combined with methods that reduce the complexity of
the chemistry. For example, the intrinsic low-dimensional manifold approach [5] is known to be
capable of giving good predictions of flames with relatively complex chemistry while requiring
only a small number of species in the computations. Other methods for reducing the
complexity of the chemistry are available, e.g. species lumping approaches [6] and the
computational singular perturbation method [7].

In this paper, we consider an alternative solution technique for the joint-scalar PDF equation
that uses the AMR in both physical and compositional space to improve the efficiency of a
finite-volume method. The fact that the PDF only differs significantly from zero in a small



fraction of compositional space means that the computational cost for AMR is much smaller
than for a uniform grid. This, combined with the saving due to adaptive refinement in physical
space, means that the computational cost is much less than for a uniform grid, as used by
Janicka et al. [2]. Since the technique proposed is a finite-volume method, it can also be
readily combined with the majority of current computational fluid dynamics codes.

AMR is now a well-established technique. The earliest applications were to two-dimensional
shock problems [8, 9]. Later extensions include three-dimensional problems [10] and
implementation on parallel machines [11]. The advantage of AMR is that it can use error
estimates to adaptively increase grid resolution to meet accuracy requirements in specific parts
of the computational domain. AMR offers particular advantages for transient problems with
traveling discontinuities such as shocks. In some classes of problems, CPU and memory
requirements can be reduced over those for a uniform grid by as much as a factor of one
hundred [12].

2. Governing Equations
2.1. The PDF equation

Consider a reacting system of N chemical species with concentrations w, (o = 1, ... , N) that
satisfy the reaction equations
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where S, is the rate of reaction w,, for specie a. From [1] the evolution of the mass-weighted
probability A(r, w;...wp; 1) is given by
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Here u, is the mean velocity, u is the turbulent viscosity and o}, is the Prandtl number for the
turbulent diffusion of P. The superscript tilde denotes density-weighted averaging.

The last term in (2) represents molecular mixing, for which there are a number of models. The
simplest is the linear mean square estimation (LMSE) method in which
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Here Cp, ¢ and k are the ratio of the scalar to mechanical turbulent time scales, the viscous
dissipation rate of turbulence kinetic energy and the turbulence kinetic energy per unit mass
(see [1] for details).

There are other possibilities for this term: the coalescence/dispersion or the Curl model [13]
and the Langevin model [1]. However, the Curl model is expensive since it involves an integro-
differential equation and, as we showed in [4], it does not give realistic results. The Langevin
model would be applicable except that it is not possible to impose conditions at the boundaries
of compositional space that ensure that the mean and variance behave in the correct way. We
shall therefore adopt the LMSE model [14, 15] herein.

2.2. The flow equations

The flow is computed from the mass and momentum conversation equations for turbulent flow
using a standard k—¢ turbulence model with a thin shear layer approximation in cylindrical
symmetry with the parabolic approximation for steady flow [16]. It is assumed that the



turbulence is statistically two-dimensional, stationary, axisymmetric and non-swirling. The
equations are
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Here u , v are the mean velocities in the z and r directions, and oy, o, are the Prandtl
numbers for k and . Owing to the thin shear layer approximation, only the u -component of

the momentum equation has been given. The turbulent viscosity is given by the usual
expression

2
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We assume that the pressure is constant, which avoids the need for a Poissson solver. As we
shall see in Section 4, this is a good approximation for such flows. The continuity equation is
unnecessary since the density can be calculated from the mass fractions @,
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where p, is the density of a fluid with @, = 1.

With the same assumptions, the PDF equation (2) becomes
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2.3. von Mises coordinates

It is the standard practice [16] to write equations (4) in terms of the von Mises coordinates, (v,
z) which automatically satisfies mass conservation

diy=purdr. (8)
Equations (4) then become
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The PDF equation (7) becomes
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These equations are simply evolution equations with z playing the role of the time-like
coordinate.

3. Numerical Method

3.1. Finite-volume scheme

Equations (9) and (10) contain both advective fluxes (the reaction terms in the PDF equation)
and diffusive fluxes. In order to construct a numerical scheme, we discretize physical space

with mesh spacing Ay and compositional space with mesh spacing Aw. For the fluid quantities,
we define mean quantities in a cell at z= z, by

1 /iA!IJ
n = 1
g = g (Y, z) dir, (11)

YA onag !
where gisone of (i, T, k, &).

For the PDF, we define a mean value at z = z, by averaging over both physical and
compositional space
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where Aw is the volume of a cell in compositional space and dw = dw;... doy. The index j
refers to the cell in compositional space over which the integration is performed.

Given the flow variables at z = z,, their values at z = z,,; can be found from an explicit finite-
volume approximation to the flow equations (9) of the form
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where f/, f are approximations to the fluxes at the leftfight edges of the ith cell and s;is an
approximation to the source term. Obviously

fil = fr”;l :

An approximation that is first order in Az is obtained, if we use values at z, to compute the
fluxes and source terms. The source terms can be calculated from the mean values in the cell.

In order to compute the fluxes, we need approximations to the flow variables and r at the cell
edges. The flow variables can be computed from simple averages
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The radius at the cell edges is obtained using using the trapezoidal rule to integrate (8)
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This gives a simple recurrence relation for the r; .
The flux for a quantity g is then given by
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where p;' is calculated from the flow variables at the cell edge. Since this is a central
difference approximation to diffusive terms, the resulting scheme is second order in Aw.

The procedure for P is similar, except that we have to include the terms involving gradients in
compositional space. Since these are advective, we need to use an upwind difference. With
the LMSE approximation, the effective advective velocity in the o direction in the
compositional space is
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The PDF is then updated via
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where (AP), is the increment due to the diffusive term in physical space. A first-order upwind
approximation is obtained by setting the flux at a cell face perpendicular to the « direction to
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where P/ and P, are the values in the cells on the left and right of the cell face. Here @, is
evaluated at the centre of the cell face.

The net result is a scheme that is second order in Ar, but first order in Az and Aw. In order to
make it second order in all variables, we first use the first-order scheme to compute an
intermediate solution, f”*’z at the half-step z,,12 = (2, + z,,1)/2. These values are then used to
compute the fluxes and source terms for the flow variables, which are used to update them
through a complete timestep, i.e.

CI';”+] —q”+(Aq -'J'Jrl/— (20)

where (Ag)"*"? is computed using the values at the half-step.

The same is done for the flow terms in the PDF equation, but in order to get second-order
accuracy in Aw, we need a better approximation to the advective fluxes in the compositional
space. This can be obtained by first using the intermediate solution to calculate an average
gradient in the o direction from
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where av(a, b) is a non-linear averaging function and the subscripts I, r denote values in the
neighbouring cells on the left and right in the « direction. It is essential to use a non-linear
averaging function here because Godunov’s theorem [17] tells us that a scheme that is
second order everywhere will generate oscillations, where the solution changes rapidly. This
applies in this case if the PDF approaches a delta-function, but if it is smooth then one can
use a simple average.

The gradients given by Equation (21) are then used to obtain a better approximation to fat a
cell face. For example, for a face perpendicular to the « direction, the values of f,and f, to be
used in (19) are given by
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where j and j are the cells on the left and right of the face. The final solution at z = z,,,;is then
obtained from Equation (18) using these values of P, and P, This is essentially the same
scheme as that described in [18] for compressible flow. Although it is not as accurate as some
schemes for linear advection, it is robust and simple to implement.

3.2. Adaptive mesh refinement

Unlike most AMR codes, e.g. [8—12], in this study refinement is on a cell-by-cell basis instead
of being organized into patches. This provides a more efficient grid at some increased cost of
integration. Figure 1 shows how this works in two dimensions for a thin region, such as a
shear layer, that requires high resolution.

Figure 1. Grid refinement at a region requiring high resolution (represented by thick black
curve).

We use a hierarchy of uniform grids G, ... G, so that if the mesh spacings on G, are (Ay, Aw),
then they are (Ay/2", Aw/2™) on G,. Grids G, and G, cover the whole computational domain,
but the finer grids need only exist in regions that require high resolution. The grid hierarchy is
used to generate an estimate of the relative error by comparing solutions on grids with
different mesh spacings and the grid refines if this error exceeds a tolerance E, and derefines
if it is less than E,. Refinement also occurs in z so that if the step on Gy is Az, then it is Az/2"
on G,.

The integration algorithm is recursive and is described by a pseudo-code for integration of grid
G, over its z step. From the pseudo-code given below, the procedure integrate(0) performs
integration on all grids through one G, grid z-step, Az. This process is shown schematically in
Figure 2 for four grid levels. From the figure it can be seen that a coarse grid solution at the



advanced time is available whenever a fine grid is integrated. This coarse grid solution
provides a space-time interpolant that is used to impose the boundary conditions on the fine
grid at a coarse-fine grid boundary.

procedure integrate(n){ Integrate G,
step(n) Advance G, by one timestep At2"™"
if(n<N-1){ Finer grids exist
while (tp<tp-1
integrate(n+1) Integrate G,.4 to G, time
t, =1, + At2" Increment G, time by At/2"-
end of while loop
regrid(n) Compare solutions on G, and
G,-1— decide G, refinement
merge(n) Project Gp,,1 solution onto G,
end of if block
return
} end of procedure integrate(n)

_merge 1-0 _merge 2-1 _merge 3-2  pegig3 3

merge 3-2 |
Time

At merge 2—-1 | merge 3-2 Regrid 3

0 e - - -

At,

Grid 0 1 2 3
Figure 2. Integration of a four-level grid.

In the merge(n) operation, the solution in the cells on G, that are refined is replaced by the
volume average of the solutions in the G,,; cells that it contains. This ensures that the
solutions on all grids are consistent.

The simplest way to apply AMR to this system would be to treat it as a problem in N+1
dimensions (r and the N dimensions in compositional space). However, this would mean that if
a cell is refined in one dimension, then it is also refined in all the others. This would not be
very efficient since there is no reason why physical and compositional space should both be
refined at the same place. For example, near the centreline of a jet, there might very little
variation with r, but P could be very close to a delta-function, which would require a high
degree of refinement in the compositional space.

In order to allow different levels of refinement in the physical and compositional space, we
associate a complete compositional space hierarchy with each physical cell on every grid
level. The number of levels of refinement of the compositional space in a particular physical
cell is then determined by the accuracy requirements for that particular cell. So, for example,
the maximum number of grid levels will be used in compositional space if P is close to a delta-
function, whereas a smaller number of levels will be used if it is smooth.



4. Verification and Validation

It is obviously important to demonstrate that the code described does indeed solve the
equations accurately. In our previous paper [4] in which there was no space dependence, we
were able to compare the results both with the analytic solutions and the Monte Carlo
calculations. This is not possible in this case because there are no non-trivial analytic
solutions for the complete problem described, and it is impossible to compare with Monte
Carlo solutions on a like-for-like basis given that the current method uses the AMR in both
physical and compositional space.

However, it is possible to verify that the code does provide an accurate solution to both the
flow equations and the PDF equation. As far as the flow equations are concerned, these are
exactly the same as those implemented in previous work [19] in the GENMIX package [16],
except that we assume the pressure to be constant. The latter implementation is also based
on the solution of conservation equations for the mean and variance of mixture fraction, rather
than deriving such values from a transported PDF. We can therefore use this implementation
within GENMIX to check our results. Since we are using a different numerical scheme,
agreement would indicate that both our schemes and its implementation are correct for this
part of the problem. Agreement would also indicate that our assumption of constant pressure
is reasonable for these flows.

As for the PDF, we have already shown that our scheme is accurate for a PDF with no space
dependence [4]. The space-dependent term in the PDF equation is simply a diffusion term,
which we can check against simple analytic solutions by setting all other terms in the PDF
equation to zero.

The final check is to ensure that the rather complicated AMR procedure is reliable. This can be
done by simply comparing the AMR solution with a high-resolution calculation on a uniform
grid.

4.1. Flow solver test

For this test, we consider the mixing of a single passive scalar in a non-reacting jet. We
compare our results with those derived on the basis of the GENMIX implementation and with
the experimental data of Schefer and Dibble [20], who studied a non-reacting propane jet in a
co-flowing stream of air. The parameters of the problem are given in Table I. Figure 3 shows
that our AMR calculation agrees well with both previous [19] GENMIX results and the
available data. Only small differences are observed between the two sets of predictions for the
mean mixture fraction, although some slight differences do occur for the variance of the
mixture fraction fluctuations. These are, however, likely due to differences in the way this
quantity was determined, i.e. in one case from the direct solution of a conservation equation
and in the second from the transported PDF itself. Overall, however, the comparisons serve to
verify that the flow solver is in line with the previous predictions and experimental data.

Table I. Parameters for the calculations.

Turbulence model constants C,=0.09, C,;s=1.44, C.,=1.92, Cp =14,
ok=1,0.=13, op=1

Nozzle diameter 0.00526 m

Jet density 1.8638 kgm™

Co-flow density 1.1964 kg m™

Initial jet velocity 1/7 law with & = 69.89 ms™' on centreline

Width of computational domain 10 nozzle diameter
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Figure 3. Flow variables at z = 30 diameters: dashed line — GENMIX with 200 mesh points in
the w direction; solid line — AMR using a resolution of five levels of refinement with 30 coarse
cells across the width of the physical space, and five levels of refinement with 25 coarse cells
for each associated compositional space; symbols — experimental results from Scheffer and
Dibble [20].

4.2. Diffusion test for PDF

In order to test the correct implementation of the spatial diffusion term in the PDF equation, we
consider a simple problem for which an analytic solution is available. The flow variables are
set to be constant throughout with

i =70ms™, v =0.0, k=12.25m’s?, ¢ = 38267.6 m’s ™.
These values are typical of those found in the full calculation considered previously. The
resolution involved four levels of refinement, with 25 and 30 coarse cells for the compositional

and physical spaces, respectively. The PDF at the nozzle exit is a delta-function in
compositional space located at the mean. The mean is initially a Gaussian with

(P)=exp(—r*/a}).

With these assumptions, Equation (7) becomes
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The fundamental solution of the above diffusion equation in two dimensions then tells us that
the solution at z is
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One can see from Figure 4 that the scheme reproduces the exact solution extremely well.



Figure 4. Comparison between the exact solution — dashed line, and the AMR — dotted line,
for the simple diffusion test at z = 800 diameters (Note: solid line is the initial distribution of (P)
atz=0).

4.3. AMR test

As already noted, the simplest way to test implementation of the AMR is to compare it with a
uniform grid calculation with a resolution equal to that on the finest grid. Results derived in this
way, for the case of the mixing of a single passive scalar in a non-reacting jet taken at z/d =
15, are given in Figure 5. It is noted that excellent agreement between the two calculations is
observed. The resolution used here for the AMR was five levels of refinement in both
compositional and physical spaces, with 25 and 30 coarse cells in each respective space. For
the uniform case, the cells were 480 and 400 cells for the compositional and physical spaces,
respectively.
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Figure 5. Comparison between the AMR and the uniform calculations for the test case at z =
15 diameters. AMR — solid line and uniform grid — dashed line.

4.4. Reacting flow

It is clear that our method is of little practical interest unless it is capable of handling reacting
flows. In order to demonstrate this, we consider the same flow as in Section 4.1, with the jet
consisting of pure fuel (w;) and the co-flow of oxidant (w;). These react according to the
simple temperature-independent kinetics

Si=—wiw2,  S2=-35]. (23)

There are no analytic solutions or appropriate experimental results with which we can
compare this solution. However, it can be demonstrated that the code gives reasonable
results and that it achieves numerical convergence without excessive computational cost.

From Figure 6 it can be seen that with a sufficient number of refinement levels, the AMR
agrees very well with a numerically converged solution on a uniform grid.

The model run times shown in Table Il provide an idea of the reduction in computing time
obtained with the AMR for a numerically converged solution. In our previous paper [4], we
showed that the computational cost is considerably reduced when the PDF only differs



significantly from zero in a small part of compositional space. In this case, the reduction in
computing time is even greater because, as can be seen from Figure 7, high resolution is not
required in all parts of physical space. Note that these results also show why it is essential to
have different levels of refinement in physical and compositional space. For example, in the
far-downstream region the solution in the jet is smooth in physical space, but is close to a
delta-function in compositional space.

06

04 4
A
g
v

0.2 4

0.2 1
0.0 0.0
0 1 2 3
r/d

Figure 6. Comparison between the AMR and the uniform grid calculation for the reacting case
of w; — w; at z =15 diameters. AMR — dotted line three levels and dashed line four levels of
refinement (30 coarse physical cells with 25° coarse compositional cells); uniform grid — solid
line (240 physical cells and 200° compositional cells). Below a flow field map is shown: white
region — wert potential core, dark grey region — shear layer, light grey region — coflow. Contour
lines shown in the shear layer are of constant mass fraction (A=0.753; B =0.522; C=0.150 and
D=0.025).

Table 1. Comparison of run times between the AMR at different levels of refinement and a
numerically converged solution on a uniform grid for the reactive test case with two
species. Runs were performed on a Dual Intel Xeon E5440 base (2.83 GHz, 1333FSB, 26
MB, Quad core) with 64GB, 667 MHz, ECC Memory (164 GB).

Physical Sample CPU Distance Computer AMR CPU
Type cells cells time (s) downstream zd memory (GB) speed-up
Uniform 240 200° 2266791 15.0 6000 -

(1 level) (1 level)
AMR 30 (coarse) 252 (coarse) 54723 15.0 3.54 41.4

(4 levels) (4 levels)
AMR 30 (coarse) 25° (coarse) 13755 15.0 091 -

(3levels) (3 levels)




Figure 7. Map of grid-adaptative refinement. The white areas show grid level Gy, grey G, and
black Gs.

5. Conclusions

A novel solution method for the scalar transported PDF equation has been described. In
contrast to conventional solution methods that employ Monte Carlo methods, this study is
based on a finite-volume scheme combined with an AMR approach in both the physical and
compositional space. We have carried out a number of test calculations involving simple
mixing and reacting flows in which the flow turbulence is described by the standard k-¢ model.
These show that the use of AMR can give high accuracy at a fraction of the cost of uniform
grids.

On the basis of these results and those in our previous paper [4] one can conclude that finite-
volume schemes with the AMR provide an attractive alternative to the Monte Carlo-based
methods. However, accuracy requirements dictate that neither method is viable for very large
numbers of scalars.
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