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Abstract   This paper presents a novel approach to predict 
the propagation of hydraulic fractures in tight shale 
reservoirs.  Many hydraulic fracture modelling schemes 
assume that the fracture direction is pre-seeded in the 
problem domain discretization.  This is a severe limitation 
as the reservoir often contains large numbers of pre-existing 
fractures that strongly influence the direction of the 
propagating fracture.  To circumvent these shortcomings a 
new fracture modelling treatment is proposed where the 
introduction of discrete fracture surfaces is based on new 
and dynamically updated geometrical entities rather than the 
topology of the underlying spatial discretization.  Hydraulic 
fracturing is an inherently coupled engineering problem 
with interactions between fluid flow and fracturing when the 
stress state of the reservoir rock attains a failure criterion.  
This work follows a staggered hydro-mechanical coupled 
finite/discrete element approach to capture the key interplay 
between fluid pressure and fracture growth.  In field practice 
the fracture growth is hidden from the design engineer and 
microseismicity is often used to infer hydraulic fracture 
lengths and directions.  Microsesimic output can also be 
computed from changes of the effective stress in the 
geomechanical model and compared against field 
microseismicity.  A number of hydraulic fracture numerical 
examples are presented to illustrate the new technology.   

Keywords   Hydraulic fracture  •  Finite/Discrete element 
method  •  Coupled geomechanical  •  Microseismicity 
 

M. Profit •  M. Dutko •  J. Yu •  S. Cole 
Rockfield Software Limited, Swansea, SA1 8AS, UK.   
email: m.dutko@rockfield.co.uk 

D. Angus 
University of Leeds, Leeds, UK.   
email: d.angus@leeds.ac.uk 

A. Baird 
University of Bristol, Bristol, UK.   
email: alan.baird@bristol.ac.uk 

1. Introduction 

Hydraulic fracturing is an engineering process often used by 
the petroleum industry to extract hydrocarbons from very 
low porosity reservoir rock which would otherwise be 
economically unviable [1,2,3,4,5,6].  The use of numerical 
models in the design stage would be an advantageous tool to 
optimise the hydrocarbon recovery for a given tight shale 
reservoir.  Standard practice in the industry often assumes 
equal spacing between stimulation points [2] and for 
reservoirs with local variations in stress and material 
properties, this may be sub-optimal leading to significantly 
reduced ultimate recovery of hydrocarbons.   

A key design variable in hydraulic fracturing is the 
stimulated reservoir volume (SRV) [7] and its value is a 
complex function of, amongst others, shale material 
properties, pump rates of fracking fluids in both clean and 
proppant laden states, the initial stress state and the density 
of natural fractures in the reservoir. Given the number of 
interacting mechanisms it is no surprise that empirical 
formulations provide only a limited guide on the 
relationship between injected fluid and the resulting SRV.   

The petroleum industry has focused its efforts in many 
directions to provide quantitative information between key 
design variables such as the type and rate of fluid injected 
and the final SRV.  These can be broadly broken into four 
main categories:  empirical, analytical, semi-analytical and 
numerical methods.  Empirical methods often apply very 
simple mathematical modelling schemes such as curve 
fitting methods based on experiences and post-appraisal 
data from previous reservoir stimulations [8].  Although 
these techniques provide ‘rule of thumb’ guides to the 
design engineer, they lack robustness in terms of honouring 
physical first principles and so they lack good feedback 
information once data trends drift from previous responses.  
Analytical solutions are a step in the right direction in that 
they offer a sound theoretical basis for the observed 
responses [9].  So, for example, the fracture aperture width 
will be a function of fluid pressure based on Sneddon’s 
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elasticity formulation [8].  Avoiding the introduction of any 
non-elastic effects means that the final equations can be 
readily solved without resorting to numerical techniques 
such as the finite difference and finite element methods.  So 
although these techniques provide a feedback mechanism, 
the underlying assumptions, like elastic behavior of the rock 
body or steady state flow in the fracture region, might be too 
restrictive when dealing with a more general case such as a 
tight shale reservoir with numerous sets of natural fractures.  
The semi-analytical build on the analytical solutions by 
offering a numerical approach on specific parts of the 
governing equations.  An example here would be a hybrid 
technique which uses an analytical solution on the fracture 
width versus fluid pressure relationship, but solves 
numerically the transient fluid flow in the fracture region 
[9].  Numerical methods provide the most robust schemes 
by allowing nonlinear behavior to be represented in both the 
evolution of mechanical stresses in the rock, plus the 
fracture fluid flow.  This benefit comes at the expense of 
increased run-time and the necessity of an experienced 
numericist who understands the underlying assumptions in 
the model.  With increasing CPU power numerical 
techniques such as the finite element and discrete element 
methods are now seen as attractive modelling approaches 
even when complex fracturing is one of the key mechanisms 
in the design process.   

In broad terms the main numerical schemes appropriate for 
this class of problem include the FEM (Finite Element 
Method) [10,11,12] in its pure continuum form [13], the 
Discrete Fracture Network (DFN) geomechanical and 
continuum flow models [14], the Displacement 
Discontinuity Method (DDM) geomechanical and flow 
models [15,16,17], the combined FEM/DEM (Discrete 
Element Method) [18] technique plus the more recent 
Extended Finite Element Method (XFEM) [4,19].   

The pure continuum FEM models rely on a combined 
coupled damage and tensile constitutive model (e.g. a 
unified Mohr-Coulomb with Rankine cap constitutive 
model) with a single porosity model to capture porous flow.  
The fracture propagation is captured via the volume increase 
through the material model, which is able to represent the 
pressure drops observed during fracture [13]. These models 
readily allow the implementation of sophisticated 
constitutive models and due to their simplistic form the 
fracture propagation does not require topology change.  
However, fine meshes are often required near fractured 
regions.  Even then the fracture smears local stress fields 
leading to spurious values.  In addition, the inclusion of a 
proppant transport model is difficult when undertaking a 
purely continuum FEM approach.   

The DFN geomechanical and continuum flow models are 
often used within the petroleum industry [14].  They permit 
the use of different discretisations for the geomechanical 
and flow fields (e.g. finite element for the geomechanical 
field and finite volume for the flow field).  Standard dual 
porosity reservoir simulators are used to capture matrix and 
fracture fluid flow.  The hydraulic fracture process, 
however, strongly couples the two main governing fields 
and this is poorly represented by these classes of models.   

The DDM uses the elastic Boundary Element Method 
(BEM) to capture the relationship between fracture surface 
pressure and the resulting aperture [15,16,17].  In these 
models only the fractures are discretised and this reduces the 
size of the problem which is an attractive benefit in 3D.  
Furthermore, in contrast to continuum FEM models, it is 
possible to capture the transport of proppant inside the 
propagating fracture.  However, these models set 
restrictions on the material characterisation which are 
generally limited to homogenous and isotropic elastic.  With 
these models it is difficult to accommodate complex 3D 
geometries and stress fields.  In addition, heterogeneity is 
only defined via the existence of natural fractures.   

The Discrete Element approach is able to mimic bond 
breakage, which occurs during strain softening, via a 
cohesive element [18,20].  It is, however, often assumed that 
an element edge pre-seeds the fracture direction, negating 
the possibility of truly complex fractures forming which are 
commonly observed in largely heterogeneous reservoirs.   

XFEM contrasts sharply with the Discrete Element Method  
by using a purely continuum approach and captures crack 
deformation via discontinuous fields, namely the partition 
of unity functions [4].  The method has been coupled to 
fracture fluid flow models to simulate the propagation of 
hydraulic fractures [19].  To predict crack growth these 
special functions must track through the mesh and this can 
lead to book-keeping difficulties in complex 3D fracturing.   

Kolditz and co-workers have implemented object-oriented 
coupled thermal-hydro-mechanical (THM) FEM techniques 
to investigate a range of geomechanical problems, including 
the flow of water and heat in fractured porous media [21,22].  
The investigations are limited to pre-defined discrete 
fracture networks.  The same author has a monograph on 
bench-case solutions for THM processes in fractured porous 
media [23]. 

This paper describes the governing equations and 
implementation of a combined FEM/DEM coupled hydro-
mechanical method which is able to simulate hydraulic 
fracture in tight shale reservoirs.  A novel approach based 
on new dynamically updated geometrical identities is 
undertaken to simulate complex fracture propagation.  
Section 2 describes the key governing equation, along with 
links to important flow concepts such as channel flow and 
leak-off.  Section 3 develops the governing equations into a 
Galerkin finite element discretization. In addition, the 
adopted coupling scheme, namely implicit-explicit solution 
and communication, is presented along with a novel 
geometry based fracturing algorithm which includes local 
remeshing to avoid a computationally expensive global 
remesh.  Section 4 describes the link between the 
geomechanical model and microseismicity.  Finally, Section 
5 presents results illustrating the numerical capability for 
modelling fracture propagation in both intact and naturally 
fractured reservoirs. In this section a validation model is also 
presented.  The new technology ELFEN TGR (Tight Gas 
Reservoir) is implemented in the software package ELFEN 
(Rockfield Software Ltd, Swansea, UK) [24].   

  



2. Governing equations 

2.1. Overall methodology 

Based on hydraulic fracture field practice, an ELFEN TGR 
analysis is divided into 5 key stages [24]:  

1. Initiation of model effective stresses, pore 
pressures and fracking fluid pressures; 

2. Pad hydraulic fracturing; 
3. Slurry hydraulic fracturing; 
4. Flowback and clean-up of the fractured region; 
5. Gas production. 

This paper concentrates on stages 1 and 2 with the remaining 
stages left for future publications.  Coupling between the 
effective stresses in the rock matrix, pore fluid flow in the 
rock matrix and finally fracture fluid flow is accomplished 
via a staggered coupling scheme [25].  The three main sets 
of governing equations are [26,27]:  

1. Equilibrium of the mechanical stress and pore fluid 
pressure of the rock formation with external loads 
(structure field); 

2. Porous flow in the rock formation (seepage field); 
3. Fluid flow in the fracture region (network field). 

The main target application is the hydraulic stimulation of 
tight gas shale reservoirs.  To fully mimic the physics for 
this class of problem requires a complex multi-phase flow 
simulator due to the interaction between the invading 
fracture fluid and in-situ reservoir gas.  In this paper it is 
assumed that due to the high compressibility of the dry gas 
(e.g. methane) inside the shale pore space, the effective 
resistance of this fluid phase is insignificant when compared 
to the effective stresses generated in the reservoir rock.  A 
drained response is therefore assumed during hydraulic 
stimulation.  As a consequence of this assumption, the 
porous flow in the rock formation (i.e. seepage field 
governing equations) is only partially included in this paper 
when it is required in the context of equating equilibrium 
between the total external and internal load vectors; more 
details on the seepage field formulation can be found in [28].     

2.2. Geomechanical equations 

The main governing equations are derived assuming:   

1. Equilibrium of stresses with an appropriate 
constitutive model which is able to mimic both 
tensile and shear failure; 

2. Mass conservation of fluid flow inside the fracture 
region with a flow constitutive response able to 
recover parallel plate flow theory.  This leads to the 
well-known cubic flow rule [29]. 

The update of the mechanical stresses satisfies the 
momentum balance equation, with the assumption that fluid 
acceleration relative to the solid and the convective terms 
can be ignored [30].  The mechanical governing equation is 
given by [28]:  ܂ۺሺ࣌ᇱ െ ௦ሻ݌ܕߙ ൅ ܏஻ߩ ൌ ૙ (1) 

where ۺ is the spatial differential operator, ࣌ ᇱ is the effective 
stress tensor, ߙ is the Biot coefficient, ܕ is the identity 
tensor, ࢙݌ is the pore fluid pressure in the rock formation, ߩ஻ 
is the wet bulk density and ܏ is the gravity vector.   

The fracture fluid flow governing equation is given by (see 
Fig. 1 for schematic of link between fracture fluid flow and 
fracture opening) [28]:   ߲߲࢞ ቈ݇௙௥ߤ௡ ൫݌׏௡ െ ൯቉܏௙೙ߩ ൌ ܵ௙௥ ݐ௡݀݌݀ ൅ ሺȟߙ ሶ݁ఌሻ (2) 

where ݇௙௥  is the intrinsic permeability of the fractured 
region, ߤ௡ is the viscosity of the fracturing fluid, ࢔݌ is the 
fracturing fluid pressure, ߩ௙೙  is the density of the fracture 
fluid, ܵ௙௥  is the storage coefficient which is effectively a 
measure of the compressibility of the fractured region when 
a fluid is present and ȟ ሶ݁ఌ is the aperture strain rate [26].  
Assuming parallel plate theory the intrinsic permeability of 
a fractured region is given by [28]:   ݇௙௥ ൌ ݁ଶ ͳʹΤ  (3) 

where ݁ is the fracture element aperture.  The storage term 
is given by:   ܵ௙௥ ൌ ሺͳ ݁Τ ሻൣ൫ͳ ௡௙௥Τܭ ൯ ൅ ൫݁ ௙௙௥Τܭ ൯൧ (4) 

where ܭ௡௙௥ is the fracture normal stiffness and ܭ௙௙௥ is the 
bulk modulus of the fracturing fluid [28].   

 

Fig. 1  Schematic of hydraulic stimulation (top) and the 
modelling approach (bottom) 

2.3. Mechanical material model 

The reservoir rock stresses are governed by three core 
material characteristics: 

1. Elasticity; 



2. Mohr-Coulomb plasticity; 
3. Rankine tensile failure. 

Shales are typically laminated and hence possess a preferred 
structure with elastic anisotropy. The Mohr-Coulomb 
plasticity and Rankine tensile failure constitutive models are 
captured using a combined single surface yield envelope as 
shown in Fig. 2, where ࣌૚, ࣌૛ and ࣌૜ are the 3 principal 
stresses and ݂࢚ ૚, ݂࢚ ૛ and ݂࢚ ૜ are the corresponding tensile 
strengths [31].  In this paper it is assumed for simplicity that 
the shale is isotropic.  

 

Fig. 2  Mohr-Coulomb with Rankine tensile corner in 
principal stress space 

The Rankine tensile model is particularly important in 
hydraulic fracture modelling as the minimum principal 
stress at the fracture tip is tensile which allows for continued 
fracture propagation.  The Finite Element method is a 
continuum-based theory and so it is subject to the well-
known limitations for strain softening material models.  The 
key shortcoming being the mechanical response is strongly 
mesh size dependent [32].  In a physical theory this is 
unacceptable therefore corrective methods have been 
applied to ensure mesh independent behavior, the most 
common approach involves including a mesh size length 
scale at the material level adjusting the softening slope, a 
process known as regularization [31].   

A typical continuum extensional uniaxial stress-strain 
response for a quasi-brittle material is shown in Fig. 3 (ɂ଴  
and ɂ୤ are the uniaxial yield and failure strains respectively).  
The pre-yield response is governed by elasticity parameters, 
Young’s modulus E and Poisson’s ratio ɋ.  Only two 
parameters are necessary to characterize the post-yield 
response, tensile strength ݂࢚  and fracture energy ࢌܩ. To 
ensure objective energy dissipation in arbitrary meshes the 
softening slope ܪ is dependent on an element characteristic 
length [31] ࢒ܥ.  This approach is popular and simple to 
implement in finite/discrete element codes and yields global 
system responses that are mesh independent.  Further 
applications of this technique can be found in the literature 
[33,34].   

 

Fig. 3  Typical uniaxial continuum damage response 

2.4. Fracture fluid flow 

In hydraulic fracturing of tight shales typically two fracking 
fluids are used, either: 

1. Slickwater; 
2. Cross-linked gels. 

Due to the low viscosity, slickwater is often preferred to 
save on overall energy usage to drive the fractures.  
However, slickwaters are particularly poor at transporting 
proppant grains through the opening narrow channels. 
Populating the fracture with a uniform distribution of 
proppant is thought essential for the overall production rates 
of the reservoir.  In contrast, viscous cross-linked gels are 
very good at transporting proppant grains but often do not 
produce the long fractures required to significantly increase 
the overall permeability of the fractured region.  In practice 
hydraulic fracture pump schedules use a combination of 
slickwaters and cross-linked gels in sequence to ensure both 
a long fracture is created and subsequently proppant grains 
transported to the tip of the fracture, so in essence using the 
best qualities of both fracturing fluid types.   

Macroscopically the slickwater exhibits Newtonian fluid 
characteristics and the crossed-linked gels non-Newtonian 
behaviour.  In an effort to reduce the viscosity at higher 
strain rates, a shear-thinning cross-linked gel is commonly 
adopted.  Constitutively, this behavior can be captured using 
the non-Newtonian Power Law model:   ߬ ൌ  ௡ (5)ߛܭ

where ߬ is the fluid shear stress, ߛ is the fluid shear strain 
rate, ܭ is  the consistency index and ݊ is the power law 
exponent.  For the simulation of fluid flow within the 
fractures, the following assumptions are applied [29]: 

1. The fluid is incompressible; 
2. The flow is locally equivalent to the flow between 

two smooth, parallel plates; 
3. The flow is laminar with a low Reynolds number.  

2.5. Fracture fluid leak-off 

The petroleum industry commonly finds that approximately 
50-80% of injected fluid is lost during typical hydraulic 
stimulation of a tight gas shale reservoir [35].  The exact 
cause of this loss is not known but some hypotheses include 
the migration of fracturing fluid into fissures adjacent to the 
main propagating fracture and capillary action due to the 



inherent small pore throat radii of the shale grains.  
Whatever the root cause one effect of this fluid loss is a drop 
in fracture fluid pressure as the fracture propagates, so 
mimicking this behavior is extremely important in order to 
capture the correct fracture volume and length generated 
during stimulation.  This behavior is represented using a 1D 
Carter leak-off model (transversal flow) which has an in-
built decay of leak-off rate due to the assumed formation of 
a filter cake on the exposed fracture surface over time [5].  
The model assumes an initial volume loss ௦ܸ௣ per unit area 
over a spurt time ݐ௦௣ followed by a constant leak-off 
coefficient ܥ as:  ݐ െ ௘௫௣ݐ ൏ ௦௣Ǣݐ  ௟ݍ     ൌ ௦ܸ௣ݐ௦௣ 

ݐ െ ௘௫௣ݐ ؤ ௦௣Ǣݐ  ௟ݍ     ൌ ݐඥܥ െ  ௘௫௣ݐ

(6) 

where ݐ is the current model time, ݐ௘௫௣ is the time at which 
a fracture surface is exposed for leak-off and ݍ௟ is the 1D 
normal leak-off velocity.  The spurt volume is determined 
from fluid loss experiments (see Fig. 4, [36]).   In addition, 
Fig. 4 shows the controlling leak-off mechanisms as they 
evolve through the experiment.  Initially, the flow 
characteristics of the reservoir (e.g. the reservoir fluid 
viscosity or its intrinsic permeability) are dominant in 
controlling the degree of fluid leak-off which invades the 
host rock.  However, once a filter cake has formed on the 
exposed fracture surface, this controls the fluid loss and the 
rate reduces, eventually tending to a steady state fluid loss.   

 

Fig. 4  A typical dynamic fluid loss experiment  

The 1D Carter leak-off model in Eq. (6) is independent of 
the pressure difference between the fracture fluid pressure 
and the rock formation pore fluid pressure.  More 
sophisticated leak-off models which are functions of the 
pressure difference can be found in the literature [24] but 
will not be discussed further here.   

A single phase analysis is assumed between fluids in both 
the fracture and porous media regions.   In practice this 

states that the fracturing fluid and the tight reservoir gas 
cannot mix.  A special treatment is invoked which allows 
the fluid to be extracted from the fracture and stored in a 
separate storage block (i.e. fluid is not transferred into the 
rock formation).  The extraction of fluid mass is important 
as this is a key driver in the final hydraulic fracture length 
with lengths significantly reduced for those fractures 
experiencing high degrees of leak-off.  During the flowback 
stage the stored fluid is available for extraction so mass 
conservation of the fracturing fluid in the global system is 
maintained.  

3. Numerical algorithms 

3.1. Overall methodology 

Two solutions are used to update the main governing 
equations: 

1. For the evolution of the mechanical stresses an 
explicit solution method is used.  This method is 
most advantageous when dealing with material 
strain softening where implicit schemes can 
struggle to attain convergence during the material 
stress update; 

2. For evolution of fracture fluid pressure an implicit 
solution method is adopted.  As the fracture flow 
region is limited to a small part of the problem 
domain the computational overhead is low.  In 
addition, the convergence rates are robust for a 
wide range of fluid properties and fracture aperture 
widths. 

3.2. Discretised geomechanical equations 

The two governing equations for the mechanical (structure 
field) and fracture fluid flow (network field) are semi-
discretised using the finite element method.  It is assumed 
that the shape functions can be independent for structure ۼ௨, seepage ۼ௦ and network ۼ௡ fields, respectively.   ۰௨ ൌ ௨  ǡۼ௨ۺ ۰௦ ൌ ௦    ܽ݊݀  ۰௡ۼ௦ۺ ൌ  ௡          (7)ۼ௡ۺ

where ۺ௨, ۺ௦ and ۺ௡ are the gradient operators for the 
structure, seepage and network fields respectively and 
finally ۰௨, ۰௦ and ۰௡ are the shape function spatial gradient 
matrices for the structure, seepage and network fields 
respectively. It should be noted that the seepage field 
component is only included to satisfy completeness of the 
equilibrium equation which is a function of the total and not 
effective stress tensor.    The finite element discretized 
structure field equation is given by:   න ۰௨୘࣌ᇱஐೠ ߲ȳ௨ െ න ۰௨୘ۼܕߙ௦ஐೞ ߲ȳ௦݌௦ ൌ  ௨ (8)܎

where ȳ௨ is the structure domain, ȳ௦ is the seepage domain 
and ܎௨ is the mechanical load vector.  The effective stress 
tensor ࣌ᇱ is computed using the combined Mohr-Coulomb 
and Rankine cap material model.  The finite element 
discretized network field equation is given by:   න ۰௡୘ ݇௙௥ߤ௡ ۰௡ஐ೙ ௡߲ȳ௡݌ ൅ න ௡ஐ೙ۼ௡୘ܵ௙௥ۼ ߲ȳ௡ ൌݐ௡߲݌߲  ௡܎

(9) 



where ȳ௡ is the network domain and ܎௡ is the fracture fluid 
flow load vector.  The structure and network fields coupled 
governing equations can be written in matrix form as:   ቂۻ ૙૙ ૙ቃ ൤ ሷ௡൨݌ሷܝ ൅ ൤ ૙ ૙ۿ௡் ௡൨܁ ൤ ሶ௡൨݌ሶܝ ൅ ൤۹ ૙૙ ۶௡൨ ቂ ௡ቃൌ݌ܝ ൤܎௨܎௡൨ 

(10) 

with matrices and vectors defined as:   ۻ ൌ න ሺۼ௨ሻ்ߩ஻ۼ௨ஐೠ ߲ȳ௨ 

۹ ൌ න ሺۼ׏௨ሻ்Dۼ׏௨ஐೠ ߲ȳ௨ 

௡ۿ ൌ න ሺۼ׏௨ሻ்ܕஐ೙  ௡߲ȳ௡ۼ

௡܁ ൌ න ሺۼ௡ሻ்ஐ೙ ܵ௙௥ۼ௡߲ȳ௡ 

۶௡ ൌ න ሺۼ௡ሻ் ݁ଶͳʹߤ௡ஐ೙  ௡߲ȳ௡ۼ׏

௨܎ ൌ න ሺۼ௨ሻ்ߩ஻܊ஐೠ ߲ȳ௨ ൅ න ሺۼ௨ሻ்ݐȞ௨ஐೠ  

௡܎ ൌ െ න ሺۼ௡ሻ்்׏ ቆ ݁ଶͳʹߤ௡ ቇஐ೙܊௙೙ߩ ߲ȳ௡൅ න ሺۼ௡ሻ்ݍȞ௡ஐ೙  

(11) 

where D is the material stiffness matrix, Ȟ௨ and Ȟ௡ are the 
boundary regions of the structure and network fields 
respectively, ݐ is the external traction load which in the 
present context is the fluid pressure along the exposed 
fracture surface and ݍ is the fracturing fluid flux.  This sink 
term is used in conjunction with the 1D leak-off when 
fracturing fluid loss is a significant part of the analysis.   

3.3. Coupling strategy:  an overview 

A staggered coupling scheme is adopted in which the 
mechanical governing equation is solved explicitly [11] and 
the fracture fluid flow governing equation is solved 
implicitly [25,26,30,37,38,39,40].  This implies that in 
practice there are many more explicit time steps per implicit 
time step and hence on the mechanical field the fracture 
fluid pressure needs to be updated using intermediate values 
between coupling times.  The coupling between structure, 
seepage and network fields is shown in Fig. 5.   

The motion of the fracture aperture is computed in the 
structure field and this information is transferred to the 
network field to update the permeability characteristics of 
the propagating fracture.  Likewise, the fracturing fluid 
pressure is computed in the network field and this is 
transferred to the structure field where it acts as an external 
traction load on the fracture surface.  In this paper the 
structure and seepage fields are considered uncoupled.   

 

Fig. 5  Coupling between structure, seepage and network 
fields 

A key feature in the proposed formulation is the treatment 
of the network fluid pressure in both structure and network 
fields.  Both fields compute locally their own network fluid 
pressure and coupling is maintained via a predictor-
corrector scheme as outlined in Section 3.6.   

Since this class of problem investigates tight gas shale 
reservoir with isotropic Young’s moduli in the range of 30-
60 GPa [41], the time steps could be quite small unless 
remedial measures are undertaken.  Mass scaling techniques 
[42] are performed on relevant parts of the finite element 
mesh whenever an explicit time step is liable to drop below 
a threshold value.  These are typically near the fracture tip 
with a maximum scaling factor of 100.  Global system 
kinetic and strain energies are performed to ensure a quasi-
static solution is attained.   

3.4. Coupling strategy:  communication scheme 

Fig. 6 shows a graphical representation of the network 
pressure update in both structure and network fields.   

 

Fig. 6  Graphical representation of fluid pressure update 
in both structure and network fields between successive 

coupling times tୡଵ and tୡଶ 

A note on the notation, the superscripts ݅ and ݁ refer to the 
implicit and explicit solvers respectively. The fluid pressures 
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at a coupling time are usually not equal in structure and 
network fields, i.e ሺ݌௡௘ሻ௖ଵ ് ሺ݌௡௜ ሻ௖ଵ. The implicit network 
field analysis first marches forward in time between 
coupling times ݐ௖ଵ and ݐ௖ଶ yielding fluid pressures ሺ݌௡௜ ሻ௖ଵ 
and ሺ݌௡௜ ሻ௖ଶ.   

Fig. 7 presents the communication between implicit and 
explicit solvers which takes place across successive 
coupling times ݐ௖ଵ and ݐ௖ଶ.  More details regarding the 
individual implicit and explicit solution updates can be 
found in Sections 3.5 and 3.6 respectively 

 

 

Fig. 7  Communication between network and structure fields during successive coupling times 
 

3.5. Time integration:  network field implicit solution 

From Eq. (10) the network field at the current time ݐ௞ାଵ can 
be written as (where the subscript ݇ ൅ ͳ implies that the 
corresponding matrix or vector term is computed at the 
current time): ሺۿ௡்ሻ௞ାଵሺܝሶ ሻ௞ାଵ൅ ሺ܁௡ሻ௞ାଵሺ݌ሶ௡ሻ௞ାଵ൅ሺ۶௡ሻ௞ାଵሺ݌௡ሻ௞ାଵൌ ሺ܎௡ሻ௞ାଵ 

(12) 

A generalized Newmark procedure GN11 is performed to 
update the nodal network pressure ݌௡ between successive 
time steps ݐ௞ and ݐ௞ାଵ: ሺ݌௡ሻ௞ାଵ ൌ ሺ݌௡ሻ௞ ൅ ሺ݌௡ሻ௞ȟݐ௜௠௣ ൅ ሶ௡ሻ௞ାଵ݌௜௠௣ (13) ሺݐሶ௡ȟ݌଴ȟߚ ൌ ሺ݌ሶ௡ሻ௞ ൅  ሶ௡ (14)݌ଵȟߚ

where ȟݐ௜௠௣ ൌ ௞ାଵݐ െ  ௞ is the implicit solution timeݐ
increment.  In addition ߚ଴ and ߚଵ are the integration 
parameters set as ߚ଴ ൌ Ͳ and ߚଵ ൌ ͳǤͲ.  Eq. (12) can be 
rewritten as:   ࣒௞ାଵ௜௧௡ ൌ  ሺ܎௡ሻ௞ାଵ௜௧௡ െ ሺ܁௡ሻ௞ାଵ௜௧௡ ሺ݌ሶ௡ሻ௞ାଵ௜௧௡െ ሺ۶௡ሻ௞ାଵ௜௧௡ ሺ݌௡ሻ௞ାଵ௜௧௡െ ሺۿ௡்ሻ௞ାଵ௜௧௡ ሺܝሶ ሻ௞ାଵ௜௧௡ ൌ ૙ 

(15) 

where the superscript ݅݊ݐ refers to the iteration number. 
Clearly, convergence is achieved when ࣒௞ାଵ௜௧௡ ՜ ૙.  The 
unknown parameter in Eq. (15) is ȟ݌ሶ and this is computed 
using the Newton-Raphson method: െ ߲࣒௞ାଵ௜௧௡߲ȟ݌ሶ௡ ݀ሺȟ݌ሶ௡ሻ௜௧௡ ൌ ࣒௞ାଵ௜௧௡  (16) 

Linearisation of Eq. (15) leads to the final transient equation 
that is then used to update the nodal network pressures: ൣߚଵሺ܁௡ሻ௞ାଵ௜௧௡ ൅ ሺ۶௡ሻ௞ାଵ௜௧௡ݐ଴ȟߚ ൧݀൫ȟ݌ሶ௡௡൯௜௧௡ൌ  ሺ܎௡ሻ௞ାଵ௜௧௡ െ ሺ܁௡ሻ௞ାଵ௜௧௡ ሺ݌ሶ௡ሻ௞ାଵ௜௧௡െ ሺ۶௡ሻ௞ାଵ௜௧௡ ሺ݌௡ሻ௞ାଵ௜௧௡െ ሺۿ௡்ሻ௞ାଵ௜ ሺܝሶ ሻ௞ାଵ௜௧௡  

(17) 

Once ȟ݌ሶ௡ is equated then the fluid pressure terms in Eq. (13) 
and (14) are updated to the current problem time ݐ௞ାଵ. In the 
present formulation the implicit solution initially advances 
ahead of the explicit solution of the structure field and 
during this stage the aperture and aperture strain rate terms 
are assumed constant over a single implicit solution time 
increment.  This implies that the storativity and permeability 
matrix terms are also constant.   

Successive 
coupling 

times 

Network field 
 

Send ሺ݌௡௜ ሻ௖ଵ and ሺ݌௡௜ ሻ௖ଶ, i.e. 
network pressures at successive 

coupling times ݐ௖ଵ and ݐ௖ଶ 
respectively ሺ݌௡௜ ሻ௖ଵ ሺ݌௡௜ ሻ௖ଶ

Structure field 

Receive ሺ݌௡௜ ሻ௖ଵ and ሺ݌௡௜ ሻ௖ଶ from 
network field 

compute fluid network pressure at time ݐ௜௦௧ାଵ௘  
(see Section 3.6) 

compute total aperture strain rate over the 
whole number of structure time steps 

(see Section 3.6) 

Send ቀ ୼௘ഄ௧೎మି௧೎భቁ to network field  

(see Section 3.6) 
Receive ቀ ୼௘ഄ௧೎మି௧೎భቁ from structure 

field 
 



3.6. Time integration: structure field explicit solution 

Time integration of the structure field adopts the standard 
central difference scheme to update the nodal accelerations, 
velocities and displacements [10,31].   

Since in practice compared with the implicit solution 
scheme the explicit solution requires many more time 
integration steps it is necessary to update the network field 
fluid pressure at intermediate steps between coupling times 
 The following  .(௖ଶ  respectively, see Fig. 6ݐ ௖ଵ andݐ)
presentation builds on the parameters shown in Fig. 6 and 
they are defined in more detail here.  As the implicit network 
field advances ahead of the explicit structure field then from 
the perspective of the structure field the network fluid 
pressures ሺ݌௡௜ ሻ௖ଵ and ሺ݌௡௜ ሻ௖ଶ at successive coupling times ݐ௖ଵ 
and ݐ௖ଶ are known values.  The structure field network fluid 
pressures ሺ݌௡௘ሻ௖ଵ are also known at the start of the coupling 
interval ݐ௖ଵ.  The goal is to compute the network fluid 
pressure between coupling times on the explicit structure 
field using only these values.  It is assumed that this value 
can be decomposed into 3 components as: ሺ݌௡௘ሻ௜௦௧௥ାଵ ൌ ሺ݌௡௜ ሻ௜௡௧ ൅ ο݌௦ ൅ ο݌ௗ (18) 

where ሺ݌௡௘ሻ௜௦௧௥ାଵ is the network fluid pressure at the 
intermediate step ݅ݎݐݏ ൅ ͳ between coupling times ݐ௖ଵ and ݐ௖ଶ.  The number of intermediate steps is dependent on the 
ratio of the explicit time step size to the coupling time 
interval.  ሺ݌௡௜ ሻ௜௡௧ is the linearly interpolated network 
pressure from the implicit values at time ݐ௜௦௧ାଵ௘ : ሺ݌௡௜ ሻ௜௡௧ ൌ ሺ݌௡௜ ሻ௖ଵ൅ ௜௦௧ାଵ௘ݐ െ ௖ଶݐ௖ଵݐ െ ௖ଵݐ ሺሺ݌௡௜ ሻ௖ଶ െ ሺ݌௡௜ ሻ௖ଵሻ 

(19) 

The incremental change in network fluid pressure due to the 
storativity and aperture change is given by: ο݌௦ ൌ െሺͳ Τݎ݂ܵ ሻο݁(20) ߝ 

Where ο݁ఌ is the change in aperture strain computed 
between successive explicit time steps ݅ݎݐݏ and ݅ݎݐݏ ൅ ͳ as: ο݁ఌ ൌ ݁௜௦௧ାଵ െ ݁௜௦௧ͲǤͷሺ݁௜௦௧ାଵ ൅ ݁௜௦௧ሻ (21) 

Where ݁௜௦௧ାଵ and ݁௜௦௧ are the apertures extracted at times ݐ௜௦௧ାଵ௘  and ݐ௜௦௧௘  respectively.  The third component is a 
measure of the difference between the implicit and explicit 
computed network pressures at the start of a coupling 
interval.  This difference is linearly ramped off over the 
coupling interval: ο݌ௗ ൌ ௖ଶݐ െ ௖ଶݐ௜௦௧ାଵ௘ݐ െ ௖ଵݐ ሺሺ݌௡௜ ሻ௖ଵ െ ሺ݌௡௘ሻ௖ଵሻ (22) 

The coupling interval must be appropriately set; if it is not 
tight enough there will be an unacceptable drift between the 
two values and, conversely, too tight a coupling interval can 
lead to increased run-time without improved accuracy of the 
solution.   

3.7. Time integration: coupling parameters 

The present formulation exhibits good convergence 

properties with the implicit solution scheme typically 
converging within a few iterations.  For hydraulic fracture 
design cases pumping times are usually measured in the 
order of thousands of seconds and through investigation it 
has been found that a coupling interval of 1.0s is typically 
appropriate for this class of problem.   

3.8. Geometry based fracture prediction 

The geometry insertion technique is a means of introducing 
new geometry lines (in 2D hydraulic stimulation models) 
into the finite element discretization which do not 
necessarily follow the edges of the finite element mesh.  The 
newly introduced geometry lines simulate fracture growth 
during hydraulic stimulation.  In addition, a local remesh 
algorithm is implemented which only operates around the 
fracture tip region, thus avoiding the need for a 
computationally exhaustive global remesh.   

At the material level each element response follows 
continuum damage theory (see Section 2.3) and the key 
constitutive parameters like stress, strain and damage are 
spatially located at the element Gauss point.  The damage 
indicates the degree of softening which an element has 
undergone during loading, with a value of 0 indicative of no 
damage and 1 indicative of fully damaged.  In term of the 
physical response this represents the coalescence of micro-
flaws leading to the creation of two new fracture surfaces.   

A typical fracture propagation model is shown in Fig. 8(a)-
(c) with the fracture length almost doubling in size during 
fluid injection.  The propagating fracture is not pre-seeded 
due to model constraints and it is freely able to follow the 
stress state as dictated by the model (refer to Fig. 8(b)-(c)).   

A schematic of the damage process zone and its numerical 
treatment is shown in Fig. 9(a)-(c).  This shows the opening 
of a crack mouth with a tensile damage zone ahead of the 
fracture tip.  The elements in red signify that the element is 
fully damaged with the remaining elements below this 
threshold and still capable of supporting load (refer to Fig. 
9(a)).  The predicted fracture surface is not forced to follow 
the element edges and can follow the stress state as dictated 
by the simulation (see Fig. 9(b)).  Due to the mode-1 
assumption of failure, the failure direction is defined as 
orthogonal to the maximum tensile principal stress.  When 
the failure path exceeds a user-specified length all points 
along the path are used to form a geometric entity and this 
finally leads to the fracture surface (Fig. 9(b)-(c)).  The 
fracture prediction algorithm is shown in Table 1:   

For each fracture tip: 
a. Extract material state for elements within patched 

region (see Fig. 10(a)-(b)) 
b. Interpolate damage variable to element nodes (see 

Fig. 10(c)).   
c. For those nodes which have surpassed the damage 

threshold of 1.0 as set by the material model, 
construct a best-fit linear line from fracture tip 
through damaged nodes (see Fig. 10(d)) 

d. If line length matches that specified by the user then 
the line is marked ready for fracture insertion 

Table 1 Fracture prediction



 

Fig. 8(a)-(c)  Evolving discrete fracture 

 

Fig. 9(a)-(c)  Fracture prediction and insertion 

 
Fig. 10(a)-(d)  Predicting fracture length and direction 

(a)  Fracture prediction – element damage (b) Fracture prediction – most tensile principal stress direction 

(c) Fracture prediction – interpolated nodal damage (d) Fracture prediction – predicted fracture line 



3.9. Local remeshing around fracture tip 

A very important modelling aspect is the capability to deal 
with meshing the new geometry in a computationally 
attractive manner.  A local meshing methodology is 
employed which makes redundant the need for a 
traditionally expensive global remesh, which is also likely 
to introduce dispersion of key material variables such as 
stress, strain and damage indicators.  The local meshing 
zone is defined via a patch region which is adjacent to the 
fracture tip and it is always very small compared to the 
problem size, so in relative terms the computational cost is 
low (refer to Fig. 11(a)).  

It is very important that the remesh is only performed locally 
at a fracture tip. For example, in a typical industrial scale 
mesh of many 100,000’s elements typically only a 100 
elements are remeshed.  The mesh in all other regions of the 
problem domain remains unchanged (refer to Fig. 11(b)).  
Clearly, fracturing is a very dynamic process in that the 
model is constantly changing so this procedure of following 
the fracture tip via a patch region and subsequently only 
remeshing locally is continually being updated during 
hydraulic stimulation.  This is extremely important for this 
class of problem as it has been observed that for some tight 
gas shales stimulated fracture lengths reach values of many 
hundreds of meters [43].   

There is a parent-child relationship between the network and 
fracture surface nodes which allows, for example, the fluid 
pressure from the network field to be transferred as an 
external load to a corresponding node on the fracture surface 
of the structure field. During a local remesh around a 
fracture tip this mesh topology must be maintained and this 
is achieved by initially stitching the mesh back to a non-
discrete body, performing the local remesh on the resulting 
bonded domain and then displacing the elements back to 
their original spatial location after the remesh.  This is 
achieved by monitoring the displacements of the fracture 
surfaces such that they can be returned to their position after 
the remesh.  Since Mode I failure rather than shear failure 
mechanisms is considered in the present application, 
typically there is very little relative slip between opposing 
fracture surfaces during hydraulic stimulation.   

Key nodal and element variables, such as displacements and 
stresses, are mapped between old and new meshes using 
standard mapping techniques (see [44] for more details).    
Mapping of the displacements is very important to ensure 
that the correct aperture is maintained after a remesh since 
the implicit solution network element permeability is a 
function of the current aperture.  The newly inserted 
network elements are initialised to the initial reservoir fluid 
pressure and the increased fluid pressure from further fluid 
injection typically results in additional fracture opening. 

 

 

 

Fig. 11(a)-(b)  Local remeshing around fracture tip



4. Geomechanics and Microseismicity 

4.1. Overall methodology 

The concept behind integrating geomechanics and 
microseismic prediction for the finite element method [45] 
is based on the approach described in [46].  The integrated 
geomechanics and microseismic prediction was applied to a 
North Sea field, where subsidence prediction was used to 
calibrate the coupled flow-geomechanical model of the field 
[47].  The paper was interested in monitoring high shear 
stress regions in the reservoir layer with the potential 
increased risk of microseismicity.   

4.2. Implementation 

The approach followed in this paper is outlined in the paper 
by Angus el al. [45].  Seismic events are monitored in space 
and time, where a microseismic event is predicted to occur 
within an element when the effective stress satisfies the 
Mohr-Coulomb yield envelope.  Based on the differential 
stress tensor Angus calculates a pseudo-scalar seismic 
moment (i.e. stress drop) which can be used to infer 
microseismicity.  Future work will include a method 
outlined by Lisjak [20] for transferring the material strain 
energy into a seismic energy signal for mode-1 type failure.    

5. Numerical Examples 

5.1. Validation model 

To ensure the validity of the proposed formulation the 
software is compared against a well-known analytical 
solution in the hydraulic fracture mechanics literature.  The 
KGD (Khristianovitch and Zheltov, Geertsma and De-
Klerk) analytical solution assumes: 

1. The relationship between crack or fracture surface 
pressure and fracture aperture is given by 
Sneddon’s formulation 

2. Steady state fluid flow inside the fracture 

The implementation proposed in this paper assumes 
transient flow so it is only possible to partially capture the 
assumptions in the analytical solution.  A further validation 
comparison is presented via a semi-analytical solution in 
which the mechanical response of the fracture width is once 
again dictated by Sneddon’s equation but the flow part is 
solved via a 1D numerical solution using a finite difference 
scheme, allowing the transient effects to be captured.  From 
Sneddon’s equation, the width as a function of net pressure 
and fracture length is given by [1]: ܹ ן Ͷ ሺͳ െ ܧଶሻߥ  (23) ܲܮ

where ܹ is the maximum fracture width or aperture, ܧ is 
the isotropic Young’s modulus, ߥ is the Poisson’s ratio, ܮ is 
the fracture length and ܲ is the net pressure along the 
fracture.  Assuming parallel plate flow theory for 1D 
laminar flow the relationship between fluid velocity and 
flow rate is given by: ݀ݔ݀݌ ן െ ͳʹܹܳܪߤଷ  (24) 

where ݌ is the fluid pressure, ݔ is the 1D spatial dimension, ܳ is the fluid injected flow rate, ߤ is the fluid viscosity and ܪ is the height of the fracture.  Substituting Eq. (23) into Eq. 
(24) and solving the resulting ordinary differential equation 
via a simple separation of variables leads to the following 
solutions: 

௦௢௟݌ ൌ ቆ ͸ܳܧߤଷͺܪସሺͳ െ ଶሻଷቇ଴Ǥଶହߥ  ଴Ǥଶହ (25)ܮ

௦ܹ௢௟ ൌ ቆͻ͸ܳߤሺͳ െ ܧଶሻߥ ቇ଴Ǥଶହ  ଴Ǥଶହ (26)ܮ

Where ݌௦௢௟  and ௦ܹ௢௟  are known as the pressure solution and 
width solution respectively.   

Fig. 12(a)-(b) shows the comparison between the software 
and both KGD analytical and semi-analytical solutions.  It 
can be seen that the trends for both ‘pressure versus fracture 
half-length’ and ‘fracture width versus fracture half-length’ 
are captured with the semi-analytical KGD solution 
providing a better match due to its capability to mimic 
transient flow inside the fracture.  Sneddon’s solution 
assumes elastic behaviour so in the numerical solution fluid 
was only injected prior to inelastic deformation at the 
fracture tip.   

 

(a) Pressure (MPa) v. half length (m) 

 

(b) Width (m) v. half length (m) 

Fig. 12(a)-(b) Comparison of software against KGD 
solution (analytical and semi-analytical solutions) 



5.2. Demonstration models 

The demonstration cases investigate hydraulic fracturing in 
both intact (see Fig. 13(a)) and naturally fractured (see Fig. 
13(b)) shale reservoirs.  The reservoir is modelled in plan 
view as a 2D plane strain domain.  Hence, the model is 
simulating horizontal fracturing with an assumed constant 
extruded height or reservoir layer thickness.  The outer 
boundaries of the model are fixed.  The natural fractures are 
modelled with Mohr-Coulomb stick-slip contact regions 
[48,49].  The pre-production stresses and pore pressures are 
specified in Table 2.  The initial stresses are not aligned with 
the global axis but are rotated clockwise by 40o relative to 
north (i.e. positive y-axis). This is indicative of the case 
where the horizontal wellbore is not drilled exactly parallel 
with the minimum principal stress.   

Pre-production parameter Value 

Minimum horizontal effective stress 10 MPa 

Maximum horizontal effective stress 15 MPa 

Overburden effective stress 20 MPa 

Reservoir pore pressure 30 MPa 

Table 2 Pre-production stresses and pore pressure  
(assumed uniform) 

The natural fractures in Fig. 13(b) are specified via a 
statistical variation of 4 key discrete fracture network (DFN) 
parameters; these are:   

 Orientation (relative to north, i.e. y-axis); 
 Fracture spacing; 
 Fracture length; 
 Persistence. 

For the naturally fractured case, two DFN sets are specified 
with DFN parameters as stated in Table 3 and Table 4 
respectively.     

 

DFN parameter Value 

Orientation 90o 

Fracture spacing 80 m 

Fracture length 40 m 

Persistence 80 m 

Table 3 DFN set 1  

DFN parameter Value 

Orientation 330o 

Fracture spacing 30 m 

Fracture length 40 m 

Persistence 50 m 

Table 4 DFN set 2  

In reality the natural fractures are not perfectly aligned 
according to a uniform DFN parameter value and so a small 
standard deviation is applied to each parameter to give a 
small variation about the input mean (see Fig. 13(b)).   
 

5.3. Mechanical and fracture fluid properties 

Isotropic elasticity is assumed for the shale rock with the 
material parameters given in Table 5.  The fracture 
mechanics material parameters and fracking fluid properties 
are stated in Table 6 and Table 7 respectively.   

Material parameter Value 

Young’s modulus 32,000 MPa 

Poisson’s ratio 0.2 

Table 5 Shale elastic properties 
 

 
           (a)  Case 1            (b)  Case 2 

 
Fig. 13(a)-(b):  Case 1 - Model geometry of intact reservoir (plan view);  Model geometry of naturally fractured reservoir 

with two DF sets (plan view) 
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Material parameter Value 

Tensile strength 1.0 MPa 

Fracture energy 50 N.m 

Table 6 Shale fracture mechanics properties  

Fluid property Value 

Viscosity 1.67E-3 Pa.s 

Bulk fluid modulus 2,000 MPa 

Table 7 Fracturing fluid properties  

5.4. Case 1:  Hydraulic stimulation of intact rock 

An intact shale of uniform layer thickness 10m is pumped 
with a slickwater fracturing fluid along with a pumping 
schedule as outlined in Table 8.  It is assumed that the fluid 
loss from the fracture into the reservoir is very low.   

Flow rate (m3/s) Volume (m3) Duration (s) 

0.125 75 600 

Table 8 Pumping schedule  

Fig. 14 shows the orientation of the initial minimum and 
maximum effective horizontal principal stresses.  Fig. 15(a)-
(c) shows the evolution of the propagating fracture. In 
particular, it can be observed that the fracture propagates 
towards the maximum compressive stress and maintains this 
direction throughout the fluid injection phase.  In practice 

the initial stress field in the reservoir is most likely 
heterogeneous and this would influence the propagating 
fracture leading to a potentially complex fracture pathway 
[50] which can be modelled. Fig. 16 shows the evolution of 
fracture volume and length.  The rate of fracture length 
increase is at its most rapid during the initial pumping stages 
and gradually reduces over the pumping schedule.   

 

Fig. 16 Case 1:  Evolution of fracture volume and fracture 
length 

 

 

Fig. 14 Case 1:  Pre-production minimum and maximum principal directions (red – minimum; blue - maximum) 

 

Fig. 15(a)-(c) Case 1:  Propagation of hydraulic fracture 

 



5.5. Case 2:  Hydraulic stimulation of a naturally 
fractured reservoir 

A key design question to the hydraulic fracture engineer is 
the influence of natural fractures on propagating fractures.  
From coring the fracture density is known in terms of the 
number of fractures per core length, but this provides limited 
information on the orientation of the natural fractures so in 
effect the required information is only partially known to the 
engineer and any remaining DFN parameters form part of a 
sensitivity analysis.   

In this case study the exact same material properties, pre-
production stresses and pumping schedules are applied as in 
Case 1; the only difference now being the inclusion of two 
DFN sets. Therefore this contrasts hydraulic fracture 
prediction in an intact reservoir rock with one which 
contains multiple DFN sets.    

The evolution of the bottom hole pressure (BHP) is often 
analysed during the post-appraisal phase of a hydraulic 
fracture design to assess the accuracy of the initial model 
input and also to develop a better understanding of the whole 
fracturing process.  The BHP evolution for both Case 1 
(intact reservoir) and Case 2 (naturally fractured reservoir) 
is shown in Fig. 17.  BHP starts from reservoir pressure and 
increases due to fluid injection and reaches a peak value, 
known as breakdown pressure [1], at which time the 
reservoir rock tensile strength is overcome and a fracture 
forms.  Due to the sudden increase in fracture volume there 
is a decrease in the BHP and this eventually tends to a near 
constant value known as the propagating pressure.  Once the 
fracture reaches a significant length the BHP required to 
maintain fracture propagation is significantly reduced; in 
this study the BHP drop from breakdown to propagating 
pressure is approximately 10 MPa.   

 

Fig. 17 Cases 1/2:  Evolution of bottom hole pressure 

Fig. 18(a)-(d) shows the evolution of the hydraulic fracture 
throughout hydraulic stimulation.  A very important 
observation is the propensity of the hydraulic fracture to 
follow the far-field maximum horizontal principal stress 
direction even when connecting with natural fractures which 
are oblique to the initial stress state.  The overriding 
propagating fracture direction is unchanged even though 
there is noticeable connectivity with both DFN sets 1 and 2.  
The overall fracture length is only slightly smaller than the 

value computed for the intact reservoir case (compare Fig. 
15(c) and Fig. 18(d)).   

Fig. 19(a)-(b) shows the evolution of the most tensile 
principal stress during the initial pumping stage (i.e. t=22-
32s) in a region adjacent to the stimulated section.  The tip 
of the fracture is in tension and this allows the propagating 
fracture to develop and finally connect with adjacent DFN 
sets.  The ELFEN TGR software ensures that there is a fine 
mesh around the tip region to adequately capture the sharp 
stress gradients.  This is particularly important when the 
hydraulic fracture approaches DFN sets where large element 
sizes could smear out the stresses over an unduly large area 
and result in the propagating fracture erroneously 
connecting with a DFN set.   

Fig. 20(a)-(b) shows the reservoir relative maximum 
horizontal stress ࡾࡴߪ, which is computed as: ࡾࡴߪ ൌ ૙ࡴߪࡴߪ  (27) 

where ࡴߪ  and ࡴߪ૙  are the current and pre-production 
maximum horizontal stresses respectively.  This parameter 
offers a number of insights into the mechanical behavior of 
the reservoir.  Regions where the value is effectively equal 
to 1 indicates reservoir sections with unchanged stress, so it 
defines the limits of the stress influence of the propagating 
fracture.  In addition, regions with perturbed values outside 
of 1 are very important as these can indicate whether a 
natural fracture is open or closed relative to its initial 
configuration.  From Fig. 20(a)-(b) the natural fractures 
corresponding to DFN set 2 are in a state of increased 
compression (i.e. 1.0 < ࡾࡴߪ).  This suggests that these natural 
fractures are now in a closed state and less conducive for 
porous flow, which is a key factor in obtaining sufficient 
hydrocarbon recovery from a gas-filled tight shale reservoir.   

One of the key indicators of fracture propagation is not only 
the initial stress state but also the evolving stress field in 
terms of both magnitude and direction as the hydraulic 
fracture propagates in a reservoir potential populated with a 
high density of natural fractures.  This is where numerical 
techniques become a powerful tool, for analyzing systems 
with many complex nonlinear components like continuum 
damage mechanics and Mohr-Coulomb frictional slip along 
natural fractures.  Fig. 21(a)-(b) shows the evolution of the 
principal stress vectors near the stimulation region during 
the first few 10’s of seconds of the pumping stage.  It can be 
observed from Fig. 21(a) that adjacent to the propagating 
fracture the maximum stresses rotate such that they are 
orthogonal to this propagation direction.  Interestingly, the 
extent of the rotation of the principal stresses from the initial 
far-field state is relatively small, so in effect only a small 
region surrounding the hydraulic fracture undergoes a 
change in stress and much of the reservoir stress remains 
unchanged.  This is the case in point for the DFN sets, 
material properties and pumping schedule as defined in this 
paper.  Further investigations are required to determine 
whether this observation is more universal for this class of 
problem. 

 



 

Fig. 18(a)-(d) Case 2:  Propagation of hydraulic fracture 

 

Fig. 19(a)-(b) Case 2:  Evolution of minimum principal stress (Pa) near injection region 
(positive is tensile – red contour) 

 



 

Fig. 20(a)-(b) Case 2:  Evolution of maximum horizontal principal stress near injection region  
(relative value = current value / initial value) 

 

Fig. 21(a)-(b) Case 2:  Evolution of principal stress vectors (Pa) near injection region (red – minimum; blue - maximum) 



 

Fig. 22(a)-(b) Case 2:  link between slip prediction from geomechanical model and inferred microseismicity  
(a snapshot of the reservoir 650s after start of fluid injection) 

 

5.6. Case 2:  Link between geomechanical model and 
microseismicity 

During fluid injection the reservoir undergoes local changes 
in the stress field due to the propagating hydraulic fracture. 
As the fracture spreads into regions with a high density of 
DFN’s it is instructive to assess the potential for slip along 
the surface of the DFN’s.  Slip results in a change of the 
local stress field as a new equilibrium configuration is 
attained.  This is often referred to as the ‘creaking of the 
rock’ and the change in stress field could affect the fracture 
propagation direction.   Fig. 22(a)-(b) shows a comparison 
between the slip predicted by the geomechanical model 
(Fig. 22(a)) and the corresponding inferred seismicity (Fig. 
22(b)) 650s after pumping started.  Beachballs are a 
graphical representation of the source mechanism [47,45] 
and gave information on both the potential failure 
mechanism in terms of seismic moments (e.g. shear or 
tension) and the magnitude of the seismic event.  It can be 
observed that the stress changes remain local to the 
propagating fracture and do not strongly influence potential 
slippage along DFN sets at a distance from the fracture tip. 
This behaviour is confirmed from both the geomechanical 
model and inferred seismicity.  Indeed the inferred 
seismicity predicts a large tensile event at the fracture tip 
and low shear slippage along DFN sets adjacent to the 
propagating fracture and this corresponds with localised 
stress changes observed as the fracture propagates.   

6. Conclusions 

This paper has presented a novel combined finite element 
and discrete element approach to investigate hydraulic 

fracture stimulation in tight gas reservoirs complemented by 
microseismic analysis.   

The method combines coupled techniques to assess the 
interplay between injected fluid and the mechanical 
response of the reservoir.  The propagating fracture is a 
complex response combining nonlinearities at many levels, 
including material behaviour and the insertion of new 
fracture surfaces.   

An innovative approach has been implemented to deal with 
fracture insertion based on new and dynamically updated 
geometrical entities rather than the traditional approach of 
splitting along a finite element edge. By basing fracture 
insertion on geometrical entities a degree of control is 
maintained over the quality of the evolving finite element 
mesh.  Indeed, with the present method it was observed 
during an analysis that the time step size change was very 
small which is testament to the geometric approach.   

Two demonstration cases were presented; hydraulic 
stimulation of both intact and naturally fracture reservoirs.  
The new technology was shown to predict hydraulic 
fractures of some 500 meters in length which is consistent 
with field observations by the petroleum industry.  The 
interaction between DFN sets and far-field stresses was also 
shown in the naturally fractured reservoir case.  In the latter 
case inferred microseismicity confirmed that the anticipated 
degree of slip along DFN sets was minimal and only those 
DFN sets which were near the propagating fracture were 
affected.   

Future work for the present tool includes the capability to 
simulate transport of the proppant grains inside the fracture 



regions (i.e. the slurry stage).  This leads to a propped 
conducive zone inside the fracture which is required for 
sufficient hydrocarbon drainage of a tight gas reservoir [51].   

The 2D hydraulic stimulation model presented in this paper 
is most suitable for thin reservoir layers and homogeneous 
stress states.  The reservoirs are often very thin, perhaps in 
the region of 30-40m thick, so the 2D approximation is 
suitable in this instance.  However, for reservoirs with 
highly heterogeneous stress states a 3D model is essential.  
The techniques described in this paper will be extended to 
include a fully functioning 3D hydraulic stimulation and 
production modelling software.   
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