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A Bayesian Approach to Sparse Model Selection in Statistical Shape Models∗
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Abstract. Groupwise registration of point sets is the fundamental step in creating statistical shape models
(SSMs). When the number of points on the sets varies across the population, each point set is
often regarded as a spatially transformed Gaussian mixture model (GMM) sample, and the regis-
tration problem is formulated as the estimation of the underlying GMM from the training samples.
Thus, each Gaussian in the mixture specifies a landmark (or model point), which is probabilistically
corresponded to a training point. The Gaussian components, transformations, and probabilistic
matches are often computed by an expectation-maximization (EM) algorithm. To avoid over- and
under-fitting errors, the SSM should be optimized by tuning the required number of components.
In this paper, rather than manually setting the number of components before training, we start
from a maximal model and prune out the negligible points during the registration by a sparsity
criterion. We show that by searching over the continuous space for optimal sparsity level, we can
reduce the fitting errors (generalization and specificities), and thereby help the search process for a
discrete number of model points. We propose an EM framework, adopting a symmetric Dirichlet
distribution as a prior, to enforce sparsity on the mixture weights of Gaussians. The negligible model
points are pruned by a quadratic programming technique during EM iterations. The proposed EM
framework also iteratively updates the estimates of the rigid registration parameters of the point
sets to the mean model. Next, we apply the principal component analysis to the registered and
equal-length training point sets and construct the SSMs. This method is evaluated by learning of
sparse SSMs from 15 manually segmented caudate nuclei, 24 hippocampal, and 20 prostate data
sets. The generalization, specificity, and compactness of the proposed model favorably compare to
a traditional EM based model.

Key words. statistical shape models, Gaussian mixture model, sparse inference, model selection, EM algorithm,
caudate, hippocampi, prostate
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Notation.
α Concentration parameter of Dirichlet distribution
π = [π1, . . . , πNM

]T Vector of Gaussian priors
δ Thickness of the level set narrow bands
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BAYESIAN MODEL SELECTION IN SSMs 859

γ
(n)
j Responsibility of jth model point

T = {Tk} Set of K rigid transformations
X = {Xk} Set of K training point sets
Σ = diag(σ2, . . . , σ2, σ′2) Covariance matrix of Gaussians
mj Position vector of jth point on M
Tk = {sk,Rk,bk} Rigid transformation mapping M to Xk

Xk = {xki} kth training point set constructed from kth shape
x̃ki = [xT

ki, φk(xki)]
T Hybrid vector of ith point on kth shape

x̃ki = [xT
ki, φk(xki)]

T ] Hybrid vector of ith point on kth shape
φ(mj) Signed distance function estimated at mj

φk Signed distance function of kth training shape
Θ = {T,M,Σ,π} Set of unknowns
D Dimension of xki

E
(n)
kij Posterior of jth Gaussian, given x̃ki at nth iteration

K Number of training sample shapes

N =
∑K

k=1Nk Total number of points on the shapes
Nk Number of points on Xk

NM Number of points on the mean model

Q(Θ | Θ(n)) Lower bound on likelihood at nth iteration
z Sparsity parameter (linear in α)

1. Introduction. Statistical shape models (SSMs), originally proposed by
Cootes and Taylor in [13], have been historically applied to the automatic segmentation of
anatomical structures [37, 36, 41, 55, 57, 11, 47, 39, 50, 28]. By exploiting statistical shape
priors, these models increase the robustness of the segmentations against imperfect imaging
features such as weak edges and clutter. Constructing an SSM from a training set often in-
volves estimating both the mean shape and the plausible (principal) modes of its variations.
For a comprehensive review of these methods, see Heimann and Meinzer [26]. The constructed
SSM depends on the shape representation, e.g., a popular approach is binary image repre-
sentation [49, 15, 31, 2]. In these models, the mean shape is registered to the training sets,
usually through diffeomorphic deformation fields as nonfolding and invertible mappings. Next,
to identify the modes of variations, principal component analysis (PCA) is directly applied to
either the deformation [15] or the velocity fields [31] in the tangent spaces. In a closely related
approach, Leventon, Grimson, and Faugeras [37] and Rousson, Paragios, and Deriche [48]
represented the shapes by signed distance functions (SDFs). The level set values computed
over the entire image domain was concatenated into a vector and subjected to PCA. Although
this method conveniently handles topological variations, nonsparse representation frequently
requires large computational resources.

More compact forms of shape expression are offered by surface representation. For in-
stance, in one category, the surface is expressed as a vector in a coordinate frame spanned by
a set of orthonormal basis functions. Examples include Fourier descriptors [51] and spherical
harmonics [6, 33], obtained by solving the Laplace equation on a sphere. The corresponding
shape vectors are statistically analyzed by PCA. These methods were originally designed for
shapes homeomorphic to a sphere and are not easily extendible to more complicated and
nonconvex structures.D
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860 A. GOOYA, C. DAVATZIKOS, AND A. F. FRANGI

Shape representation using point sets has been widely reported in the literature [14, 13,
21, 8, 18, 17] because it is simple to implement. Landmarks are sparsely chosen on the surfaces
of the training sets, and concatenated into a vector representing each shape. Evidently, the
PCA outcome depends on the order of the points in the concatenation: inconsistent ordering
can result in artifactual variation modes. In other words, a pointwise “correspondence” should
be specified for every landmark across the training samples. In addition, the actual location
of the landmarks affects the quality of PCA. Established ways of tacking these problems are
summarized in section 1.1.

Here, we estimate the number of landmarks needed to represent the mean model. This
problem can be important when creating an unbiased SSM from unregistered point sets con-
taining differing number of points. Intuitively, including many landmarks on the mean model
increases the degree of freedom and results in overfitting in the from of loose registration (and
incorrect modes of variations). Conversely, few landmarks deteriorate geometrical details. In
fact, the relation between the degree of freedom in a shape model and the under/overfitting
problem is also evident in the context of geodesic active contours [10]. In its simplest form, an
evolving contour is attracted toward image edges, while its shape is regularized by penalizing
its length. This leads into a curve evolution scheme that consists in a curvature weighted term
to regularize the shape of the curve [23]. Reducing the weight of curvature often results in
an unregularized curve that does not necessarily match the target borders and could overfit
to image background, whereas increasing the curvature weight yields overly simplified and
underfitted curves. Therefore, motivated by these observations, we hypothesize that there
must exist an optimal number of landmarks (or sparsity level as discussed in the rest of the
paper) that minimizes generalization and specificity errors.1

The optimal number of landmarks should ideally minimize both generalization and speci-
ficity errors [18]. In practice, however, the errors may not be minimized by the same number
of model points. Thus, rather than obtaining an SSM with a single optimal number of land-
marks, we use cross-validation and directly measure the generalization/specificity errors in
the left-out samples. We then identify a range of model point numbers giving reasonable error
values.

More importantly, rather than searching in the discrete space, we propose a Bayesian
framework replacing the discrete number by a continuous hyper-parameter. Starting from a
large number of model points, the hyper-parameter controls the sparsity rate of model point
pruning during the registration. To achieve this, we formulate groupwise registration as the
estimation of a Gaussian mixture model (GMM) from the training points, corresponding each
model point to a Gaussian component. In this setting, the sparsity hyper-parameter defines
the “concentration” parameter of a symmetric Dirichlet prior imposed on the mixture weights
in the GMM. Thus, the problem of selecting the number of model points becomes that of
determining the correct sparsity level. We show that this process compacts the SSMs and
reduces their generalization and specificity errors, relative to those of established SSMs [30].

In machine learning studies, estimating the number of Gaussians in a GMM is regarded as
a particular example of the “model selection” problem [16], in which models with intermediate

1The first error is related to the distance between an actual and the model predicted shapes. The latter
specifies the ability of the model to instantiate correct shapes resembling the training data.
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complexity (ratio of free parameters to training data) are known to be optimal in generalization.
However, to our knowledge, estimating number of model points as a particular model selection
problem has not been fully considered by the medical imaging community. Here, we demon-
strate that an intermediate number of model points (sparsity levels) generally improves model
efficiencies. To correctly highlight the contributions of this study, we briefly review some of
the seminal SSM studies in section 1.1

1.1. Review of related state-of-the-art SSM methods. Manual selection of landmarks
and setting their correspondences across training shapes [13] can be a time-consuming and
nonreproducible procedure. In fact, landmarks are matched by machine generated approaches,
traditionally by the iterative closest point (ICP) [42] algorithm. Other automatic methods
improve the matching by including curvatures and local neighborhood features [7, 54, 52]. The
robustness of matchings is enhanced by spatial regularization using Markov random fields [43],
currents [53], and diffeomorphic mappings [22]. In an alternative approach, Frangi et al. [21]
extracted a set of landmarks from a preconstructed atlas and assigned each set an example
shape by nonrigid B-spline mappings. However, these methods do not necessarily optimize
groupwise statistics. Regarding this problem as homologous to the minimum variance princi-
ple, Hill and Taylor [27] and Baumberg and Hogg [3] minimized the trace of the covariance
matrix by displacing the landmarks in the surface normal direction. In an alternative ap-
proach, Kotcheff and Taylor [35] minimized the determinant of the covariance matrix and
introduced a free parameter to avoid zero eigenvalues. Inspired by the Occam’s razor prin-
ciple, which favors simple models over complex ones, Davis et al. [18, 17] minimized the
length of the binary code specifying the Gaussian distribution of the data. These methods
are mathematically elegant but computationally expensive, and because of their parametric
surface representation, they are not readily extendible to nonspherical topologies.

Identifying correspondences between landmarks becomes even more challenging when the
training sets cannot be exactly matched [44], either because of intrinsic anatomical differences
or because the number of points differs among the point clouds. In such cases, hard-binds
established between the landmarks could introduce dummy modes in the PCA variations.
To alleviate this problem, Rangarajan, Chui, and Bookstein [45] proposed the soft-assign
procrustes algorithm for matchings two sets of landmarks with different counts. Granger
and Pennec [25] proposed EM-ICP, a combination of expectation-maximization (EM) [19]
and conventional ICP that enables partial or probabilistic matching between points. Since
EM based methods can deal with complex variations, they have been popularly applied in
groupwise registrations and SSM constructions.

Chui et al. [12] proposed a forward-backward consistent deformable registration of point
sets to the mean model in an EM-like framework. Their algorithm iteratively updates the
point correspondences, mean model, and deformations, but it does not consolidate the results
by PCA. In a similar but computationally less expensive framework, Hufnagel et al. [30]
applied an affine transformation to register the point sets. Based on the EM outcome (i.e.,
the registered point clouds with partial matches between points), they then performed a
heuristic PCA on the “virtually correspondent” points. Recently, Rasoulian Rohling, and
Abolmaesumi [46], replaced the affine with a B-spline based registration model, and they
applied PCA to the computed deformation fields.

D
ow

nl
oa

de
d 

10
/1

6/
15

 to
 1

43
.1

67
.4

9.
18

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

862 A. GOOYA, C. DAVATZIKOS, AND A. F. FRANGI

In the above studies, groupwise registration of point sets was reformulated as estimating
the underlying probability density function (pdf) from spatially transformed noisy observa-
tions of points. The pdf is often represented as a Gaussian mixture model, whose means
(estimated by EM) determine the landmark locations. Determining an appropriate number
of Gaussian components for a specified number of data points, the so-called model selection
problem in machine learning, is ignored in these approaches. However, model selection can
avoid under- and overfitting errors and thereby improve the generalization efficiency of the
trained pdf. In an SSM context, model complexity can be influenced by the number of points
representing the mean shape, which is usually selected before the training phase [25, 12, 30, 46].

The contributions of this study are twofold. First, we propose a Bayesian framework for
sparse SSM construction. Within this framework, the number of model points is indirectly
determined during the training phase. Starting from a maximal number of model points,
sparsity is enforced by employing a symmetric Dirichlet prior on the mixture weights. Neg-
ligible model points are pruned during each EM iteration by a quadratic programming (QP)
technique. The sparsity rate is controlled by a hyper-parameter, namely, the concentration
parameter of the Dirichlet prior. As is well known, the weights of the Gaussians in the GMM
become sparse when this parameter is less than unity. We optimize the value of this param-
eter in cross-validation experiments and identify an approximate range that generalizes well
globally over various data sets. Second, we simplify the reconstruction of surfaces from points
by representing each landmark as a hybrid vector containing the level set and coordinates.
Note that our representation is denser than that of Leventon, Grimson, and Faugeras [37],
who disregarded the coordinates.

This paper extends our preliminary work in [24]. Here, we provide the mathematical
details and apply our method to different and a larger number of data sets, two of which
are nonhomeomorphic to a sphere. Topologically nonspherical data pose special challenges to
training SSMs by Davis et al. [17] and Keleman, Szekely, and Gerig [33]. Thus, we compare our
method to a closely related approach proposed by Hufnagel et al. [30], which is more flexible
compared to [17, 33] and has been used as a reference in an independent recent study [46].

Sparsity has been applied to SSMs by several research groups. For instance, in the sparse
shape representation of Zhang et al. [56], any unseen shape is represented by a sparse linear
combination of the training samples. Alternatively, Durrleman et al. [20] enforced sparsity
on the deformation fields using an L1-type prior, which encodes the shape variations. By
contrast, our approach focuses on the number of model points.

The remainder of this paper is organized as follows. Our model is formulated in section 2.
Sections 3 and 4 present the results and conclusions, respectively. Detailed mathematical
derivations are given in the appendix (section 5).

2. Methods. This section introduces our EM algorithm. This general framework allows
us to (1) align given training point clouds and (2) prune out negligible points during the
registration. The result is a sparse mean model. We emphasize that in addition to the
number of model points, the properties of the principal modes of variations affect the efficacy
of the SSM. However, because of its complexity, we do not explicitly optimize the variation
modes but rather obtain them by independent PCA after registration. In fact, this problem
has been extensively studied in other works, such as [17, 27, 3, 35]. Having achieved these
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(a) (b)

Figure 1. Shape representation using the explained hybrid point sets: (a) Binary representation of a shape
in the training set. (b) Corresponding SDF, with overlaid narrow band (shading) and zero level set contour
(thick line). The shape is represented as a set of the points in the narrow band, where each point is defined by
concatenating its spatial coordinates and SDF value (i.e., x̃ = [xT , φ(x)]T ). The latter can aid in reconstructing
the shape with the correct orientation and topology.

goals, we construct the SSM in section 2.6 by determining the virtual point correspondences
[30] and applying the PCA.

2.1. Shape representation. The input data to our algorithm consists of K binary masks,
as D dimensional images, from which we constitute our training point sets. To this end, it
is customary to sample the points from the surface of the binary masks and thus ignore the
orientation of the surfaces (or the polarity of the masks). Without this information, recon-
struction of surfaces from points can be handled through various approaches. For instance,
Zhao, Osher, and Fedkiw [58] first computed an unsigned distance map from the points by
solving the Eikonal equation; then a geodesic active contour was driven toward the point set
using advection on the distance map. This step is time-consuming and, during its evolution,
contour can be trapped in a local minima. In other related works, the direction of normal
vectors to the surface is estimated and inconsistent normal vectors are flipped [29]. Then an
SDF is constructed by moving along the normals in both directions of the surface [9]. Without
explicit information on the surface normal, its automated extraction from geometry alone is
a nontrivial and ambiguous process for complex and closed structures.

Here, we take a different approach and include additional distance features on a surface’s
narrow band for unambiguous surface reconstruction. As shown in Figure 1, given a binary
mask we first construct an SDF, whose zero level set represents the surface of the mask.
Next, we collect all the points within a narrow band of thickness δ around the zero level
set. Each point is defined as an augmented D + 1 dimensional vector and consists of spatial
coordinates and the corresponding SDF value. Distance information is conveyed through our
EM algorithm to the constructed statistical model and can be used to infer the implied surface
from the mean model. To reconstruct a surface, we first interpolate the values of the SDF on
a regular grid of voxels and then extract the zero level set (see (3.2)).

2.2. Sparsity and alignment through EM algorithm. Let X = {Xk}, 1 ≤ k ≤ K, denote
the set of K observed (D + 1) dimensional training point sets defined as Xk = {x̃ki ∈ R

D+1|
1 ≤ i ≤ Nk}. Let φk denote the SDF from the surface of the kth segmented training shape.
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The points specifying Xk are then defined as x̃ki = [xT
ki, φk(xki)]

T , where xki = [xki, yki, zki]
T

specify the spatial coordinates of each point. To minimize the number of required points, we
consider only those points within a narrow band of thickness δ surrounding the surface. Thus,
in the implementation, we have set D = 3; however, we retain the general term D in the rest
of the paper.

Let M = {m̃j ∈ R
D+1}, 1 ≤ j ≤ NM , be a model point set. Similarly, each model point

can be written as m̃j = [mT
j , φ(mj)]

T , where mj denotes the pure spatial coordinates and
φ(mj) is the corresponding level set value at that point. In addition, let T = {Tk} be the set
of K rigid transformations defined as Tk = {sk,Rk,bk}, which includes scaling, rotation, and
translation parameters. Each Tk globally transforms the model points m̃j ∈ M to the space
of Xk by

Tk � m̃j ≡
[
skRk 0
0 sk

]
m̃j +

[
bk

0

]
.(2.1)

Now let x̃ki ∈ Xk be a noisy observation vector sampled from a Gaussian distribu-
tion centered at Tk � m̃j such that p(x̃ki|Tk, m̃j ,Σ) = N (x̃ki|Tk � m̃j ,Σ), where Σ = diag
(σ2, . . . , σ2, σ′2) is a diagonal covariance matrix. In this constraint, the variances of the spa-
tial coordinates are equal but different from that of the level set values, because the spatial
coordinates generally have a larger span than the level set values in the narrow bands. Since
NM points exist on M, the conditional pdf of x̃ki can be given as a mixture of Gaussians:
p(x̃ki|Tk,M,Σ,π) =

∑NM
j=1 πjp(x̃ki|Tk, m̃j ,Σ), where π = [π1, . . . , πNM

]T .
Assuming that all Nk observed points on Xk are independent, the probability of Xk can

be written as p(Xk|Tk,M,Σ,π) =
∏Nk

i=1 p(x̃ki|Tk,M,Σ,π). Finally, to model the pdf of the
total observation X, we further assume that the K given points sets are jointly independent
and identically distributed such that

p(X|T,M,Σ,π) =

K∏
k=1

p(Xk|Tk,M,Σ,π).(2.2)

Next, we estimate the set of registration parameters and the mixture coefficients through
maximum likelihood and Bayesian frameworks, respectively, by maximizing the following prob-
ability. The formulation is

T̂,M̂, Σ̂, π̂ = argmax
T,M,Σ,π

log[p(T,M,Σ,π|X)]

= argmax
T,M,Σ,π

[log p(X|T,M,Σ,π) + log p(π)].(2.3)

Note the following (1) This step generates only the postregistered point sets, which are
then subject to an independent PCA to obtain SSM. However, we hypothesize that an optimal
registration of the point sets optimizes SSM and reduces the generalization and specificity
errors. Thus, regardless of the value of NM , we optimize the registration parameters. (2) The
likelihood term, i.e., p(X|T,M,Σ,π) can be infinitely large if every training point corresponds
to a model point, i.e., NM = N , 2 which is a controversial result. Therefore, we cannot

2In that case, the Gaussian components in the mixture will approach infinity and the variance will be zero.
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determine an optimal NM by maximizing the right-hand side in (2.3) w.r.t.NM . To identify
a suitable number of model points, we instead adopt cross-validation schemes, which quantify
those generalization and specificity errors versus NM (or the sparsity level; see section 2.3).

2.3. Prior on the mixture coefficients. In this section, we propose a prior pdf for the set
of mixture coefficients π defined in the previous section, which enables the sparse estimation
of the model points. To enforce sparsity, π is drawn from a symmetric Dirichlet distribution
function [4], given by

p(π) =
Γ(NM (N(α − 1) + 1))

Γ(N(α− 1) + 1)NM

NM∏
j=1

πj
N(α−1),(2.4)

where N denotes the total number of observed points (N =
∑K

k=1Nk), Γ is the Gamma
function, and α is the concentration parameter. Note that the prior given in (2.4) is proper,
i.e., the marginalization of the prior over π is unity.

When α = 1, this distribution reduces to a uniform distribution. For α > 1, distribution
is maximized when all πi coefficients equal 1/NM . However, when α < 1, the power sign
becomes negative, and the distribution prefers sparsity on the mixture coefficients, i.e., the
πi’s approach zero. Sparsity is enforced by retaining the latter condition. The lower bound
on α is determined by 1− 1/NM , as explained in the next subsection.

2.4. Optimization using EM. Since, the direct solution of (2.3) does not have a closed
form, we find a tractable solution through the EM algorithm [19]. Given an estimate of the
parameters Θ = {T,M,Σ,π} at the current iteration (n), EM maximizes the lower bound
on the right-hand side of (2.3), which takes the following form:

Q(Θ|Θ(n)) =
K∑
k=1

Nk∑
i=1

NM∑
j=1

{E(n)
kij [log(πj)

+ log(N (x̃ki|Tk � m̃j ,Σ))]}+ log(p(π)),(2.5)

where E
(n)
kij specify the posterior probability that x̃ki are sampled from the Gaussian compo-

nent of mean m̃j in the current iteration n. The EM algorithm proceeds through two iterative

steps. In the E-step, the posterior probabilities E
(n)
kij are updated using the current parameter

estimates:

E
(n)
kij =

π
(n)
j N (x̃ki|T (n)

k �m
(n)
j ,Σ(n))∑NM

l=1 π
(n)
l N (x̃ki|T (n)

k �m
(n)
j ,Σ(n))

.(2.6)

In the M-step, the value of (2.5) is maximized w.r.t. the unknown parameters, giving a
set of updated equations. Using the results from the last step, we sequentially update each
parameter in the following order: T,M,Σ, and π. The first set is derived similarly to the
procedures outlined in [30] and [40] (see the appendix for the details). This section focuses
on the update rule for π, the main mechanism by which sparsity is enforced.
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We plug (2.4) into (2.5) and keep the relevant terms in π. We then apply the constraint∑NM
j=1 πj = 1 through a Lagrange multiplier λ and maximize the following expression w.r.t.

each πj, 1 ≤ j ≤ NM :

Q(Θ|Θ(n)) =
K∑
k=1

Nk∑
i=1

NM∑
j=1

{[E(n)
kij + (α− 1)]log(πj)}

+λ

⎛
⎝NM∑

j=1

πj − 1

⎞
⎠+O.T.,(2.7)

where O.T. denotes π-independent terms. Differentiating (2.7) w.r.t. πj and eliminating λ
after some algebra, we obtain

π�
j =

γ
(n)
j + α− 1

NM (α− 1) + 1
,(2.8)

where N denotes the total number of the observed points (N =
∑K

k=1Nk) and γ
(n)
j = 1/N∑K

k=1

∑Nk
i=1E

(n)
kij . This value can be regarded as the total responsibility of model point mj

in explaining the data. When α = 1, (2.8) reduces to the classic maximum likelihood based
estimation of mixture weights with no sparsity imposed.

Note that (2.8) allows negative mixture weights because no positivity constraint is imposed

when deriving (2.7). In fact, it is easily seen that for 1 − 1/NM ≤ α, if γ
(n)
j < 1 − α, then

π�
j < 0. In other words, if the total responsibility of the model point m̃j falls below 1 − α,

its corresponding mixture weight becomes negative. However, since negative probabilities are
invalid, πj of such model points is set to 0 by the QP scheme explained below. Note that
sparsity can increase when α is very close to 1 − 1/NM . Hence, we specify in terms of an
auxiliary variable as z ∈ (0, 1), specifically α using α = (1 − 1/NM )z + (1 − z). In this
definition, sparsity is proportional to z.

Having estimated all π�
j values, we update the mixture weights by solving the following

convex optimization problem using the generalized sequential minimal optimizer proposed
in [32]:

π
(n)
1 , . . . , π

(n)
NM

= argmin
π1,...,πNM

NM∑
j=1

(π�
j − πj)

2

s.t.

NM∑
j=1

πj = 1 ∧ 0 ≤ πj ∀j.(2.9)

Equation (2.9) effectively finds the orthonormal projection of π∗ on the space of eligible
probabilities satisfying the above conditions. At the end of the M-step, model points with

zero corresponding mixture weight, i.e., π
(n)
i , are identified and pruned out. Next, NM is

updated by counting the remaining alive points.
Computationally, we observed this algorithm to be very efficient. Even for a large number

of model points (NM � 104), the convergence time of QP is typically less than one second.
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The method breaks the convex optimization of (2.9) into a series of smaller subproblems by
identifying mixture weights that violate the constraints [32].

The model points M are initialized by a k-means algorithm [4] and all spatial transfor-
mations in T are set to the identity transformation. The initial number of model points NM

is the total number of available points (typically N −K to avoid extreme overfitting) and is
later reduced by the imposed sparsity. The algorithm alternately iterates between the E and
M-steps until convergence (in our case, this is determined by a small variation in the estimated
covariance matrix). Typically, sufficiently good convergence is achieved after 50 iterations of
our EM algorithm. Higher numbers of iterations produce no significant change in the results.
Thus, the number of iterations was fixed to 50 in all subsequent experiments.

2.5. Brief overview of the EM-ICP method. As discussed earlier, our EM algorithm is
motivated by the study of Hufnagel et al. [30]. Besides using an affine transformation model,
the Hufnagel et al. study differs from ours in several important ways: (1) we compute the
mixture coefficients using (2.8) and (2.9), whereas the Hufnagel et al. approach assumes that
all prior probabilities of the mixture components are fixed and equal to πj = 1/NM . Hence, no
sparsity is enforced in [30] and NM must be predetermined. (2) To prevent early trapping in
local minima because of sudden drop in σ2, the variance in [30] was manually reduced by some
factor (normally between 0.8 and 0.9). We hypothesize that early drops in σ2 are prevented
by our pruning process, which removes negligible points from the model. Intuitively, we
expect that the observed points are sampled from fewer Gaussian components as the pruning
proceeds. Thus, the variance of such Gaussians increases to preserve the likelihood of the
observed points. (3) The number of EM iterations in [30] was user-defined. While Hufnagel
the et al. model requires three free parameters (i.e., the prespecified number of landmarks
NM , a variance reduction factor, and the number of iterations), our model requires a single
parameter (z). Therefore, the Hufnagel et al. model is more complex than our model, and its
results are more dependent on user choices.

2.6. Construction of SSM. Using the EM algorithm described in the previous section,
we first register our training data sets in X to the mean shape M by estimating the rigid
transformations in T. The resulting mean model is insufficient for predicting unseen samples.
To properly construct a generalizable SSM, we should learn the plausible shape variations
that exist in the training samples. This subsection explains how the modes of variations are
computed from the registered samples. The approach, described in [30], is included here to
ensure a self-contained report.

Shape models are popularly constructed by PCA [13]. However, this method requires
one-to-one point correspondences between the aligned training data and the mean shape. By
contrast, no exact point correspondences are defined in our EM-ICP based method. In fact,
point correspondences are identified by the “virtual correspondence” [30], which resolves the
problem as follows: for any model point m̃j a virtually correspondent point, denoted by m̆kj,
is induced by the training sample Xk as

m̆kj =

NM∑
i=1

Ekij∑
l Eklj

T−1
k � x̃ki,(2.10)
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where Ekij denotes the posterior probability of x̃ki being sampled from the Gaussian com-
ponent that is specified by the model point m̃j. Computing these correspondences for all
training samples, we obtain K+1 virtually aligned shapes (including the mean shape). Next,
each shape is columnwise concatenated to a vector, and PCA is applied to the co-variance
matrix of the shape vectors. The result is the average vector x̄ ∈ R

(D+1)NM and the matrix
of eigenmodes P ∈ R

(D+1)NM×n, where n ≤ K is the number of principal components consid-
ered in the analysis.3 Having defined these components, any unseen sample vector x is then
computed as

x = x̄+Pb,(2.11)

where b is the vector of coefficients. To eliminate the noise from x, each coefficient is con-
strained by |bi| ≤ 3

√
λi, where λi is the ith eigenvalue of the co-variance matrix of the training

vectors [13].

3. Results. In this section, we first describe the caudate, hippocampus, and prostate data
sets and explain the construction of our training point sets from segmented structures. All
the data sets are publicly available and downloadable from the repositories of MICCAI Grand
Challenges.4 Since we aimed to evaluate the quality of the statistical models themselves,
no image segmentation was performed. In fact, for comparing our SSM with the Hufnagel
et al. EM-ICP model, the acquired data sets were segmented by an expert and subjected
to cross-validation experiments. Therefore, we used three well-known criteria introduced by
Davis et al. [18], i.e., generalization, specificity, and compactness. For brevity, we hereafter
refer to our model as SpSSM and to the Hufnagel et al. EM-ICP model as SSM. Finally, we
present the principal modes of variations extracted by SpSSM.

3.1. Data specifications. The first data set (caudate) consists of 15 segmented sets ac-
quired from subjects with schizotypal personality disorder [38]. Magnetic resonance (MR)
images were acquired by a spoiled gradient-recalled imaging protocol with the parameters,
i.e., echo time (TE)=5 ms, repetition time (TR)=35 ms, repetition=1, nutation angle= 45◦,
field of view=24 cm, acquisition matrix 256 × 256 × 124, and voxel dimensions= 0.9375 ×
0.9375 × 1.5mm. Each caudate nucleus was manually segmented by an expert (Figure 2(a)).

The second data set contains hippocampus segmentations of both epileptic patients and
healthy control individuals. T1-weighted spoiled gradient echo recalled MR images were ac-
quired by two scanners with different acquisition matrices and were subsequently segmented by
experts [34]. Twenty-four data sets were randomly selected and the resolutions were unified.
The final matrix and voxel sizes were 256× 256× 124 and 0.781× 0.781× 2mm, respectively.
Sample manual segmentations of the left and right nuclei of a single subject, used as a training
set in our experiments, are shown in Figure 2(b).

Our third data set consists of prostate structures that were manually segmented from
transversal T2-weighted MR images [1]. Data were acquired from patients with benign (e.g.,
prostatic hyperplasia) or malignant lesions. Figure 2(c) shows a sample MR prostate image
in various slices overlain by an expert segmentation. Since this data set was contributed

3The number of principle components is usually decided when the sum of the considered n eigenvalues
accounts for 98% of the total trace of the covariance matrix.

4http://www.grand-challenge.org.
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(a)

(b)

(c)

Figure 2. Sample of manually segmented slices of training data: (a) caudate nuclei, (b) hippocampal
nuclei, and (c) prostate (shown in axial, coronal, and sagital slices from left to right).

by multiple centers adopting different scanning protocols, the acquired images with different
resolutions. To maintain low computational burden, we chose 20 sets and resampled the expert
segmentations to element spacing of 2.0×2.0×2.0mm. By implementing this step, we achieve a
consistent surface sampling rate across our training sets and consequently preserve the number
of points generated for each individual across our populations. Naturally, this steps minimizes
the possibility of artifactual bias toward oversampled or undersampled training shapes

3.2. Training point sets. For each of the caudate and hippocampus data-sets, the level
sets in the surrounding narrow bands were generated with thickness of δ = 1.5 pixels and,
approximately, 104 points per set. Next, these point sets were individually reduced to around
300 points by setting z = 0.95 and estimating no spatial transformation. Similarly, the level
sets of the prostate data sets were generated with a narrow band thickness of 1.5 mm and
approximately 3000 points per sample. In the second step, each of these point sets was
individually reduced to around 250 points by setting z = 0.7. The SSMs are constructed from
the resulting point sets in subsequent steps. Several samples of these point sets before and
following registration are shown in Figures 3(a) and 3(b), respectively.

3.3. Quantitative model performance measures. Our SSM was compared to the
Hufnagel et al. model [30] in an exhaustive series of cross-validation experiments. The gener-
alization, specificity, and compactness measures were quantified for each model [18, 17].
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(a)

(b)

(c)

Figure 3. Registration of training point clouds by our method: (a) caudate nuclei, (b) hippocampal nuclei,
and (c) prostate samples (left and right panels display the original and the registered clouds, respectively.)

The generalization performance indicates the ability of the trained model to predict unseen
test samples [18, 4]. The generalization in each fold of our cross-validation experiments was
evaluated in four steps: (1) Coregister the training set to the mean model M using the EM
algorithm. (2) Apply PCA to the coregistered training sets by (2.10) and (2.11) and compute
the matrix of eigen modes P and the mean of the registered samples X̄ . (3) Align each of the
point clouds in the left-out test set with the trained model X̄ by reapplying the EM algorithm
but without updating M. Set Xj as the test set, which is now registered to X̄ . (4) Project Xj

on the P space by (2.10) and (2.11) and thereby obtain X. The spatial normalization effects
on the training sets imposed by scaling, rotation and translation operations are visible in the
sample registrations shown in Figure 3. From these registered point clouds, we compute the
PCA space and project the left-out test point sets on that space.

Next, we quantify the difference between Xj (the reference point set) and X̂j (the model-
predicted point set). The smaller the difference, the better the generalization. Following [30],
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our first measure is the Hausdorff distance, defined for two given point sets as follows:

dH(Xj , X̂j)=max{max
x̃∈Xj

min
ỹ∈X̂j

d(x̃, ỹ),max
ỹ∈Xj

min
x̃∈X̂j

d(x̃, ỹ)},(3.1)

where d(x̃, ỹ) = ||x̃ − ỹ||2 denotes the Euclidean distance between x̃ and ỹ. Thus, our first
generalization measure is defined as G = 1

K

∑K
j=1 dH(Xj , X̂j)

The Hausdorff distance properly quantifies the differences between details and between
sharp geometrical features, such as the elongated tails of caudate nuclei. The overall similarity
of the shapes represented by X and Xj requires an alternative measure, here defined as the
average distance of the surfaces reconstructed from these point sets. To reconstruct a surface,
the level set values on the three-dimensional grid of voxels are first interpolated from the
scattered points by

φ̂(vn) =
∑
m

φ(xm)k(||vn − xm||),(3.2)

where φ̂, φ are the interpolated and available level set values, k(·) is a radial basis kernel
function, and vn, xn represent the positional vectors of the query voxel n and scattered
point m, respectively. This interpolation is implemented using a fast and efficient library
[5]. Gaussian kernels were used and the bandwidth of the basis functions was set to 6mm
and 30mm for the caudate/hippocampus and prostate data sets, respectively. These values
were retained throughout the experiments. Next, the zero level set is extracted from the
three-dimensional volume and a surface mesh is reconstructed [9].

The specificity determines the ability of the model to produce a valid output. The speci-
ficity was computed by randomly sampling the SSMs within the range of valid parameters,
[−3

√
λk, 3

√
λk] and measuring S = 1

R

∑R
r=1 mink∈{1...K} dH(Xr,Xk). Here, R is the number

of randomly generated data sets, Xr is the random shape, and Xk is the kth training sample.
The minimalism of the parameter set is quantified by the compactness measure, that is, the
cumulative sum of c eigenvalues of the covariance matrix of the aligned training samples,
normalized over the trace of the covariance matrix: C(c) =

∑c
k=1 λk/

∑K
k=1 λk

3.4. Experiments. In this section, we compare our sparse SSM with the Hufnagel et al.
model [30]. The parameters space of both models were subjected to cross-validation experi-
ments, and the generalization, specificity, and compactness were evaluated at each point. The
generalization was quantified using left-out test samples, whereas the specificity was deter-
mined from training sets. In SpSSM, the sparsity parameter z was varied from 0.01 to 0.99 in
0.1 increments. However, the dimensions of the parameters in SSM were prohibitively large
because the NM , number of EM iterations, and variance reduction factor (section 2.5) were
freely selectable. Thus, NM was restricted to 100–3700 (approximate number of total available
points N =

∑
k Nk) in increments of 400, while the other parameters were assigned typical

values.

3.4.1. Generalization. We performed threefold cross-validations on our caudate data. In
each fold, 10 point sets were used for training and 5 point sets were left as test samples. We
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Table 1
Comparison of the minimum Hausdorff and surface distances (in mm) using SSM [30] and our sparse model

(SpSSM). Measurements in bold are statistically different. The associated p-values are listed in the following
rows.

Caudate Hippocampus Prostate

Hausdorff distances

SSM 5.4±0.81 6.0±1.16 21.46±2.42
SpSSM 4.67±0.66 5.47±0.89 13.54±2.99
p-value 2.13×10−8 8.2×10−4 ≈ 0

Average surface distances

SSM 1.42±0.14 1.24±0.18 1.43±0.16
SpSSM 1.39±0.13 1.14± 0.18 1.18±0.09
p-value 0.1875 8.88×10−4 ≈ 0

found that for any preselected z or NM , the EM algorithm converged to slightly different
registration results (different local minima) depending on the initialization achieved by k-
means. To minimize such randomness in the created shape models, we report the results of
five experiments.

Figure 4 shows the generalization results. Evidently, the Hausdorff and surface distances
obtained by SSM depend on the number of EM iterations (specified by different colors in
Figure 4(a) and 4(b)). In particular, the smallest Hausdorff distance is achieved after 15 EM
iterations; implementing more iterations does not improve the results. The distance improves
as the number of model points increases to 500, but no absolute distance improvement is
observed thereafter. Comparing the results of SSM and SpSSM (Figure 4(c) and (d)), we
observe that our model reduces the errors for 0.2 ≤ z ≤ 0.6. The Hausdorff distance obtained
by the optimal SpSSM (at z = 0.4) 4.67 ± 0.66mm is significantly less than the minimum
Hausdorff distance obtained by SSM (5.40±0.81 mm) after 15 EM iterations with NM = 2500.
Table 1 summarizes the results of statistical paired t-tests of the difference analysis and the
corresponding p-values. The minimum average surface distances of the caudate data are not
significantly different between the models, suggesting that our SpSSM better captures the
details (such as corners and tails), whose contributions to surface distance are attenuated by
averaging, but which significantly contribute to the Hausdorff distances.

Next, we quantified the generalization by performing fourfold cross-validations on hip-
pocampus data sets. In each fold, 18 sets were used for training and 6 sets were left as test
samples. To minimize randomness, which could be introduced by different k-means initializa-
tions, we report the results of three experiments. Here, the variance reduction factor is set to
0.8 and the results are shown in Figure 5. Again, the distances computed for SSM depend on
the number of EM iterations, but more iterations do not improve the generalization efficiency
(Figure 5(a) and (b)). The Hausdorff and surface distances are minimized at 6.0 ± 1.16mm
(NM = 500) and 1.24± 0.18mm (NM = 1300), respectively. The results of SpSSM are shown
in Figure 5(c) and (d). The best distances of SpSSM are smaller than those of SSM when
0.1 ≤ z. In SpSSM, the Hausdorff and surface distances are minimized at 5.47 ± 0.89mm
(z = 0.7) and 1.14 ± 0.18mm, respectively. Both these errors are significantly less than their
SSM counterparts (p-values are shown in Table 1).

Finally, we quantified the generalization on the prostate data sets by conducting 5 rounds
of cross-validations. In each fold, 15 point sets were used for training, and 5 sets were left
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Figure 4. Generalization errors obtained for 15 caudate nucleus data sets (see section 3.4). Shown are
the averages of 5 rounds of threefold cross validation experiments: (a) Hausdorff and (b) surface distances
using the classic EM-ICP method [30] with different numbers of EM iterations (black: 25; blue: 20; red: 15;
and variance reduction factor: 0.85). For comparison, the Hausdorff and surface distances obtained using our
SpSSM are shown in (c) and (d), respectively. Our model reduces the Hausdorff and average surface distances
(for 0.2 ≤ z ≤ 0.6).

for testing. Figure 6(a) and (b) shows how the SSM outcomes depend on the number of
EM iterations in this data set. Comparing these to the SpSSM results in Figure 6(c) and
(d), we observe that the distances are reduced in SpSSM over the entire range of z range,
indicating better generalization by this method. The minimal Hausdorff and surface distances
are significantly smaller in the optimal SpSSM than in the optimal SSM (Table 1). The
differences between the model results are larger in the prostate data set than in the caudate
and hippocampal data sets, probably because of larger variability in prostate data sets.

3.4.2. Specificity. The specificities of both models were compared by the Hausdorff dis-
tances, which are more discriminative than the surface distances, as seen in the previous

D
ow

nl
oa

de
d 

10
/1

6/
15

 to
 1

43
.1

67
.4

9.
18

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

874 A. GOOYA, C. DAVATZIKOS, AND A. F. FRANGI

3300 2900 2500 2100 1700 1300 900 500 100
3.5

4

4.5

5

5.5

6

6.5

7

7.5

NM

H
au

sd
or

ff
D

is
ta

nc
e(

m
m

)

(a)

3300 2900 2500 2100 1700 1300 900 500 100
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

NM

Su
rf

ac
e

D
is

ta
nc

e(
m

m
)

(b)

0 0.2 0.4 0.6 0.8 1
3.5

4

4.5

5

5.5

6

6.5

7

7.5

Z

H
au

sd
or

ff
D

is
ta

nc
e(

m
m

)

(c)

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Z

Su
rf

ac
e

D
is

ta
nc

e(
m

m
)

(d)

Figure 5. Generalization errors in 24 hippocampal data sets (section 3.4). Shown are the averages of
3 rounds of fourfold cross validation experiments: Hausdorff (a) and surface (b) distances using the classic
EM-ICP method [30] with different numbers of EM iterations (black: 25; red: 20; variance reduction factor:
0.8). For comparison, the Hausdorff and surface distances obtained by our sparse SSM are in (c) and (d),
respectively. Our model reduces Hausdorff distance while preserving the quality of the distances (for 0.1 ≤ z).
The errors in (c) and (d) are slightly increased when the sparsity is over imposed.

subsection. Furthermore, for SSM, we consider only the EM iteration numbers and variance
reduction factors yielding the best generalization outcome.

Figure 7(a)–(c) shows the specificity results for SSM. Comparing these graphs to the
corresponding specificities for SpSSM in (d)–(f), we confirm that our proposed model improves
specificity of the caudate data sets for 0.1 ≤ z ≤ 0.6 and of the hippocampal data set for
0.01 ≤ z ≤ 0.9. For the prostate data set, improvement is observed across the entire range of
z. Furthermore, analogous to the generalization errors in Figure 4, 5, and 6, the specificity
errors are minimized at intermediate sparsity values for all three data sets. However, the
values that optimize the specificity are not necessarily those that minimize the generalization.
Therefore, an optimal SpSSM model that minimizes both specificity and generalization errors
is not easily determined.D
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Figure 6. Generalization errors obtained for 20 prostate data sets (section 3.4). Shown are the averages
of 5 rounds of fourfold cross validation experiments: Hausdorff (a) and surface (b) distances obtained by the
EMICP method in [27] with different numbers of EM iterations (black: 30; blue: 25; red: 20; and variance
reduction factor: 0.85). For comparison, the Hausdorff and surface distances obtained by our sparse SSM are
shown in (c) and (d), respectively. In general, our model reduces the Hausdorff and surface distances.

3.4.3. Compactness. Figure 8 shows the compactnesses results of SSM and SpSSM. As
the sparsity parameter z increases (as NM decreases), SpSSM (SSM) becomes more compact.
However, in both cases, models with good generalization and specificity generally have inter-
mediate compactness. Although the compactness overlaps the three data sets, the proposed
sparse models with 0.1 ≤ z (for caudate) and 0.4 ≤ z (for hippocampus and prostate) are
at least as compact as SSM with adequate point counts (strong generalization performance
requires 100 < NM ). Therefore, we conclude that (optimal) SpSSMs are generally more
compact than SSMs.

3.4.4. Optimality interval for sparsity parameter. Figure 9 summarizes the results of
our quantitative comparisons. In this figure, for each data type we have highlighted the
ranges of z, where SpSSM outperforms SSM in various evaluation metrics. By considering
the intersection of these ranges shared across various data types, we can identify a range ofD
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Figure 7. (a)–(c) Specificity errors in the caudate, hippocampus, and prostate data sets using the EM-ICP
method in [30]. The corresponding errors obtained by SpSSM are shown in (d)–(f). The proposed method
improves the specificities in the caudate and hippocampus data sets for 0.1 ≤ z ≤ 0.6 and 0.01 ≤ z ≤ 0.9,
respectively. In the prostate data set (bottom row), the specificities are improved across the entire range z.

optimality of z, in which the proposed SpSSM is globally superior to SSM (regardless of the
data type, NM , and evaluation criterion). As seen in Figure 9, this range is lower bounded at
z = 0.4 by the compactness of SpSSM on the prostate and upper bounded at z = 0.6 by the
specificity on the hipposcampus data sets. Thus, we hypothesize that a safe value for z could
be selected in the range of 0.4 ≤ z ≤ 0.6 if no cross-validation experiments are considered. The
interval naturally favors models with intermediate complexities, where sparsity is in neither
of extremities.

3.4.5. Sensitivity to initialization. As explained, the means of the Gaussian components
in our EM algorithm are initialized using k-means algorithm. We repeat k-means clusteringD
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Figure 8. Compactness, defined as the scree plots of the covariance matrices of the coaligned train-
ing samples: (a)–(c) Measured by applying SSM [30] to the caudate, hippocampus, and prostate data sets;
(d)–(e) Corresponding values measured using SpSSM. The SpSSM tends to become more compact than SSM
when 0.1 ≤ z and 0.3 ≤ z are chosen for caudate/hippocampus and prostate data sets respectively. (SSMs with
NM = 100 are excluded, due to their poor generalization and specificity.)

of all data points, and then identify the best initialization by picking a k-means outcome
that has a minimal clustering cost. In order to investigate the sensitivity of the final results
to initialization, we ran cross-validations measuring generalization of SpSSM under differ-
ent numbers of k-means runs. The rationale is that a robust model construction should be
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z

Caudate

Hippocampus

Prostate

Figure 9. Sparsity ranges where SpSSM outperforms SSM with regard to generalization (red), specificity
(blue), and compactness (green) critera. As seen for 0.4 ≤ z ≤ 0.6, SpSSM is globally superior to SSM,
regardless of the data type, the evaluation metric, and NM (and other parameters used to construct SSMs).
Markers denote the optimal sparsity values.

Table 2
The influence of initialization on the generalization errors (in mm) obtained by SpSSM, measured as

Hausdorff distances for different number of k-means initializing rounds (measured at z = 0.5).

Caudate Hippocampus Prostate

K-means rounds

1 4.98 ± 0.82 5.54± 1.05 13.99± 3.4
101 4.92 ± 0.64 5.52± 1.12 13.98± 3.23
102 5.01 ± 0.79 5.51± 1.0 13.77± 3.33
103 5.03 ± 0.78 5.53± 1.13 14.06± 3.2

minimally dependent on k-means outcomes. Thus, the measures should be stable across dif-
ferent numbers of initialization rounds. For these experiments, we fixed z = 0.5 and varied
k-means rounds from 1 to 103. Then we measured the Hausdorff distance of PCA projected
and original point sets as before. The results, shown in Table 2, are not statistically dif-
ferent across various numbers of k-means initializations, suggesting that our sparse model
construction is well robust to initialization.

3.4.6. Nonlinear relationship between sparsity and z. Figure 10 shows the relationships
between z and the number of points at convergence, and between z and sparsity levels in
the optimal SpSSM, determined by cross-validation. The converged sparsity is most sensitive
at z = 0.01 and falls almost exponentially as z increases. For instance, as z varies from 0.4
to 0.8, the sparsity of the estimated prostate model changes by less than 5%. This varying
sensitivity trend may guide the selection of z in the absence of cross-validation experiments
and measurements of the Hausdorff and surface distances.

3.4.7. Qualitative descriptions. Figure 11 shows the mean models estimated by SpSSM
for different values of z. Minimal (z = 0.01) leads to anatomically incorrect models, with
several artificial structures (left panels of Figure 11). For example, unrealistic features appear
in the tails of the estimated caudate in Figure 11(a) and on the surface of the estimated
prostate in Figure 11(g). These artifacts are introduced by overfitting, which occurs when
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Figure 10. Number of model points (a) and sparsity levels (b) versus z obtained in cross-validation
experiments, prostate (blue), hippocampus (red), and caudate data sets (green).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Estimated mean shapes from segmented training samples (a)–(c) 10 caudate nuclei at z = 0.01
(3194 points), z = 0.4 (511 points), and z = 0.99 (145 points); (d)–(f) 18 hippocampal nuclei at z = 0.01
(3149 points), z = 0.7 (243 points), and z = 0.99 (139 points); (g)–(i) 15 of prostate at z = 0.01 (3061 points),
z = 0.4 (361 points), and z = 0.99 (122 points). Arrows in the left column show the artificial structures
generated by overfitting when N ≈ NM (section 3.4).
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Figure 12. Convergence behavior of the number model points versus EM iterations: prostate (blue),
hippocampus (red), and caudate data sets (green).

the number of unknown/free parameters approaches the total number of known data. In
our case, the numbers of free parameters approximate NM × D, i.e., the number of points
in the mean model multiplied by the dimension of each point. The total number of known
data is the number of points in training sets multiplied by (D+1). Conversely, overimposing
the sparsity (for example, setting z = 0.99) leaves insufficient model points for capturing
the anatomical details. The latter, known as an underfitting issue, is illustrated in the right
column of Figure 11, i.e., the caudates are disjointed in Figure 11(c), and the hippocampus
geometry is coarsened in Figure 11(f). In contrast, in the central panels (Figure 11(b), (e),
and (h)), SpSSMs are implemented using z values that minimize the Hausdorff generalization
errors. Evidently, the these SpSSMs preserve both the overall geometry and their details,
without introducing artifacts.

In Figure 12, the number of model points (NM ) is plotted as a function of the EM iteration
number for SpSSM with minimal Hausdorf generalization errors. The NM is stabilized within
50 iterations regardless of the data sets. On an Intel Core i3-2100 CPU @ 3.10GHz × 4 system,
running Linux, the entire process stabilizes within 5 minutes. In particular, the runtime is
not significantly affected by the QP component incorporated within our EM algorithm.

3.5. Visualization of principal modes of variations. To demonstrate that the proposed
model appropriately captures shape variations, the optimal mean models and their variations
along the first and second principal components are shown in Figure 13. These models are
estimated by the above described cross-validation experiments. To enhance the visualization,
the mean model is rendered in red, and the first and second modes of variations are overlain
in blue and green, respectively. In the caudate data sets, variation along the first component
mainly causes tails to shorten and elongate (Figure 13(a)), whereas variation along the second
component causes small oscillations in both nuclei (Figure 13(b)). Similarly, in the hippocam-
pus data sets, the first variation mode mainly corresponds to deformations at the distal end
of the structures in Figure 13(c)), whereas the second mode causes horizontal displacement of
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(a) (b)

(c) (d)

(e) (f)

Figure 13. First and second principal modes of variation in the (a)–(b) caudate (c)–(d), hippocampi, and
(e)–(f) prostate populations. In all figures, the mean shape (X̄) is rendered in red, and other colors specify the
positive and negative variations along with the principal modes X̄ ± 3

√
λ1,2P1,2. Arrows point to the locations

of significant variations.

both nuclei (Figure 13(d)). Finally, the first variation modes of the prostate data sets induces
contraction and extensions along the major axes of the structure (Figure 13(e)), while the
second mode causes smaller, unidirectional variations.

4. Conclusion. The fundamental hypothesis of this study is that the SSM of an object
can be rendered by an optimal number of points. The number of model points (NM ) should
be sufficiently small to avoid overfitting yet large enough to capture the structural details.
We determined (a range of) NM by an indirect approach based on a Bayesian estimation
framework, which imposes sparsity on the number of mixture components using a symmetric
Dirichlet distribution. The proposed method assumes the maximal number of available points
and removes points with smallest posterior probabilities in each EM iteration, until no negli-
gible model points are identified. The rate of the pruning process is approximately specified
by z, a sparsity controlling hyper-parameter.

We successfully applied our method to learn the variations within segmented caudate,
hippocampus, and prostate data sets. The first two of these data sets are nonhomeomorphic
to a sphere, rendering them unsuitable for training by the methods proposed in [17] and [33].
Therefore, we compared our sparse model to the Hufnagel et al. model [30] and demonstrated
that our model improved the generalization, specificity, and compactness measures. The
method proposed by Hufnagel et al. [29] is a generic framework to handle points with any
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dimensionality. We used the same point sets (with level sets) to implement and compare both
models. Therefore, we argue the improved performance of the sparse models proposed in this
paper owes to model construction rather than to the shape representation.

The benefit of exchanging a discrete, NM , by a continuous, z, parameter can be explained
as follows: (1) We have shown that cross-validation over z is advantageous to that over NM ,
because if we compare the best possible metrics that could be achieved through each cross-
validation scheme (i.e., the minima of generalization/specificity mean errors, and the maxima
of compactness through Figures 4–8), we see improvements in favor of cross-validation over
z. We argue this improvement responds to the weight estimation for Gaussian components
in the mixture. (2) Although the evaluation metrics are optimized differently over various
shapes, by intersecting suitable z intervals across all experiments in Figure 9, we identified
0.4 ≤ z ≤ 0.6 as a range that might generalize well over different data sets.

In the current framework, z is determined though exhaustive cross-validation experiments,
which are computationally demanding and time-consuming. In future study, we will estimate
this hyper-parameter by introducing a prior over z, following a Bayesian approach.

5. Appendix. Here, we derive update equations for the parameters T ,M, and Σ, follow-
ing the principles outlined in [30] and [40]. However, since we newly represent the points as
hybrid vectors and adopt a rigid transformation model, our derivations considerably differ
from those outlined in [30] and [40].

5.1. Update of spatial transformation parameters T. For a specific value of k, the trans-
formation parameters are updated by (2.5). In the following section, we retain only the Tk
dependent terms and denote other nonrelevant terms as O.T. We have

Q(Θ|Θ(n)) = −1

2

Nk∑
i=1

NM∑
j=1

E
(n)
kij

[
‖xki − skRkmj − bk‖2/σ2

+(φk(xki)− skφ(mj))
2/σ′2]+O.T.,(5.1)

which must be maximized for bk,Rk, and sk. Assigning the gradient of w.r.t. bk to zero, the
update equation is obtained as

bk = x̄k − skRkm̄k,(5.2)

where the barycenters are defined as

Sk =

Nk∑
i=1

NM∑
j=1

E
(n)
kij ,

x̄k = 1/Sk

Nk∑
i=1

NM∑
j=1

E
(n)
kijxki,

m̄k = 1/Sk

Nk∑
i=1

NM∑
j=1

E
(n)
kijmj .(5.3)
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The update of the rotation matrices under the following constraints requires elaborations:

RT
kRk = I ∧ det(Rk) = 1.(5.4)

We start with the following lemma [40].

Lemma 1. Let RD×D be an unknown rotation matrix andAD×D be a known real matrix.
Let USSVT be a singular value decomposition (SVD) of A, where UUT = VVT = I and SS
is a diagonal matrix.

Then the optimal rotation matrix R that maximizes tr(ATR) is R = UCVT , where
C = diag(1, 1, . . . , 1,det(UVT )).

This lemma implies that we must reformulate (5.1) in terms of the matrix traces. Thereby,
given that ‖ · ‖2 = (·)T (·) and RT

kRk = I, we insert (5.2) into (5.1) to obtain

Q(Θ|Θ(n)) ∝
Nk∑
i=1

NM∑
j=1

E
(n)
kij (xki − x̄k)

TRk(mj − m̄k).(5.5)

Now, using the circular property of the trace operator, we can rewrite (5.5) as

Q(Θ|Θ(n)) ∝
Nk∑
i=1

NM∑
j=1

E
(n)
kij tr[(mj − m̄k)(xki − x̄k)

TRk],

which is to be maximized w.r.t. Rk. Therefore, the matrix A in Lemma 1 is given by

Ak =

Nk∑
i=1

NM∑
j=1

E
(n)
kij (xki − x̄k)(mj − m̄k)

T .(5.6)

Hence, we identify U,V, and C matrices by SVD decomposition of Ak and then set Rk =
UCVT .

To determine the scaling factor sk, we take the partial derivative of (5.1) w.r.t. sk and
equate it to zero, thereby obtaining

sk =
tr(AT

kRk)/σ
2 +

∑
i,j E

(n)
kij φk(xki)φ(mj)/σ

′2

tr(Dk)/σ2 +
∑

i,j E
(n)
kij φ

2(mj)/σ′2
,(5.7)

where the matrix Dk is defined as

Dk =

Nk∑
i=1

NM∑
j=1

E
(n)
kij (mj − m̄k)(mj − m̄k)

T .(5.8)

Narrow band level sets satisfy ‖φ(mj)‖ � ‖mj − m̄k‖ and ‖φ(xki)‖ � ‖xki− x̄k‖. There-
fore, the scales can be simply approximated as sk ≈ tr(AT

k Rk)/tr(Dk).D
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5.2. Update of model points M. To update the model points m̃j = [mT
j , φ(mj)]

T , we
compute the gradients of (2.5) w.r.t. to mj and φ(mj) independently and equate them to
zero. Noting that RT

kRk = I, we obtain the following results:

mj =

∑K
k=1

∑Nk
i=1E

(n)
kijR

T
k (xki − bk)∑K

k=1

∑Nk
i=1 E

(n)
kij sk

,(5.9)

φ(mj) =

∑K
k=1

∑Nk
i=1E

(n)
kijφk(xki)∑K

k=1

∑Nk
i=1E

(n)
kij sk

.(5.10)

5.3. Update of the covariance matrix Σ. Next, we derive the update equations of the
variances by solving ∂Q(Θ|Θ(n))/∂σ = 0 and ∂Q(Θ|Θ(n))/∂σ′ = 0. The final results are given
as below:

σ2 =
1

ND

K∑
k=1

Nk∑
i=1

NM∑
j=1

E
(n)
kij ‖xki − skRkmj − bk‖2(5.11)

σ′2 =
1

N

K∑
k=1

Nk∑
i=1

NM∑
j=1

E
(n)
kij (φk(xki)− skφ(mj))

2,(5.12)

where N denotes the total number of observed points (N =
∑K

k=1Nk).
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