
This is a repository copy of Accurate Segmentation of Vertebral Bodies and Processes 
Using Statistical Shape Decomposition and Conditional Models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/90967/

Version: Accepted Version

Article:

Pereanez, M., Lekadir, K., Castro-Mateos, I. et al. (3 more authors) (2015) Accurate 
Segmentation of Vertebral Bodies and Processes Using Statistical Shape Decomposition 
and Conditional Models. IEEE Transactions on Medical Imaging , 34 (8). 1627 -1639. ISSN
0278-0062 

https://doi.org/10.1109/TMI.2015.2396774

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Accurate Segmentation of Vertebral Bodies and

Processes using Statistical Shape Decomposition

and Conditional Models
Marco Pereañez, Karim Lekadir, Isaac Castro-Mateos, José Maria Pozo, Áron Lazáry,

and Alejandro F. Frangi, Fellow, IEEE

Abstract—Detailed segmentation of the vertebrae is an impor-
tant pre-requisite in various applications of image-based spine
assessment, surgery and biomechanical modeling. In particular,
accurate segmentation of the processes is required for image-
guided interventions, for example for optimal placement of
bone grafts between the transverse processes. Furthermore, the
geometry of the processes is now required in musculoskeletal
models due to their interaction with the muscles and ligaments.
In this paper, we present a new method for detailed segmentation
of both the vertebral bodies and processes based on statistical
shape decomposition and conditional models. The proposed
technique is specifically developed with the aim to handle the
complex geometry of the processes and the large variability
between individuals. The key technical novelty in this work is
the introduction of a part-based statistical decomposition of the
vertebrae, such that the complexity of the subparts is effectively
reduced, and model specificity is increased. Subsequently, in
order to maintain the statistical and anatomic coherence of
the ensemble, conditional models are used to model the sta-
tistical inter-relationships between the different subparts. For
shape reconstruction and segmentation, a robust model fitting
procedure is used to exclude improbable inter-part relationships
in the estimation of the shape parameters. Segmentation results
based on a dataset of 30 healthy CT scans and a dataset of 10
pathological scans show a point-to-surface error improvement of
20% and 17% respectively, and the potential of the proposed
technique for detailed vertebral modeling.

Index Terms—Vertebral segmentation, point distribution mod-
els, part-based shape decomposition, conditional models.

I. INTRODUCTION

S
EGMENTATION of the vertebrae is an important pre-

requisite for a number of clinical applications, ranging

from the assessment of spinal disorders and image-guided

surgery [1], [2] to biomechanical modeling for patient-specific

planning of interventions [3], [4]. For such applications, in

addition to the segmentation of the vertebral bodies, accurate

and detailed knowledge of the vertebral processes is necessary

(Fig. 1). For spinal fusion surgery, for example, precise delin-

eation of the processes can lead to an improved placement
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of the bone graft between the transverse processes of the

affected vertebrae [5]. In biomechanical modeling of the spine,

accurate definition of the spinous process is also critical due

its interaction with the ligaments and the muscles [6].

Figure 1. A lumbar vertebra and its main regions.

In practice, however, automatic and detailed segmentation

of vertebrae, and in particular of its processes and pathological

cases, has proven to be a difficult task due to the complexity

of the shapes and the high variability between individuals.

As shown in Figs. 1 and 2, the vertebral processes consist of

various areas of distinct geometrical but equally complex char-

acteristics, with several convex/concave structures, as well as

thin lobe-like elongated regions. As shown in Fig. 2 (bottom),

trauma patients with fractured vertebrae present statistically

anomalous shapes that present a challenge for straightforward

shape modeling. As a result, the precise modeling and seg-

mentation of the vertebral processes remains a challenging

research topic within spine imaging.

There exists a wide range of approaches in the existing

literature for spine and vertebral segmentation [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].

Table I lists the main papers and reported segmentation results

on spine segmentation in the literature. Of these, methods

based on the statistical shape modeling (SSM) paradigm [7],

[8], [10], [19], [18] provide the image segmentation a shape

prior to increase the robustness to image inhomogeneities. For

example, Kadoury et al. [19] recently developed a method

combining global shape appearance and local statistical shape
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models for each vertebra. In contrast, Rasoulian et al. [18]

combined all the vertebrae into a single shape model, together

with a statistical pose model. In both cases, these methods

consider at best a whole vertebra as the smallest unit for the

construction of the SSM. Due to the large variability of the

vertebrae in particular for pathological instances and at the

processes, and the generally small number of samples available

for training, the obtained models are typically too constraining

and not flexible enough to localize the fine details and areas

of high curvatures and complexity within the vertebral body

and processes, as illustrated in Fig. 2.

In this paper, we present a new method for detailed mod-

eling and segmentation of the vertebrae based on statistical

shape decomposition. Multi-part shape models have been

proposed in the literature with the aim to relax the shape

constraints in the presence of a small number of training

samples, or extract additional information in the relationship

between objects to aid the segmentation process [22], [23],

[24], [25]. Other methods have proposed subdivision of the

parametric shape-space rather than the shapes themselves in

order to better approximate the actual shape distribution of

the object class [26], [27]. Nevertheless, such methods have

not been applied to the vertebrae as the subdivision of such a

complex shape is a non-trivial problem.

In this paper, we propose an algorithm for statistical de-

composition of the vertebra, and for modeling the relationship

between the parts. The proposed shape decomposition effec-

tively reduces the complexity of each constituent model, while

at the same time increasing their specificity. The proposed

approach is particularly useful to model difficult regions of

the vertebra such as the processes and pathological cases such

as fractured vertebrae, thus improving segmentation accuracy.

Subsequently, in order to maintain the coherence of the en-

semble, conditional models are used to model the statistical

inter-relationships between the different subparts. For spine

image segmentation, a robust model fitting procedure is then

introduced to exclude inconsistent inter-part relationships dur-

ing the estimation of the shape parameters.

The segmentation accuracy of the proposed technique was

tested on two Computed Tomography (CT) scan datasets. One

dataset of 30 healthy, and a dataset of 10 pathological cases.

Training was performed on the healthy population following a

leave-one-out scheme (29 training, 1 testing) to test the healthy

cases. And the complete healthy dataset to test the pathological

cases.

This work is based on a conference paper [28], which we

extend by developing a new statistical decomposition of the

vertebrae, with more detailed evaluation of the properties of

the algorithm and testing segmentation results on both healthy

and pathological patients.

II. METHOD

The proposed framework consists of three main stages.

First, in Section II-A, a subdivision of each vertebra into

a number of subparts is proposed based on a statistically

driven region decomposition. Subsequently, the conditional

models describing the statistical inter-relationships between

the subparts are presented in Section II-B. Finally, a model

fitting approach based on all pairwise conditional models is

introduced in Section II-C2, with the aim to estimate the

shape parameters for each subpart robustly during image

segmentation. Figure 3 shows a schematic of the method’s

workflow.

A. Statistical Vertebral Decomposition

A common problem in the representation of complex and

highly variable anatomical objects using statistical shape mod-

els is that usually there are too few available examples from

which to obtain a sufficiently detailed representation of the

population and its natural variability. In the case of the verte-

bra, few samples are sufficient to obtain a gross approximation

of the global shape distribution of a given population, but this

is often not enough to encode the finer details of the vertebral

processes (Fig. 2) or to represent instances that deviate far

from the mean of the population. In this paper, we address

these issues by developing a statistical part-based decomposi-

tion to better encode the statistical variability of each region of

the vertebra, and to better generalize to instances not present

in the training set. However, such subdivision is not trivial

as the statistical variability and geometrical complexity in the

vertebra is uneven.

In this work, the proposed shape subdivision takes into

account the statistical properties of the parts, and therefore

provides a statistically coherent subdivision that minimizes

bias towards any of its parts. More specifically, the proposed

method ensures that the variability of the whole shape is

equitably distributed into a specified number of regions such

that Point Distribution Models (PDMs) constructed from these

regions encode similar amounts of variability.

The algorithm has three parts: 1) seed placement, 2) initial

region labeling, 3) statistical region optimization.

1) Seed Placement: In order to subdivide the shape into the

desired number of regions, the user must specify the number

of regions K. Let us denote xi = (x1 . . .xr)
T , i = 1 . . . N the

landmark-based shape representation of each vertebra, where

r is the number of landmarks, N is the number of shapes, and

x̄ is the mean shape computed from all shapes xi. The aim is

to subdivide x̄ into K sub-parts x̄k. We use the mean shape x̄

so that the result is not biased toward any one sample. After

K is specified an initial seed point is randomly selected from

the vector x̄. Then, the remaining K − 1 points are selected

such that the Euclidean distance between the kth point and all

previously selected seed points is maximized. This strategy

ensures that the initial region seeds are uniformly distributed

throughout the shape, and helps to minimize computational

time during the statistical region optimization (step 3) of the

algorithm. See Algorithm 1.

2) Initial Region Labeling: Based on the K seed points, a

partition into K regions Rk is obtained. Initially, each region

Rk contains only its corresponding seed point, and all points

that have not been assigned to any region are said to belong

to the null region R0. We then iterate through the newly

initialized regions, and for each region we find all points at its

boundary using its mesh triangulation. If any of these boundary
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Figure 2. Examples of suboptimal segmentations in areas of complex geometry and high curvature (top), and fractured vertebrae (bottom). These segmentations
(in blue) were obtained using the image search method [21] described in section II-C1 and constrained with a whole-vertebra PDM.

Table I
STATE-OF-THE-ART TABLE.

Ref. Study Year Region

(C)ervical
(T)horacic
(L)umbar

Modality No. data Dims Metric Accuracy

[7] Benameur et al. 2003 T, L X-ray 57 2, 3 Point to surface Lumbar 0.71± 0.06 mm

[8] Roberts et al. 2003 T, L DXA 78 2 Point to contour 0.88 mm

[10] de Bruijne and Nielsen 2004 L X-ray 91 2 Point to contour 1.4 mm

[12] Peng et al. 2005 C, T, L MRI 5 3 Corner detection (%) See Ref. [12]

[11] Mastmeyer et al. 2006 L CT 41 3 Dice coeff. 0.98

[13] Huang et al. 2009 C, T, L MRI 22 3 Dice coeff. 0.96

[14] Kim et al. 2009 L CT 50 3 Fence correctness See Ref. [14]

[15] Klinder et al. 2009 C, T, L CT 64 3 Point to surface 1.12± 1.04 mm.

[16] Ma et al. 2010 T CT 40 3 Point to surface 0.95± 0.91 mm.

[19] Kadoury et al. 2013 T, L CT, MRI 29 3 Surface to surface 1.6 mm

[18] Rasoulian et al. 2013 L CT 32 3 Point to point < 2 mm

points belong to the null region R0, they are removed from R0

and assigned to the current region Rk. We repeat this process

until the null region is empty, and all points in the mesh have

been added to some region Rk.

Based on the obtained regions Rk we can now subdivide

shapes xi into subparts xi,k. From the nature of the initial-

ization and initial region label assignment these regions have

approximately the same number of points, however, they may

vary greatly in terms of their variance across the population,

particularly regions at the processes will contain a higher

variance than regions on the vertebral body. For this reason,

an optimization is required in order to equalize the amount of

variability of all regions so that modeling of the vertebra is

not biased by any region.

3) Statistical Region Optimization: The aim of the opti-

mization is to modify the previously obtained region subdivi-

sion so that all regions have approximately the same amount

of variance across all samples. Note that all computation in

the previous two steps was performed on a single shape (the

mean shape x̄), however, now we consider the variation across

the population. For this purpose we first align all shapes by

performing Procrustes analysis [29]. We then define the global



4

Figure 3. The proposed method consists of two training steps (top): 1) vertebral shape subdivision (See Sec. II-A), and 2) construction of conditional models
(See Sec. II-B). The segmentation process also has two steps (bottom): 1) initial boundary detection (See Sec. II-C1), and 2) Multiple model fittings given
all conditioning subshapes (See Sec. II-C2). These model fittings are shown in dotted lines (bottom right). The final segmentation is computed as the median
estimation of all model fittings (continuous red line).

covariance matrix

C =
1

N − 1

N
∑

i=1

(xi − x̄)(xi − x̄)T , (1)

and the total population variance as

Vartotal = tr(C). (2)

Similarly we define the regional covariance matrices as

Ck =
1

N − 1

N
∑

i=1

(xi,k − x̄k)(xi,k − x̄k)
T , (3)

and the regional variances as

Vark = tr(Ck). (4)

The algorithm first determines the target variance for each

region as

Vartarget =
Vartotal

K
. (5)

Then, the algorithm iterates through the regions and computes

the variance of the current region. If the variance of the current

region Vark is less than the target variance Vartarget, we

reassign all adjacent points to the perimeter of the current

region Rk from adjacent regions Rl, k 6= l. In Algorithm

2, line 14, we denote this operation expandPerimeter.

Similarly, If the variance of the current region Vark is greater

than the target variance Vartarget we reassign all points at the

perimeter of the current region to those regions adjacent to

it. In Algorithm 2, line 20, we denote this point reassignment

with the function name shrinkPerimeter.

The algorithm iterates until the standard deviation of all

region variances falls below 5% of the target variance, i.e.,

std(Vark) < 0.05 · Vartarget (see Algorithm 2), or no further

changes in region variances occur. Once the optimization

converges the vertebral shape is effectively subdivided into

regions of similar variability. It is worth noting that for all

experimental results reported in the results section (Sec. III)

of this paper, the shape xi being tested was removed from the

training set, i.e, leave-one-out scheme.

Figure 5 shows examples of the convergence of the al-

gorithm for three different shape subdivisions (2, 3 and 4

regions). The figure shows how region variances at iteration

1 are unevenly distributed across the shape and how they

converge for an even distribution of the variance. Figure 4

shows two examples of the final vertebral decomposition

for 2 and 5 regions. Note that the region/s describing the

vertebral processes are comprised of fewer points indicating

higher variability, whereas the regions at the vertebral body are

larger. Also in the 5-region case more regions are necessary

to represent the variability at the processes, whereas only 2

larger regions represent the vertebral body.

B. Conditional Model Parametrization

In the previous section we subdivided the shape of all

vertebrae into K subparts xi,k, k = 1, . . . ,K. The aim

of this section is to describe the statistical modeling of the

inter-part probability distributions, i.e. P (xi,k|xi,l), where

k, l = 1, . . . ,K and k 6= l. More specifically, we would like

to compute a PDM for each part xi,k based on its conditional

relationship with xi,l, that is, a mean x̄k|l and covariance

matrix Σk|l. In this paper, we choose to model P (xi,k|xi,l)
using a normal probability distribution. Thus, the conditional

mean and covariance estimates that relate shapes xi,k, and xi,l

are calculated as
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Figure 5. Illustration of the region variance evolution produced by the statistical vertebral decomposition algorithm. It can be seen that the variability of the
subparts converges to a nearly equal value.

Algorithm 1 Seed placement

1: Input: Number of regions: K
2: Input: Mean shape: x̄

3: ⊲ Randomly determine initial region seed.
4: [point, pointIndex] = getRandomPoint(x̄)
5: seeds(1) = point
6: x̄(pointIndex) = [] ⊲ Delete seed point from x̄.

7: for k = 2 → K ⊲ For all regions.
8: maxDist = 0
9: nPoints =getNumberOfPoints(x̄)

10: nSeeds =getNumberOfPoints(seeds)

11: for p = 1 → nPoints ⊲ For all points in the shape.

12: for s = 1 → nSeeds ⊲ For all seed points.
13: Comment: Get distance from point p to all seeds.
14: dists(s) = getDist(x̄(p), seeds(s))
15: end for

16: distsSum = sum(dists) ⊲ Sum dists to all seeds.

17: ⊲ If current point is further from all seeds than
previous point, store index.

18: if distsSum > maxDist
19: maxDist = distsSum
20: nextSeed = p
21: end if

22: end for

23:

24: seeds(k) = x̄(nextSeed) ⊲ Store next seed.
25: x̄(nextSeed) = [] ⊲ Delete seed point from x.
26: end for

27: Output: seeds

x̄k|l = x̄k +ΣklΣ
−1
ll (xi,l − x̄l) (6)

Σk|l = Σkk −ΣklΣ
−1
ll Σlk, (7)

where the covariance matrices in Eqs. 6 and 7 are obtained

from a block covariance matrix

Algorithm 2 Statistical region optimization

1: Input: Region point matrices: X(1) . . .X(K)
2: Input: Region point connectivity: V(1) . . .X(K)
3: Input: Number of regions: K

4: for k = 1 → K ⊲ For all regions.
5: Ck = cov(X(k)) ⊲ Covariance of region k.
6: regV ar(i) = trace(Ck) ⊲ Get region variance.
7: end for

8: varTotal = sum(regV ar) ⊲ Sum all region variances.
9: varTarget = varTotal/K ⊲ Get target variance.

10: allowedDispersion = 0.05 ∗ varTarget ⊲ 5% of target
variance

11: dispersion = std(regV ar) ⊲ Get region variances’ dispersion.

12: while dispersion > allowedDispersion

13: for i = 1 → K ⊲ For all regions.

14: if regV ar(i) < varTarget ⊲ If Var is below target.
15: X(i) = expandPerimeter(X(i), V(i)) ⊲ Enlarge region.

16: for j = 1 → K ⊲ Update region variances.
17: Ck = cov(X(j))
18: regV ar(j) = trace(Ck)
19: end for

20: else ⊲ If region variance is above target.
21: X(i) = shrinkPerimeter(X(i), V(i)) ⊲ Contract region.

22: for j = 1 → K ⊲ Update region variances.
23: Ck = cov(X(j))
24: regV ar(j) = trace(Ck)
25: end for

26: end if

27: end for

28: dispersion = std(regV ar) ⊲ Update variance dispersion.
29: end while

30: Output: Region matrices X(1) . . .X(K) ⊲ Modified regions.
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Figure 4. Examples of the obtained statistical decomposition with 2 regions
(top), and 5 regions (bottom). The left and right columns show a latero-
posterior and latero-anterior views. In the 5-region case more regions are
necessary to represent the processes due to their high variability.

Σ =

[

Σkk Σkl

ΣT
kl Σll

]

. (8)

Through eigendecomposition of Eq. 7 we obtain Eq. 9, which

provides the eigenvalues Λk|l, and eigenvectors Φk|l that

represent the conditional variability between shapes xi,k and

xi,l.

Σk|l = Φk|lΛk|lΦ
T
k|l, (9)

Putting Eqs. 6 and 9 together we obtain the new conditional

models

Ωk|l = (x̄k|l,Φk|l,Λk|l) (10)

that we will use to constrain the image segmentation process.

In order to compute the conditional mean x̄k|l and co-

variance matrix Σk|l we need to compute the inverse of the

covariance matrix of the predictor shape Σ−1
ll . However, as the

dimensionality of the shapes is much larger than the number

of training samples available, the sample covariance matrix

becomes singular, and cannot be inverted. A solution to this is

using ridge regression [30], where a small constant is added

to the diagonal of the covariance matrix Σ̂ll = Σll+ǫI, where

I is the identity matrix.

The computational burden of inverting matrices representing

several thousands of points can be considerable, especially

given that we need to compute a conditional PDM for each

pair-wise relationship between the shape subdivisions, and so

the number of matrix inversions needed to compute Eqs. 6 and

7 grows linearly with K. We address this issue by reducing

the dimensionality of the problem using Principal Component

Analysis (PCA) on the subshapes xi,k prior to computation

of the mean and covariance matrix as follows [31]. Given

subshapes xi,k represented as,

xi,k = xk +Φkbi,k, (11)

then their parametric representation is

bi,k = ΦT
k (xi,k − x̄k). (12)

Now let us denote Bk the column-wise concatenation of

parametric shape vectors bi,k from equation 12. With this new

representation of the shapes, the cross-covariance matrix Σkl

on Eqs. 6, 7 and 8 becomes

Σ
(b)
kl =

1

N − 1
BkB

T
l , (13)

where the superscript (b) in Eq. 13 indicates that the covari-

ance matrix is computed from parametric shape vectors bi,k.

The block covariance matrix of Eq. 8 can now be replaced by

Σ(b) =

[

Λk Σ
(b)
kl

Σ
(b)
kl

T

Λl

]

, (14)

where Λk and Λl are diagonal eigenvalue matrices obtained

through eigendecomposition of the original subshapes xi,k and

xi,l.

With this new representation Eqs. 6 and 7 can be rewritten

as

x̄k|l = x̄k +Φk(Σ
(b)
kl Λ

−1
l bi,l) (15)

Σk|l = Φk(Λk −Σ
(b)
kl Λ

−1
l Σ

(b)
kl

T

)ΦT
k , (16)

where the expression in parenthesis on Eq. 15 is the regressed

parametric shape estimate b̄k|l, i.e.,

b̄k|l = Σ
(b)
kl Λ

−1
l bi,l, (17)

and the expression in parenthesis on Eq. 16 is the conditional

model variance

Λk|l = Λk −Σ
(b)
kl Λ

−1
l Σ

(b)
kl

T

(18)

required to obtain the desired model Ωk|l = (x̄k|l,Φk,Λk|l).
The proposed shape subdivision and conditional model

parameterization have two important goals. First, it decreases

the over-constraining nature of the global model caused by

the dimensionality disparity between the available samples and

dimensionality of the shapes. And second, and as detailed in

next section, the inter-part conditioning is used as a mechanism

to find the optimal domain of valid subregions and exclude

incorrect localized segmentations due to insufficient image

information.

C. Image Segmentation

1) Boundary Detection: To detect the vertebral boundary in

the image we followed the feature training method introduced

in [21]. Training was performed on the database of 30 healthy

patients detailed in section III-A leaving the test instance out

at each trial. The features tested were:

1) Directional derivative along the normal profile pointing

outwards.

2) Directional derivative along the normal profile pointing

inwards.

3) Maximum intensity profile value.

4) Minimum intensity profile value.

5) Distance to the previous point location at each iteration.
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6) Mahalanobis distance to the mean intensity profile.

Each of the previous features was optimized independently

within a standard active shape model (ASM) segmentation

framework. A greedy optimization heuristic was used where at

each iteration a set of uniformly distributed weights w = [0, 1]
was used for segmentation and the best performing weight

was selected based on segmentation accuracy. At the next

iteration a new set of weights was uniformly chosen within

a neighborhood of the best weight from the previous iteration.

This procedure was repeated until no significant improvements

in segmentation accuracy were obtained. For more details on

the optimization procedure please refer to [21].

After individual optimization of the features, the best-

performing three features were chosen and normalized. The

selected features were: 1) the directional derivative along the

outward-pointing normal, 2) the image intensity, and 3) the

distance between the current point candidate and its previous

location. The corresponding feature weights were: w1 = 0.55,

w2 = 0.25, and w3 = 0.20.

E = w1(n̂(pr) · ∇I(p′
r)) + w2I(p

′
r) + w3‖p

′
r − pr‖2. (19)

Eq. 19 shows the energy function maximized during image

search, where I is the intensity image, pr is the current

position of the landmark r, p′
r is a vector of candidate

landmark positions normally and outwardly oriented with

respect to the surface mesh at pr, and n̂ is the normal direction

at pr.

The segmentation process was initialized by rigidly aligning

the mean vertebral shape, for the given structure (L1-L5), with

a manually selected point placed roughly at the center of mass

of the vertebral body on a sagittal view of the image. Then the

algorithm determined the optimal placement of each landmark

in the mesh based on minimization of Eq. 19.

Let us denote the resulting feature points x′. At this point x′

can be subdivided into K statistically optimized regions x′
k,

k = 1 . . .K, as described in Sec. II-A. The following section

describes the process through which information from all other

K − 1 subregions inform the optimal shape parameters bk of

x′
k with the goal of maintaining anatomical coherence of the

ensemble of parts.

2) Probabilistic Model Fitting: To preserve the anatomic

validity of the segmentation in spite of the shape decompo-

sition, the estimation of the shape parameters must be car-

ried out by considering all pairwise conditional probabilities

P (xi,k|xi,l). We first calculate the initial shape parameters

bi,k by projecting the boundary feature points (obtained during

image search) onto the standard PDM of xi,k. Subsequently,

we calculate K − 1 shape parameters bi,k|l by considering

the K − 1 shape constraints formed by the conditional mean

parameter b̄k|l and its corresponding bounds λk|l obtained

from the diagonal of matrix Λk|l, i.e.,

bi,k|l =







b0
i,k if |b0

i,k − b̄k|l| ≤ 3
√

λk|l

b̄k|l + 3
√

λk|l if b0
i,k > b̄k|l + 3

√

λk|l

b̄k|l − 3
√

λk|l if b0
i,k < b̄k|l − 3

√

λk|l

(20)

Equation 20 is applied to each shape pair {xi,k,xi,l} as

follows:

1) For each subpart xi,k we have a prediction subregion

defined by all the points bi,k defined at less than 3

standard deviations from the conditional mean b̄k|l.

Let us denote this subregion the conditional prediction

interval Tk|l (See Alg. 3, line 15).

2) If b0
i,k is inside the conditional prediction interval,

b0
i,k ∈ Tk|l, we consider the conditional prediction

bi,k|l as the same as b0
i,k. Thus, no extra information is

provided by the conditional model.

3) In case b0
i,k is outside Tk|l, then it is projected to

obtain the closest point inside Ti,k|l. This point is then

considered the prediction bi,k|l.

The difficulty with this approach is that at the segmentation

stage, all subparts are being segmented and therefore there

is uncertainty surrounding the correctness of the different

conditioning shapes xi,l in P (xi,k|xi,l). This can lead to

inaccurate constraining and parameter estimation of xi,k|l if

some of the xi,l, l = 1 . . .K, k 6= l are erroneous during the

segmentation procedure. To exclude these values and obtain

a consensual and robust estimation of the shape parameters,

we use the marginal median (component-wise median) as the

final estimation of bi,k|l, i.e.,

b
final

i,k|l = median(bi,k|l). (21)

Algorithm 3 presents the step by step model fitting procedure

described in this section.

III. RESULTS

A. Data

We first trained and validated our method using a database

of lumbar spine (L1-L5) CT images of 30 healthy patients

reporting lower back pain. The images were collected at the

National Center for Spinal Disorders (Budapest, Hungary).

The data were acquired with a Hitachi Presto CT scanner.

No contrast agent was administered to the patients. The

volumes have an in-plane resolution of 0.608 × 0.608 mm

and slice spacing of 0.62 mm. Patients were 13 males and 17

females with a mean age of 40 (age interval: 27-62 years).

Those patients were selected for participating in the European

Commission funded MySpine project.

Furthermore, to assess the strength of the proposed tech-

nique in the presence of abnormalities, a second set of 10

scans were obtained to evaluate segmentation. The images

were obtained from a publicly available database [32] of

CT scans of adult patients with varying types of pathologies

including pathological curvature (scoliotic and kyphotic), and

fractured vertebrae. The data were acquired at the Department

of Radiology, University of Washington, Seattle, USA. The

images were acquired with General Electric multidetector CT

scanners and a standard bone algorithm. For our purposes, 10

image volumes containing full lumbar spines (L1-L5) were

randomly selected and manually segmented. The images have

varying in-plane resolution between 0.31mm and 0.41mm, and

a slice spacing of 2.5mm. Patients were 5 males and 5 females

with a mean age of 41 (age interval: 16-61 years).

All computer processes were run on a 2.8 GHz Intel i7

processor on 6 GB DDR memory running a single-threaded
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Algorithm 3 Model fitting procedure

1: Input: Image: I
2: Input: Mean shape manually initialized: x̄
3: Input: Ωk|l = (x̄k|l,Φk,Λk|l)
4: Input: Region indexes: regIds

5: for r = 1 → nLandmarks
6: x′

r = displaceLandmark(I, x̄r) ⊲ Minimize Eq. 19
7: end for

⊲ Subdivide feature-point shape into K regions.
8: x′

k = subdivideShapeByRegions(x′, regIds)

9: for k = 1 → K ⊲ For each region being predicted k

10: ⊲ Project onto self-PDM.

11: b′0
k = constrain(x′

k, x̄k|l,Λk|l) ⊲ k = l. See Eq. 12.

12: for l = 1 → K ⊲ For each predictor region l.

13: b′
l = ΦT

l (x
′
l − x̄l) ⊲ Parametric shape estimate b′

l.

14: b̄k|l = Σ
(b)
kl Λ

−1
l b′

l ⊲ Conditional mean. See Eq. 17.

15: Tk|l = ComputeValidShapeInterval(b̄k|l,Λk|l)

16: if b′0
k is within interval Tk|l

17: bk|l(l) = b′0
k ⊲ No conditional information.

18: else

19: b′
k = constrain(b′0

k, b̄k|l,Λk|l) ⊲ k 6= l. See Eq. 12.

20: bk|l(l) = b′
k

21: end if

22: end for

23: b
final

k|l
(k) = median(bk|l)

24: x
final

k|l (k) = xk +Φkb
final

k|l

25: end for

26: Output: x
final

k|l

CPU bound process. All PDMs were trained on the healthy

patient database. For the segmentation of healthy patients we

followed a leave-one-out scheme. To segment pathological

patients we used all 30 healthy patients for training. All

segmentations were performed by preserving 98% of the

model’s total variance, and allowing ±3 standard deviations

from the mean. The volumes were manually segmented by

an image expert using open source software (ITK-SNAP).

Accuracy was measured as the RMS point-to-surface distance

between manual segmentations and reconstructions.

B. Optimal Number of Subparts

The choice of the number of shape subdivisions using the

proposed statistical decomposition is important in order to

obtain the best possible segmentations of the spine. A small

number of subparts might not allow to decompose sufficiently

the shape constraints and to adapt to all the regions of the

vertebrae. Furthermore, the model fitting stage as introduced

in Section II-C2 requires a sufficient number of subparts

to allow a suitable probabilistic weighting of the multiple

conditional models and thus to eliminate potentially incorrect

local segmentations.

On the other hand, a large number of subparts (the extreme

case being the modeling of each single landmark as one sub-

part) might lead to constraints that are too weak to adequately

guide the image segmentation process, i.e., in a manner that

achieves robustness to image inhomogeneities.

In this section, we perform a sensitivity experiment on

the healthy datasets, through which we apply the proposed

statistical decomposition with a varying number of subparts

(from 2 to 20). We then apply the segmentation technique

based on the derived conditional models and we estimate

the segmentation accuracy for each subdivision. The obtained

results in Fig. 6 show that the segmentation errors decrease

after two subparts, then stabilize between k = 5 through 17

subparts, and then rise again after 17 subparts, indicating that

the number of subparts becomes too high to allow adequate

constraining of the segmentation procedure.

The optimal results are obtained for k = 15 and we use this

decomposition for the remainder of the validation.

Figure 6. Point to surface segmentation error as a function of number of
regions in the decomposition.

C. Segmentation Accuracy - Healthy Population

We evaluated the performance of our algorithm on the

healthy datasets described in section III-A. We performed

segmentation on the 30 subjects leaving-one-out both using

a whole-vertebra PDM, and our technique.

Fig. 7 shows the segmentation errors for all 30 scans using

both ASM methods. It is evident that the proposed technique

outperforms the whole-vertebra model ASMs in all cases.

The median improvement is of 20% and in some cases the

improvement is over 30% due to the ability of the proposed

technique to better encode the fine details of the vertebrae.

Table II summarizes the segmentation results for the whole-

vertebra ASM, and the proposed technique for the different

lumbar vertebrae (L1 to L5). It can be seen that the perfor-

mance of the proposed technique is consistently better for the

entire lumbar spine. Particularly, the right-most column of the
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table shows an average improvement of 47% in the dispersion

of the error.

We show in Fig. 8 a comparative view illustrating the error

distribution for the whole-vertebra PDM segmentation, and the

proposed technique. It can be seen that the errors introduced

locally by the use of a whole-vertebra model are corrected by

the proposed approach. In both views it is clear that the errors

are consistently low in all regions of the vertebra. Also it is

evident that the major improvements in accuracy stem from

improved fitting of high curvature regions at all processes i.e.,

spinous, transverse and articular.

Finally, some examples are given in Fig. 11 to visually

illustrate the strength of the proposed technique. The axial

views in columns (a) and (b) show how the segmentation

using a whole-vertebra PDM (column (a)) can be typically

affected in various areas due to the geometrical complexity

and high variability involved, as shown by the arrows. In

contrast, the proposed technique (column (b)), due to its use

of decomposed statistical constraints adapts better to the areas

of high geometrical complexity.

Columns (c) and (d) show a sagittal view of the segmenta-

tions. It can be seen that both the whole-vertebra PDM and the

proposed technique have a similar performance for the main

body of the vertebrae, as it is geometrically less complex. On

the other hand, the whole-vertebra PDM introduces significant

errors in the regions of the processes due their more complex

nature as indicated by the arrows. These errors are corrected

by the proposed technique.

D. Segmentation Accuracy - Pathological Population

In this section we test whether the technique also improves

the segmentation of pathological cases. To this end, we train

the statistical models on the population of healthy patients as

it is the larger sample providing more class specific variability.

Fig. 9 shows the segmentation errors for the 10 pathological

scans using both the whole-vertebra ASM and our method. The

plot shows that the proposed technique outperforms the whole-

vertebra model ASM for all cases. The average improvement

is of 17% with the largest improvement at 32% for patient 2,

and least improvement at 8% for patient 4.

It is apparent from the magnitude of the errors that both

the whole-vertebra ASM and our technique perform worse on

pathological cases as compared to the healthy patients. The

error is increased by an average of 36% compared to the

healthy patient population. Nonetheless, it can be seen that

the relative improvement of the proposed algorithm remains

constant. It should be noted that all of the pathological images

have a lower resolution along the z-axis which may account

for the increased errors, nonetheless, these images also have

higher in-plane resolution compared to the healthy images.

Table III summarizes the segmentation results for the whole-

vertebra ASM, and the proposed technique for all lumbar

vertebrae (L1 to L5). It can be seen that the performance of the

proposed technique is consistently better for the entire lumbar

spine and particularly for the L3 at 19%. On average, the

maximum error was also reduced by 19%, with the highest

error reduction for the L2 and L3 at 20%.

Two examples are shown in Fig. 12 comparing the per-

formance of the two techniques. Both examples are of pa-

tients with at least one fractured vertebra, and both display

a coronal view (columns (a) and (b)), and a sagittal view

(columns (c) and (d)) of the same patient. In Example 1 (top),

two vertebrae (L2 and L3) are fractured (see white arrows),

and it can be seen that the proposed algorithm (columns (b)

and (d)) has the flexibility to represent the fracture for both

L2 and L3, whereas the whole-vertebra PDM fails to adapt to

the contour.

Similarly, Example 2 (bottom) shows a fractured L3 ver-

tebra (see white arrows). Columns (a) and (c) show how the

whole-vertebra PDM does not have the flexibility to fully adapt

to the pathological contour while our method (columns (b) and

(d)) is able to represent the pathology.

Figure 9. Abnormal population: Point to surface segmentation error compar-
ison between the proposed method and the whole-vertebra ASM.

IV. CONCLUSION

Detailed segmentation of the spine is challenged by the

geometrical complexity and the high variability of the verte-

brae particularly at the processes and in pathological cases. To

address this issue, we presented in this paper a novel solution

based on a statistical part-based decomposition of the vertebral

shape, such that the total variance of the sample population is

evenly distributed among the different subregions. Conditional

inter-part models are then constructed to maintain the statis-

tical coherence of the ensemble of shapes during the model

fitting process at the time of image segmentation. In addition,

a probabilistic model fitting approach is introduced to robustly

select the most likely shape parameters of each subregion.

The obtained segmentation results indicate that our ap-

proach can provide highly accurate and consistent segmen-

tations throughout different individuals and regions of the

vertebra. In particular, the segmentation adapts well to areas

that are geometrically complex or highly curved such as the

vertebral processes, and to abnormalities such as fractured

vertebrae. We also show that the proposed method outperforms

the segmentation accuracy obtained with a whole-vertebra

PDM.

Finally, it is worth noting that the proposed approach, while

validated with vertebral segmentation, is generic and can be

applied for image segmentation of other complex or multi-part
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Figure 7. Normal population: Point to surface segmentation error comparison between the proposed method and the whole-vertebra ASM.

Table II
NORMAL POPULATION: IMAGE SEGMENTATION ERRORS (mm) COMPARING THE PERFORMANCE OF OUR TECHNIQUE AGAINST A WHOLE-VERTEBRA

PDM SEGMENTATION. ERRORS ARE SHOWN INDIVIDUALLY FOR EACH LUMBAR VERTEBRA.

Whole-vertebra PDM (mm) Proposed technique (mm) Improvement (%)

Mean ± Std Max Min Mean ± Std Max Min Mean ± Std Max Min

L1 0.83 0.09 1.12 0.66 0.67 0.06 0.79 0.61 19% 33% 29% 8%

L2 0.84 0.07 1.12 0.64 0.68 0.06 0.83 0.60 19% 14% 26% 6%

L3 0.88 0.09 1.17 0.68 0.71 0.08 0.95 0.60 20% 11% 19% 11%

L4 0.90 0.08 1.15 0.66 0.73 0.06 0.83 0.64 18% 25% 28% 3%

L5 1.02 0.11 1.32 0.82 0.80 0.06 0.89 0.72 22% 45% 33% 12%

All 0.89 0.09 1.18 0.70 0.72 0.07 0.86 0.63 20% 26% 27% 8%

Figure 8. Normal population: Comparison of the mean error distribution between the whole-vertebra PDM segmentation and our part-based PDM segmentation.
Showing lateral and posterior views from left to right, respectively.
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Figure 10. Abnormal population: Comparison of the mean error distribution between the whole-vertebra PDM reconstruction and our part-based PDM
reconstruction. Showing lateral and anterior views from left to right, respectively.

Figure 11. Normal population: Four examples (rows) of the improvement in segmentation accuracy obtained with the proposed technique (columns (b) and
(d) in yellow), compared against the results obtained with a whole-vertebra PDM (columns (a) and (c) in blue). Showing axial and sagittal views from left
to right of vertebrae L3, L5, L5 and L3 (from top to bottom) of 4 different patients.
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Table III
ABNORMAL POPULATION: IMAGE SEGMENTATION ERRORS (mm) COMPARING THE PERFORMANCE OF OUR TECHNIQUE AGAINST A WHOLE-VERTEBRA

PDM SEGMENTATION. ERRORS ARE SHOWN INDIVIDUALLY FOR EACH LUMBAR VERTEBRA.

Whole-vertebra PDM (mm) Proposed technique (mm) Improvement (%)

Mean ± Std Max Min Mean ± Std Max Min Mean ± Std Max Min

L1 1.29 0.09 1.41 1.14 1.09 0.05 1.15 0.95 16% 45% 19% 17%

L2 1.37 0.24 2.01 1.17 1.14 0.17 1.62 1.01 17% 30% 20% 14%

L3 1.42 0.13 1.56 1.18 1.16 0.06 1.25 0.99 19% 54% 20% 17%

L4 1.37 0.19 1.81 1.20 1.16 0.13 1.49 1.01 16% 32% 18% 16%

L5 1.47 0.15 1.68 1.27 1.22 0.09 1.41 1.09 18% 40% 17% 15%

All 1.38 0.16 1.69 1.19 1.15 0.10 1.38 1.01 17% 40% 19% 16%

Figure 12. Abnormal population: Two examples (top and bottom) of the improvement in segmentation accuracy obtained with the proposed technique (columns
(b) and (d) in red), compared against the results obtained with a whole-vertebra PDM (columns (a) and (c) in blue). Showing coronal and sagittal views from
left to right.
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structures, such as, multi-chamber heart, simultaneous seg-

mentation of multiple brain structures, and complex vascular

structures among others.

A. Limitations

One limitation of the proposed technique is related to the

computational costs that it requires. At training, the statistical

decomposition due to its iterative nature is computationally

demanding. For 15 subdivisions, for example, the algorithm

converges after 6.8 minutes. However, this stage is performed

once offline and the conditional models are then saved for

image segmentation. At the segmentation stage, the proposed

technique is more expensive than the whole-vertebra model

segmentation, taking 32 seconds on average per patient (L1

through L5), due to the use of multiple conditional shape

models, while the whole-vertebra model segmentation takes

18 seconds to complete the same patient.

A potential challenge of the decomposition approach is

that it can theoretically produce discontinuities between two

adjacent subparts of the vertebrae. This is because we only

use implicit constraints based on the conditional models to

obtain a statistical coherence of the ensemble, but this does not

guarantee explicitly smoothness between adjacent subregions.

In our experimental results, however, we found that these

implicit constraints, together with the probabilistic model

fitting approach, have a good performance at maintaining the

smoothness of the vertebrae, as illustrated in the examples

of Figs. 11, and 12. Alternatively, one could consider adding

an extra step after the segmentation, where discontinuous

transitions between subregions are identified and corrected

using smoothing.

B. Future Work

One interesting avenue for future work would be the si-

multaneous segmentation of the complete lumbar structure, or

larger vertebral groups that include thoracic and/or cervical

vertebrae. As it is presented, our algorithm is sequential

i.e., it is applied to one vertebra at a time, and all the

statistical constraints are within-vertebra constraints. However,

we would like to extend the probabilistic framework to include

interaction between adjacent vertebral structures assuming

shape correlations between them. Considering inter-vertebral

relationships would not only account for a more holistic model,

but it would also aid in the automatic initialization of most

vertebrae thus reducing the human interaction needed for

segmentation.

A natural consequence of considering interactions between

neighboring structures is then the development of a system of

weights to balance the influence of the inter vs. the intra prob-

abilistic relationships between the different objects and their

constituent subparts. These weights can be shape correlation-

driven or image-driven. We expect to continue work in this

direction.
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