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A parametric finite element solution of the generalised

Bloch-Torrey equation for arbitrary domains

Abstract: Nuclear magnetic resonance (NMR) has proven of enormous value in the investigation

of porous media. Its use allows to study pore size distributions, tortuosity, and permeability as a

function of the relaxation time, diffusivity, and flow. This information plays an important role in

plenty of applications, ranging from oil industry to medical diagnosis. A complete NMR analysis

involves the solution of the Bloch-Torrey (BT) equation. However, solving this equation analytically

becomes intractable for all but the simplest geometries.

We present an efficient numerical framework for solving the complete BT equation in arbitrarily

complex domains. In addition to the standard BT equation, the generalised BT formulation takes

into account the flow and relaxation terms, allowing a better representation of the phenomena

under scope. The presented framework is flexible enough to deal parametrically with any order

of convergence in the spatial domain. The major advantage of such approach is to allow both

faster computations and sensitivity analyses over realistic geometries. Moreover, we developed a

second-order implicit scheme for the temporal discretisation with similar computational demands

as the existing explicit methods. This represents a huge step forward for obtaining reliable results

with few iterations. Comparisons with analytical solutions and real data show the flexibility and

accuracy of the proposed methodology.

Keywords: Numerical solution, implicit method, arbitrary geometry, microstructure.

2



1 Introduction

Nuclear magnetic resonance (NMR) is a powerful and non-invasive technique that allows to study

the translational motion of molecules in solution, either by diffusion or fluid flow, by using mag-

netic field gradient methods. The study of this motion reflects properties of the media and its

surrounding environment, making NMR an extremely valuable methodology for probing the com-

plex microstructure of natural and artificial materials [1]. A complete analysis of this phenomena

involves the solution of the generalised Bloch-Torrey (BT) equation [2, 3]. This equation describes

the evolution of the transverse magnetisation due to diffusion and flow in the media, spin-spin re-

laxation, and the gradient field encoding scheme. The problem of solving this equation in arbitrary

domains is of primary interest when relating variations in the acquired signals to the underlying

structures.

There has been many attempts to solve the BT equation, which can be grouped into analytical

and numerical approaches. The first group comprises solutions given by mathematical formulae

relating the output signal with parameters of interest. These solutions are obtained by proper

manipulation of the mathematical expressions describing the physical phenomena. Then, differ-

ent forms of the solution can be found depending on the mathematical framework used and the

approximations made [1, 4, 5, 6, 7]. These solutions have been shown to be very important to

study the physical basis of experimental results (e.g. [5]), as well as to perform other mathematical

analysis due to their parametric nature [1]. However, since the difficulty of such manipulation

increases with the complexity of the domain, there exist solutions only for simple geometries, as

multi-layered slabs (1D), cylinders (2D), and spheres (3D). This limits the application of these solu-

tions to arbitrary domains, restricting their usefulness to idealised models. These disadvantages are

addressed by numerical methods. This group is composed by the entire family of approximations

of the true signals obtained by the application of a numerical algorithm. Such algorithms have

the advantage of being unrestricted to simple geometries. However, they have many disadvantages

when compared to the analytical solutions, such as their non-parametric nature and the intrinsic

approximations and errors associated with them. Although the latter can be reduced in principle,

it comes at the expense of computational effort, which can be prohibitive.

There exist many numerical methods that have been used to solve the BT equation explicitly,

albeit none of them considers the flow term (see Discussion). This comprises solutions obtained by
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the finite difference method [8, 9, 10], the finite volume method [11], and the finite element (FE)

method [12, 13]. The latter is generally preferred owing to its flexibility for spatially discretising the

domain. However, many proposed solutions based on the FE method rely on strong assumptions

(e.g. narrow pulse limit approximation) that limit their general applicability. Recently, a flexible

FE formulation of the standard BT equation (i.e. without flow and transverse relaxation terms) has

been proposed [14]. There, the authors present a FE approach using first-order basis functions in

space and an explicit second-order approximation in time, which does not make such constraining

approximations. To the best of our knowledge, this latter paper by Nguyen et al. [14] is the first

to do so. Even though their approach allows to consider arbitrary geometries inside the volume

of interest, it still has limitations in the way the meshes have to be generated, imposing a hard

constraint as the symmetry of the nodal positions on the outermost faces. This adds an extra

difficulty for building and testing ad hoc models.

In this paper, we present a numerical FE framework for the solution of the complete BT equation

in arbitrarily complex domains. We extend the formulation given in [14] by considering the flow

and relaxation terms, allowing a better representation of the phenomena under scope. We obtain

parametric expressions of the corresponding matrices considering basis functions of arbitrary order.

This means that we derive closed-form formulas for all the matrices involved in the numerical

algorithm, relating explicitly the output (i.e. the resulting NMR signal) as a function of input

parameters defining the particular scenario to be tested (as diffusivities and permeabilities). These

expressions are specially useful when performing sensitivity analyses of the acquisitions to a specific

parameter, as well as to speed-up the computations [24]. Also, we broaden the formulation to deal

with both linear and parabolic spatial profiles of the magnetic field [1]. Finally, we present a second

order implicit method for the temporal discretisation. Unlike explicit schemes, implicit methods are

unconditionally stable no matter the time-step selected [26]. This is crucial for achieving reliable

solutions with a minimum number of iterations. We introduce an implicit scheme to solve the BT

equation with similar computational load as the explicit method used in [14], which makes it highly

competitive in the field. The presented framework is built on the basis of arbitrary discretisations

without imposing special constraints to the geometrical meshes to be used.

The paper is organised as follows. In Section 2 we present the mathematical basis of the problem

and the corresponding FE solution. First, we review the differential formulation in Section 2.1.

Then, in Section 2.2, we present the variational formulation and the FE spatial discretisation.
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In Section 2.3 we define the volume and area coordinate systems, which have a key role in the

parametric formulation detailed in Section 2.4. The temporal discretisation of the BT equation is

described in Section 2.5. In Section 3 we show the capabilities of the numerical framework and

compare them with analytical solutions and real data. Finally, in Section 4, we discuss the results,

limitations of the approach, and further work.

Notation: In the following, we denote vectors with boldface lower case letters and matrices

with boldface capital letters. We use vec(·) to refer to the operator that, given a matrix, returns

a vector with the matrix elements stacked columnwise, taking the columns in order from first to

last. We express the Kronecker matrix product by ⊗, and the nth Kronecker product of A with

itself by A⊗n. Finally, we denote the n × n identity matrix as In, and the m × n matrix full of

ones as 1m,n.

2 Methods

The generalised BT equation represents the evolution of the magnetisation as a function of the

spatial location and time in the absence of the RF field. Basically, it relates the evolution of the

complex-valued transverse magnetisation with four mechanisms: diffusive migration of the spin-

bearing particles, magnetic field encoding, transverse spin-spin relaxation, and flow [1, 2]. The

problem statement is completed after selecting the corresponding boundary and initial conditions.

These conditions allow to represent arbitrary situations where to study the phenomena. Once the

solution is found, it is used to describe the macroscopic signal formed by the spin ensemble.

As mentioned in Section 1, solving the BT equation analytically becomes intractable for all but

the simplest geometries. In this section, we describe the numerical framework used to solve the

aforementioned equation in arbitrary geometries and conditions. The advantages of the formulation

are explained in detail.

2.1 Differential formulation

Let Ω be the domain under analysis, which can be split into L subdomains, such that Ω =
⋃L

l=1Ωl.

Also, let Γe
l be the external boundary of Ωl, and Γln the boundary between Ωl and Ωn. Then, under

generally valid assumptions (such as considering normal or Fickian diffusion, intermediate layers

infinitely thin, incompressible flow, and absence of susceptibility effects and hardware imperfections;
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see [2, 6] for a detailed discussion), the evolution of the complex transverse magnetisation ml(r, t)

in the rotating frame is described by [2, 15]

∂ml(r, t)

∂t
= ∇·

(
Dl(r)∇ml(r, t)

)
− iγB(r, t)ml(r, t)−

1

Tl

ml(r, t)−v(r, t) ·∇ml(r, t) (r ∈ Ωl), (1)

subject to the boundary conditions (BCs)

Dl(r)∇ml(r, t) · nl(r) = κln
(
mn(r, t)−ml(r, t)

)
(r ∈ Γln, ∀n), (2a)

Dl(r)∇ml(r, t) · nl(r) = −κelml(r, t) (r ∈ Γe
l ), (2b)

and the initial condition (IC)

ml(r, 0) = ρl(r), (r ∈ Ωl), (3)

where t ∈ [0, TE ] with TE echo time, γ is the gyromagnetic ratio of protons (2.675×108 rad T−1s−1

for 1H), Dl(r) is the diffusion (rank-2) tensor, Tl is the spin-spin relaxation time, v(r, t) is the

velocity field of the spins due to flow of the medium, nl(r) is the unitary outward pointing normal

to Ωl, κln (κel ) is the permeability constant in Γln (Γe
l ), and B(r, t) is the effective magnetic field. In

the following analysis we considered Tl constant in each subdomain Ωl and the same permeability

in both directions of the same membrane, i.e. κln = κnl.

Eq. (1) states that the transverse magnetisation evolves due to diffusion (first term), encoded

through the applied magnetic field (second term), bulk relaxation (third term), and flow (last term).

The BC (2a) accounts for the creation of the diffusive flux by the drop in magnetisation between

layers. Noting that Γln = Γnl, it is easily seen that it also accounts for the conservation of the

magnetisation flux between adjacent layers, i.e.

Dl(r)∇ml(r, t) · nl(r) = −Dn(r)∇mn(r, t) · nn(r) (r ∈ Γln).

The flux conservation at the external boundary is considered by Eq. (2b). Finally, Eq. (3) represents

the solution of (1) for the initial state (t = 0s).

Once the complex magnetisation is computed, the output signal can be found by

S =

∫

Ω
m(r, TE)ρ̃(r)dr, (4)

where ρ̃(r) is some pick-up function of the measuring coil or antenna [1].
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2.2 Variational formulation and spatial discretisation

The transverse magnetisation is obtained by solving (1)–(3). This problem requires a solution

twice differentiable, thus restricting the solutions space. To relax this condition, a solution in the

weighted residual sense is obtained [16]. This solution satisfies

∂

∂t

∫

Ωl

v(r)ml(r, t)dr =

∫

Ωl

v(r)∇ ·
(
D(r)∇ml(r, t)

)
dr − iγ

∫

Ωl

v(r)ml(r, t)B(r, t)dr

−
1

Tl

∫

Ωl

v(r)ml(r, t)dr −

∫

Ωl

v(r)v(r, t) · ∇ml(r, t)dr,

(5)

valid for r ∈ Ωl (l = 1, . . . , L), and for all functions v(r) in a proper functional space. The

Hilbert-Sovolev space H1(Ωl) of square-integrable functions with square-integrable derivatives [17]

is generally chosen. After using the divergence theorem in the diffusion term and the BCs, we get

∂

∂t

∫

Ωl

v(r)ml(r, t)dr =−

∫

Ωl

∇v(r) ·
(
Dl(r)∇ml(r, t)

)
dr − iγ

∫

Ωl

v(r)ml(r, t)B(r, t)dr

−
1

Tl

∫

Ωl

v(r)ml(r, t)dr −

∫

Ωl

v(r)v(r, t) · ∇ml(r, t)dr (6)

− κel

∫

Γe

l

v(r)ml(r, t)dr +
∑

n

κln

∫

Γln

v(r)
(
mn(r, t)−ml(r, t)

)
dr,

also known as the variational formulation [18]. The solution under scope needs to be only one-time

differentiable.

In order to obtain a discretisation of (6), it is necessary to find a solution belonging to Vh, a

finite-dimensional subspace of H1(Ωl). Let
{
ϕl
1(r), ϕ

l
2(r), . . . , ϕ

l
N (r)

}
be a basis of Vh such that

for all g(t) ∈ Vh, g(t) =
∑N

i=1 ϕ
l
i(r)ηi(t), with ηi(t) ∈ C. Then, the approximation of the transverse

magnetisation m∗
l (r, t) ∈ Vh satisfying (6) is defined as

m∗
l (r, t) =

N∑

i=1

ϕl
i(r)η

l
i(t). (7)

In the case of choosing the test functions as the basis functions, i.e. v(r) = ϕl
j(r) (j = 1, . . . , N),

it is possible to obtain (after some algebra)

M l

∂ηl

∂t
= −

(
Sl + iQl(t) +

1

Tl

M l + J l(t) + F l

)
ηl −

∑

n

H lnηn, (8)
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where

{M l}ij , Mij =

∫

Ωl

ϕl
i(r)ϕ

l
j(r)dr, (9a)

{Sl}ij , Sij =

∫

Ωl

∇ϕl
j(r)

TDl(r)∇ϕl
i(r)dr, (9b)

{Ql(t)}ij , Qij(t) = γ

∫

Ωl

ϕl
i(r)ϕ

l
j(r)B(r, t)dr, (9c)

{J l(t)}ij , Jij(t) =

∫

Ωl

ϕl
j(r) v(r, t) · ∇ϕl

i(r)dr, (9d)

{F l}ij , Fij = κel

∫

Γe

l

ϕl
j(r)ϕ

l
i(r)dr, (9e)

{H ln}ij , Hij = κln

∫

Γln

ϕl
j(r)

(
ϕl
i(r)− ϕn

i (r)
)
dr. (9f)

Therefore, the problem turned out to find η(TE) satisfying (8). Then, it is necessary to define

the basis functions needed to compute (9). For this reason, the volume and area coordinate systems

are utilised.

2.3 Volume and area coordinates

To proceed with the spatial discretisation, the volume coordinate system is introduced. As shown in

the following sections, this coordinate system allowed to compute analytically (9a)- (9d) considering

polynomial basis functions over a tetrahedral discretisation of the domain.

Let V be the volume of the tetrahedron ω with nodes pi (i = 1, . . . , 4). For any point r inside

the tetrahedron, the coordinates ξi = Vi/V (i = 1, . . . , 4) are defined, where Vi is the volume of

the tetrahedron with nodes r and pj , with j 6= i (j = 1, . . . , 4). Then, the volume coordinates are

obtained by the transformation

ξi =
ai + bix+ ciy + diz

6V
, i = 1, 2, 3, 4, (10)

where ai, bi, ci, and di are real coefficients depending on the nodes coordinates [19]. In matrix form

ξ =
1

6V

(
a+ΛTr

)
, (11)

where a, b, c, and d are the 4×1 vectors with elements ai, bi, ci, and di, respectively (i = 1, 2, 3, 4),

Λ = [b, c,d]T , and ξ = [ξ1, ξ2, ξ3, ξ4]
T . It is easily seen that (11) transforms ω into a normalised

tetrahedron ωn in the ξ coordinate system. Also, it is useful to note that, since pi 6= pj for i 6= j

is assumed, a, b, c, and d are linearly independent, so ΛΛT is invertible, and

r =
(
ΛΛT

)−1
Λ
(
6V ξ − a

)
, (12)

8



is uniquely defined.

The introduction of the volume coordinates has multiple purposes. First, it allows to choose

Vh and the corresponding basis functions. In this case, and for simplicity, Vh was chosen to be

the space of piecewise polynomials up to order n0. In case of considering polynomials of degree

n0 = i+ j + k + l in each element, the basis functions are defined by [20]

ϕijkl(ξ) = Ri(n0, ξ1)Rj(n0, ξ2)Rk(n0, ξ3)Rl(n0, ξ4), (13)

where

Rm(n0, ξ) =
1

m!

m−1∏

k=0

(n0ξ − k) . (14)

Second, it allows to evaluate analytically integrals of the form

∫

ω

ξa1ξ
b
2ξ

c
3ξ

d
4dω = 6V

a!b!c!d!

(a+ b+ c+ d+ 3)!
. (15)

This will be shown to be the key to obtain parametric expressions for the FE formulation.

A similar analysis can be used to define the area coordinates for the interpolation and integration

over triangles, which is mandatory to solve (9e) and (9f). Given r inside the triangle ω of area A, the

area coordinates are defined as ξi = Ai/A (i = 1, 2, 3), where Ai is the area of the triangle defined

by r and pj , with j 6= i (j = 1, 2, 3). Then, the interpolating functions of degree n0 = i + j + k

are [20]

ϕijk(ξ) = Ri(n0, ξ1)Rj(n0, ξ2)Rk(n0, ξ3). (16)

Finally, the integration formula transforms to

∫

ω

ξa1ξ
b
2ξ

c
3dω = 2A

a!b!c!

(a+ b+ c+ 2)!
. (17)

In Fig. 1 the disposition of nodes for triangles and tetrahedrons are shown, as well as their

corresponding first and second order polynomial basis functions, i.e. n0 taking values 1 and 2.

2.4 Formulation of element matrices for polynomial basis functions

It is now possible to obtain numerical representations of (9a)-(9f) using the volume and area co-

ordinate systems. To this end, the linear and quadratic basis functions were considered, achieving

first and second order FE formulations. Since these basis functions are defined for each tetrahedron

(or triangle), expressions of (9a)-(9f) valid for each element were derived, usually called elemen-

tal matrices, and denoted by the sub/superscript ‘e’. The final matrices were then obtained by

assembling the elemental matrices [19].
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Once the basis functions are chosen, the computation of M e is straightforward. To discre-

tise (9b), it is useful to note that the gradient of any function f(r) can be expressed in the volu-

metric coordinate system as ∇f(r) = 1
6V Λ∇ξf(ξ). Then, the elementary stiffness matrix is found

to be

Se =
1

6Ve

∫

ωn

∇ξϕ(ξ)
TΛTDΛ ∇ξϕ(ξ)dωn, (18)

where ∇ξϕ(ξ) =
[
∇ξϕ1(ξ), . . . ,∇ξϕN (ξ)

]
. If the diffusion tensor is assumed constant within the

element, it is possible to extract it (as well as Λ) outside the integral. This allows to separate the

elementary matrix as the product of a coefficient (i.e. constant) matrix and a parametric matrix

dependent on the diffusion tensor elements. To this end, the vec(·) operator is utilised. Employing

the identity vec (ABC) =
(
CT ⊗A

)
vec(B) [21] on (18) leads to

vec (Se) =
1

6Ve
S

T
(
Λ⊗2

)T
vec(D), (19)

where

S =

∫

ωn

(
∇ξϕ(ξ)

)⊗2
dωn, (20)

is a constant matrix once the basis functions are selected. In the particular case of choosing first

order basis functions, ∇ξϕ(ξ) = I4, resulting in S = I16/6.

To obtain the representation of Qe(t), it is first needed to select the spatial profile of the

magnetic field B(r, t). As in [1], two options were considered. The first was the commonly used

linear magnetic field, in which case B(r, t) = g(t) · r, with g(t) being the effective applied gradient

field, which can vary over time (Fig. 2). In this case, inserting (12) into (9c), we obtained Qe
ij(t) =

g(t) ·
(
Q

(1)
ij , Q

(2)
ij , Q

(3)
ij

)
, where g(t) =

[
gx(t), gy(t), gz(t)

]T
. In matrix notation,

Qe(t) = gx(t)Q
(1)
e + gy(t)Q

(2)
e + gz(t)Q

(3)
e , (21)

where Q
(k)
e (k = 1, 2, 3) are matrices defined by

[
vec
(
Q(1)

e

)
, vec

(
Q(2)

e

)
, vec

(
Q(3)

e

)]T
= 6γVe

(
ΛΛT

)−1
Λ
(
6VeQlin − a vec (M e)T

)
, (22)

where

Qlin =

∫

ωn

ξ
(
ϕ(ξ)T

)⊗2
dωn, (23)

and ϕ(ξ) =
[
ϕ1(ξ), . . . , ϕN (ξ)

]T
.
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The second option considered was to apply the normalised isotropic parabolic magnetic field,

where B(r) = g2 r · r, with g2 constant, which is considered as a paradigm for nonlinear fields [1].

In this case, after tedious manipulations, we obtained

vec (Qe) = γg2

(
216V 3

e Qquad + vec (M e)
(
aT
)⊗2

− 72V 2
e

(
a⊗Qlin

)T)
vec
(
Λ
)
, (24)

where Λ = ΛT
(
ΛΛT

)−T (
ΛΛT

)−1
Λ and

Qquad =

∫

ωn

(
ϕ(ξ)ξT

)⊗2
dωn. (25)

Computing (9d) requires adopting a model for the velocity field. Assuming v(r, t) = v(r)h(t),

it is found

Je = h(t)

∫

ω

∇ϕ(r)Tv(r)ϕ(r)Tdω. (26)

In the particular case of considering constant velocity in each element, Je turns out to be

vec (Je) = h(t)JΛTv, (27)

where

J =

∫

ωn

ϕ(ξ)⊗∇ϕ(ξ)dωn. (28)

The computation of F e
l was straightforward when using the area coordinate system. Finally,

to compute (9f), a discontinuous FE approach was considered. Under this method, the solution

is allowed to be discontinuous at the compartment interfaces but not inside each region [14]. The

discretisation was then obtained by doubling the nodes at the interfaces, each of them belonging to

each region. Corresponding triangles share the basis functions (but not the nodes), hence He was

easily found integrating, as done for F e
l . The resulting elemental matrix for corresponding triangles

belonging to different sides of the same boundary (i.e. corresponding to ηln = [ηT
l ,η

T
n ]

T ) is

He
ln = κln




F
e

−F
e

−F
e

F
e


 ,

where F
e
=
∫
ω
ϕ(r)ϕ(r)Tdω (and consequently F e

l = κelF
e
).

Once the basis functions were chosen, the computation of the elemental matrices was achieved

by performing algebraic manipulations, more tedious as the order of the basis functions increased.

To avoid mistakes, the Symbolic Toolbox in Matlab (MathWorks Inc., Nattick, USA) was utilised

for computing the corresponding matrices using both linear and quadratic basis function sets, as

shown in Appendix A.
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2.5 Temporal discretisation

Once the spatial discretisation is obtained, Eq. (8) needs to be solved for all Ωl (l = 1, . . . , L). For

simplicity, the L systems of differential equations are merged into a single one. The global matrices

involved in (8) are then defined as the assemble of the corresponding matrices in any region. Then,

Eq. (8) could be expressed as

M
∂η(t)

∂t
= −

(
Υ(t) + iQ(t)

)
η(t), (29)

where Υ is the real part of the right term of the assemble, comprising the matrices S, M , J , F ,

and H, and the lack of subindex refers to the global matrix. Most of the matrices were block

diagonal, as seen from their definitions in (9). This was extremely useful when computing inverse

matrices utilising, for example, Schur complements.

In the sequel, two different approaches to obtain η(TE) from (29) are presented, highlighting

their pros and cons. Once η(TE) is obtained, the corresponding signal is found through (4) and (7),

i.e.

S =

∫

Ω
ρ̃(r)m(r, TE)dr

≈
∑

e

(∫

ωe

ρ̃(r)ϕe(r)dr

)T

ηe(TE) =
∑

e

yT
e ηe(TE) = yTη(TE),

(30)

where

ye =

∫

ωe

ρ̃(r)ϕe(r)dr. (31)

2.5.1 Matrix exponential

The most direct method to obtain η(TE) given η0 ≡ η(0) is considering the matrix exponential

function [25]. In the following, it is assumed that the matrices Υ and Q are piecewise constant

in [0, TE ]. This means that the temporal flow profile and the effective magnetic gradient profile

are considered to be constant within each interval of finite duration δk = tk − tk−1 (k = 1, . . . , N).

The first hypothesis is not only fulfilled when studying just the diffusivity of the material, where

the flow is generally considered to be zero [1], but also when studying constant flow, as blood in

autoregulated capillaries [22]. The second arises in most commonly used sequences [1]. Under these

assumptions the acquired signal turns out to be

S = yT

(
N∏

k=1

e−M
−1

(Υk+iQ
k)δk

)
η0, (32)

12



where Υk and Qk are the constant expressions of the corresponding matrices in δk, and the product

by each new matrix is leftwise. Note that the matrix products involved are in general not commu-

tative, and therefore (32) cannot be further simplified without making additional assumptions.

Eq. (32) is a valuable result for several pulse excitation sequences and applications. Although

this formula is valid only for piecewise constant gradient profiles, it can be used as a good approx-

imation to arbitrarily complex sequences, as done in the matrix formalism approach for diffusion

studies [1]. Moreover, since it is an expression depending on physical parameters, such as permeabil-

ities and diffusivities of the media, it allows to perform other analytical analysis. A straightforward

example is the computation of the sensitivity of the output to these constants considering arbitrary

domains. This was proven to be useful in many applications, such as to compute performance

bounds for solving the inverse problem [23, 24].

It is of particular interest to obtain parametric expressions of the measured signals for sPGSE

and dPGSE sequences. For simplicity, let us define the matrices E∆k
= e−M

−1
Υk(∆k−δk), Eδk =

e−M
−1

(Υk+iQ
k)δk , and Emk

= e−M
−1
Υk(tm−δ1). Then, in Appendix B, it is shown that the

measured signal is given by

Ss = yTE∆1
M−1E∗

δ1
MET

∆1
Eδ1η0, (33)

when considering sPGSE, and

Sd = yTEδ2E∆2
M−1E∗

δ2
MEmM−1E∗

δ1
ME∆1

Eδ1η0, (34)

in case of using dPGSE. Note that Eqns. (33) and (34) depend on the calculation of less matrix

exponentials than indicated by (32), hence drastically reducing the computation cost.

The expressions (32)–(34) are examples of closed-form solutions that are useful for both the-

oretical and numerical purposes. For example, it is possible to compute derivatives of Eqs. (33)

and (34) with respect to different parameters (describing the system and MR sequence), neces-

sary for performing sensitivity analyses. However, these solutions are computationally expensive

even for small problems and efficient algorithms [25], demanding a notorious amount of memory.

Therefore, other numerical methods should be considered.
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2.5.2 Second order numerical scheme

As in [14], the solution vector in (29) is split into its real and imaginary parts, resulting in the

following the coupled system of equations





M
∂η

R
(t)

∂t
= −Υ(t)ηR(t) +Q(t)ηI(t)

M
∂η

I
(t)

∂t
= −Υ(t)ηI(t)−Q(t)ηR(t)

, (35)

where η(t) = ηR(t)+ iηI(t). To solve this system, the implicit trapezoidal method [26] was chosen.

This is a second-order scheme characterised for being the only A-stable multistep method. Since

this is an implicit method, it will generally demand a larger computational cost. However, in the

sequel, we show that this problem can be solved.

Under this scheme, Eq. (35) takes the form





ηn+1
R = ηn

R + ∆t
2

(
−Υ̃n+1η

n+1
R + Q̃n+1η

n+1
I − Υ̃nη

n
R + Q̃nη

n
I

)

ηn+1
I = ηn

I + ∆t
2

(
−Υ̃n+1η

n+1
I − Q̃n+1η

n+1
R − Υ̃nη

n
I − Q̃nη

n
R

) , (36)

where ∆t is the time-step length and the tilde indicates premultiplication of the corresponding

matrix by M−1. Some tedious manipulations yield





ηn+1
R =

(
IN + h2R2

n

)−1
(
h (Ln +RnP n)η

n
I +

(
P n − h2R2

n

)
ηn
R

)

ηn+1
I = −hRnη

n+1
R − hLnη

n
R + P nη

n
I

, (37)

where h = ∆t/2, Ln = (M + hΥn+1)
−1Qn, Rn = (M + hΥn+1)

−1Qn+1, and

P n = (M + hΥn+1)
−1 (M − hΥn). From (37), two inverse matrices need to be computed, in-

stead of one as required by any other explicit method. However, since the absolute values of the

eigenvalues of h2R2
n are less than unity, it is possible to write [27]

(
IN + h2R2

n

)−1
=

∞∑

k=0

(−1)k (hRn)
2k ≈ IN − (hRn)

2 + (hRn)
4 , (38)

which reduces the needed inversion to one.

The proposed numerical scheme presents some advantages when compared to the Runge-Kutta-

Chebyshev algorithm [14]. First, the selected method is A-stable, and therefore stable irrespectively

of the selected temporal discretisation step. Second, it only needs one matrix inversion, which in

case of considering constant flow, it only needs to be computed once.

14



3 Numerical results

In this section we present two examples in which the capabilities of the numerical method were

tested. The first was intended to show how the developed method performed in situations where

the analytical solution was available [6], whereas the second presented a real application based

on experimental data [5]. These examples were chosen between many others just to show the

capabilities of the FE formulation in concrete situations. It is worth to mention that the eigenvalue

condition stated in Section 2.5.2 was met in every single experiment.

3.1 Bi-layered sphere

We simulated a sPGSE sequence (δ = ∆ = 10ms) in a bi-layered spherical domain with radii r1,2 =

[2.5, 5] µm, isotropic diffusivities D1,2 = [2, 2] × 10−9 m2/s, innermost (outermost) permeability

κ12 = 10−5 (κe2 = 10−9), and bulk relaxivities T1,2 = [0.1, 0.1]s. This situation represents a typical

scenario when analysing biological samples, as cells or axons [6].

To account for the errors, we computed the relative error, defined as

Error = max
g

{
‖Sa(g)− Sn(g)‖

‖Sa(g)‖

}
, (39)

where Sa and Sn are the analytical and numerical solutions, respectively, and |g| ∈ [0, 1] T/m. In

Fig. 3 we show the relative error for different model discretisations (obtained using the ISO2Mesh 2013

toolbox [28]) as a function of the mesh size. We considered the first order spatial discretisation

scheme (n0 = 1) and the second order temporal scheme with 100 time steps. It is seen that the

numerical approach gives accurate results even using a coarse discretisation.

One of the main advantages of the presented framework is the possibility to use coarser temporal

discretisations without turning the scheme unstable. To illustrate this, we considered a spatial

discretisation consisting in 11464 elements (2198 nodes) and solved the aforementioned problem for

varying time-steps. The purpose of this experiment was to test the convergence rate of the developed

second order algorithm, and compare it with a similarly obtained first order implicit scheme. The

small number of nodes allowed us to use the graphical processing unit (GPU) to speed-up the

simulations. Although general-purpose GPUs’ memory is limited to 1-2Gb, the acceleration they

provide turns them into a preferable device where to perform demanding computational simulations.

In Fig. 4 we show the relative error as a function of the temporal discretisation for both backward

Euler (first order) and trapezoidal (second order) implicit schemes. The advantages of the implicit
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nature of both algorithms is clearly appreciated, as well as the advantage of the second order

method over the backward Euler approach.

3.2 Cylinder with dPGSE sequence

To show the versatility of the numerical framework, we simulated the last experiment reported

in [5]. It consists in the application of a dPGSE sequence (δ1 = δ2 = 4.5 ms, ∆1 = ∆2 = 40 ms,

tm = 0 s, gx = gy = 67.3, 125.3, 202.0, and 375.7 mT/m, gz = 0) perpendicular to impermeable

cylindrical microcapillaries of inner diameter 10 ± 1 µm, oriented in the z direction, and centred

in the origin. This experiment was carried out to study the dependence of the signal decay on the

azimuthal angle between gradients. To do so, the first gradient was fixed along the x direction

while the orientation of the second gradient was varied in the xy plane. We refer to [5] for more

details.

We considered the first order FEM approach. We discretised cylinders of 10µm length and

diameters 10.0, 10.3, 10.4, and 10.4 µm (as presented in [5]) in 750 nodes using ISO2Mesh. The

reason to use a coarse spatial discretisation was to test its validity using the GPU. We refined the

temporal discretisation until no more improvement was obtained, resulting in 3000 time-steps for

this particular problem. In Fig. 5 we show both experimental and numerical results. There we

plotted the acquired signal as a function of the angle φ between gradients. There is a very close

agreement between the experimental results and the numerical simulations, even using a coarse

mesh, confirming their validity for real-scenario experiments.

4 Discussion and conclusions

We presented a FE formulation for solving the complete BT equation in general domains. This

method allows to simulate MR signals in realistic scenarios, including arbitrary geometries, physi-

cal properties of the material (diffusivities, permeabilities, relaxivities, and flow), and MR settings

(sequences, field, and voxel volume). We obtained expressions for first and second order discretisa-

tions in both spatial and temporal domains. These expressions were flexible enough to work with

arbitrary discretisations, not being restricted to symmetric meshes nor to specific step lengths to

guarantee numerical stability (as in [14]). We showed its feasibility and flexibility to solve real

problems achieving small relative errors even using coarse discretisations.
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Unlike existing approaches, we obtained ad hoc formulae for computing the matrices involved

in the numerical algorithm. This was shown to be helpful for avoiding errors due to numerical

integration, as well as to increase the speed-up. As in [6] (and differently from [14]) we considered

mixed BCs imposed on the boundaries of the simulated structures. Whether these conditions are

more suitable than the periodic BCs considered in [14] needs to be further explored. This could be

easily addressed using the developed technique on the transformed BT equation [14], and will be

the focus of future studies.

One of the major results was a second order implicit numerical algorithm for solving the tempo-

ral discretisation of the BT equation. Implicit methods have the advantage (over explicit methods)

of presenting stability properties that allow to choose coarser discretisations without compromis-

ing the validity of the result. However, implicit methods are generally discarded for solving large

problems due to their computational load. In this paper, we adapted two implicit methods for

solving the temporal discretisation with similar requirements than explicit methods, hence drasti-

cally reducing the simulation time. This was highly efficient when compared to explicit methods,

which require really small step-sizes to achieve stable results [14]. Future studies will be focussed on

making these methods even more efficient by allowing an adaptive step-length selection depending

on the applied sequence.

We also presented expressions relating the measurements with parameters of interest describing

both the media under analysis and the applied sequence. This is of special interest for designing

optimal protocols to tackle specific problems, as done in brain related studies with the Cramér-Rao

bound [29, 30, 31]. Differently from the existing analytical expressions, they allow to deviate from

standardised and simple domains and consider the real shape and physics under scope. This could

result in better ways where to apply parametric tools for MR protocol optimisation and design.
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A Results considering linear basis functions

The computation of the matrices involved in the FE discretisation can be easily computed once

the basis functions set is chosen. After transforming the corresponding integrals to the volume or

area coordinate systems, exact results were obtained using (15) and (17). In the special case of

considering linear basis functions, we get

M e =
Ve

20
(14,4 + I4) , (40a)

Se =
1

36Ve
ΛTDΛ, (40b)

Qlin = [K1,K2,K3,K4], (40c)

Qquad =




24 6 6 6 6 4 2 2 6 2 4 2 6 2 2 4

4 2 2 4 6 2 2 2 2 2 1 2 2 1 2

4 2 2 2 2 1 4 2 6 2 2 1 2 2

4 2 2 1 2 2 1 2 2 4 2 2 6

4 6 2 2 2 2 2 1 2 2 1 2

24 6 6 2 6 4 2 2 6 2 4

4 2 2 4 6 2 1 2 2 2

4 1 2 2 2 2 4 2 6

4 2 6 2 2 1 2 2

4 6 2 1 2 2 2

24 6 2 2 6 4

4 2 2 4 6

4 2 2 6

4 2 6

4 6

24




, (40d)

J =
1

24
(14,1 ⊗ I4) , (40e)

F e =
Ae

12
(13,3 + I3) , (40f)

where Ki, i = 1, . . . , 4, is the 4 × 4 matrix with entries 6 if k = i = j, 2 if i = k, j = k, i = j,

and 1 elsewhere, and Ae (Ve) is the area (volume) of the corresponding element. Note that (40b)

was found after obtaining S = I16/6. Finally, ye = 14,1Ve/4 in (30). The same procedure can be
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applied when considering second order basis functions.

B Signal models for sPGSE and dPGSE sequences

To obtain (33) and (34) we first need a useful identity. Using matrix exponential properties and

the fact that M , Υ, and Q are symmetric matrices, it is straightforward to show

e−M
−1

(Υ±iQ) = M−1
(
e−M

−1

(Υ∓iQ)
)∗

M , (41)

where ∗ denotes conjugate transpose. In case of performing a sPGSE experiment, the measured

signal is given by

S = yTE∆Eδ3E∆Eδ1η0, (42)

where Eδ1 and Eδ3 account for the first and second gradient pulses, respectively, and E∆ for the

intervals without imposed magnetic field gradient. Since both effective magnetic gradient pulses

have the same duration (δ) and opposite magnitude (Fig. 2b), we can replace Q3 in Eδ3 by −Q1.

Then, using (41) we get Eδ3 = M−1E∗
δ1
M , and consequently (33). For computational purposes it

is worth to note that E∆M
−1 = M−1ET

∆. A similar analysis can be used to prove (34).
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Figure 1: Node numbering schemes considered in this work. a. Node disposition, numbering, and

corresponding basis functions for first (•) and second (•◦) order basis functions over triangles. b.

Idem for tetrahedra.
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Figure 2: Piecewise-constant gradient waveform and their corresponding notation. (a). General

scheme. (b). sPGSE. (c). dPGSE.
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Figure 3: Relative error as a function of the average element side length. The non-linearity appre-

ciated in the curve is due to the automatic generation of tetrahedral meshes using ISO2Mesh [28].
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Figure 4: Relative error as a function of the number of time-steps for a bi-layered spherical domain.

Results are shown for both first (broken line) and second (solid line) order implicit schemes. The

difference in the convergence rate is clearly exposed.
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Figure 5: Signal intensity as a function of the azimuthal angle φ between gradients. Different curves

correspond to different gradient field strengths. The experimental data points (extracted from [5])

are shown with symbols, whereas the curves obtained by numerical simulations are shown with

continuous lines.
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