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Abstract—The use of offshore wind farms has been
growing in recent years. Europe is presenting a geomet-
rically growing interest in exploring and investing in such
offshore power plants as the continent’s water sites offer
impressive wind conditions. Moreover, as human activities
tend to complicate the construction of land wind farms,
offshore locations, which can be found more easily near
densely populated areas, can be seen as an attractive
choice. However, the cost of an offshore wind farm is rel-
atively high, and therefore, their reliability is crucial if they
ever need to be fully integrated into the energy arena. This
paper presents an analysis of supervisory control and data
acquisition (SCADA) extracts from the Lillgrund offshore
wind farm for the purposes of monitoring. An advanced and
robust machine-learning approach is applied, in order to
produce individual and population-based power curves and
then predict measurements of the power produced from
each wind turbine (WT) from the measurements of the other
WTs in the farm. Control charts with robust thresholds
calculated from extreme value statistics are successfully
applied for the monitoring of the turbines.

Index Terms—Machine learning, offshore wind farm, pat-
tern recognition, supervisory control and data acquisition
(SCADA), wind turbine (WT) monitoring.

I. INTRODUCTION

THE idea of using supervisory control and data acquisition
(SCADA) measurements for structural health monitoring

(SHM) and condition monitoring has received attention from
both the wind energy and structural engineering communities,
particularly for the monitoring of critical infrastructures [1]. In
order to maintain a qualitative profit with large offshore wind
farms, a major challenge is to keep operational and maintenance
costs to the lowest level by ensuring reliable and robust moni-
toring systems. For this reason, data mining and machine learn-
ing are promising approaches for modeling wind energy aspects
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such as power prediction or wind load forecasting. It is perhaps
well known that there has been a recent expansion in the use
of wind energy, which is likely to continue with an accelerated
pace over the coming years. Among the various forms of wind
energy, offshore wind farms have become more popular, mainly
due to the broader choice regarding their location and also the
generally steadier and higher wind speeds that can be found
over open water, when compared to land. It is also understood
that, although offshore locations may be preferable to land
sites, they can radically increase their maintenance costs; thus,
the monitoring of offshore wind farms becomes crucial if the
expansion of their use continues to grow.

There have been several different approaches proposed for
the monitoring of wind turbines (WTs), from traditional non-
destructive evaluation (NDE) [2] methods, or vibration ap-
proaches on the blades [3], [4], to advanced signal processing
in gearboxes [5]–[8]. General reviews can be found in [9] and
[10]. Several researchers have tried in recent years to apply
damage detection technologies, and these studies were mainly
in a laboratory environment [11]–[18]. Briefly, both passive and
active sensing technologies have been applied in the context of
WTs [13]. In passive sensing techniques, there is no external/
artificial excitation as in active sensing techniques, which can
have an effect on the sensitivity, the robustness, and the practi-
cal application of the approach. Most of the SHM techniques
and sensor systems that are discussed in the literature and
available to industry have been considered for application to
WT blades. For comprehensive reviews and explanation on
SHM, the reader is referred to [19] and [20]. In general, NDE
approaches work in accessible parts of the structures, require a
high degree of expertise, and can have substantial inspection
costs, but they can be highly sensitive. SHM incorporates
the effort to build a general online monitoring approach for
structures, in order to reduce or even replace lengthy inspection
costs. Among the methods, which have been applied to WT
SHM and fall into the NDE category, are ultrasonic waves
(popular with composite structures and mainly use piezoelectric
transducers), smart paint (piezoelectric or fluorescent parti-
cles), acoustic emissions (usually barrel sensors), impedance
tomography (carbon nanotube), thermography (infrared cam-
eras), laser ultrasound (laser devices), nanosensors (electronic
nanoparticles), and buckling health monitoring (piezoelectric
transducer). Not all NDE methods can be used for online moni-
toring, i.e., some may require a halt of the operations of the sys-
tems for their inspection. Vibration-based monitoring methods
generally use accelerometers, piezo- or microelectromechanical
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systems (MEMS), laser vibrometry, and also strain- or fiber-
optic sensors. These methods tend to be less sensitive but offer
global online monitoring capabilities as well as the possibility
of monitoring in nonaccessible areas of the structures. They
also tend to be cheaper. The aforementioned methods can also
be roughly separated into physics or data based, depending on
whether they are defined from physical principles or just data
driven. Examples of data-based approaches for monitoring WT
are given in [21]–[23].

Most modern wind farms will contain some form of SCADA
system installed, which can provide for the measurement and
the recording of several different variables, such as wind speed,
bearing and oil temperatures, voltage, and the power produced,
among others. Since the SCADA system records constantly and
is primarily used to monitor and control plants, it forms an
ideal basis for a complete online SHM approach. In addition,
SCADA extracts are perhaps the most direct and potentially
useful data obtained from WTs, except of course any direct
measurements acquired on the turbines themselves (through
accelerometers, laser vibrometry, or any other sensor).

The use of SCADA data for monitoring has been shown in
several studies, such as in [24]–[31], and in most cases, it aims
at the development of a complete and automatic strategy for the
monitoring of the whole turbine or wind farm, although sub-
components (e.g., bearings, generator, etc.) may be individually
assessed as well. Among the various approaches, power curve
monitoring has been popular and successful. The WTs have
been designed by manufacturers to have a direct relationship
between wind speed and the power produced, and since they
require a minimum speed to produce the nominal power, but
limit the power generated from higher wind speeds, the power
curve usually resembles a sigmoidal function. A critical analy-
sis of the methods for modeling the power curve can be found
in [32] and recent work in [33], but in general, researchers
have exploited the deviation from a reference curve to perform
SHM on turbines. The use of machine-learning approaches for
the estimation of power generation can be seen as far back
as in [34] and in [35], with more recent works appearing as
well [36], [37]. In [38], a steady-state model of a whole wind
farm with neural networks was shown to have fair results if the
data used were preprocessed, while in [39], three operational
curves, i.e., power, rotor, and pitch, were used for reference, in
order to produce control charts for the monitoring of WTs. This
paper explores the potential of using actual SCADA data for
the monitoring of individual turbines, and of the whole farm, by
constructing power curves for each turbine and then comparing
how well they predict for other turbines. The modeling is
done with neural networks and Gaussian processes (GPs) for
comparison. Control charts are produced for the individual
monitoring of the turbines using standard x chart plots and
extreme value statistics (EVS) for comparison.

The layout of this paper is organized as follows: Section II
describes the wind farm and the SCADA data, which were
available. Section III presents the modeling of the power curves
of the WTs, while Section IV displays the monitoring of the
turbines with control charts. Finally, the paper is rounded off
with some overall conclusions, a discussion of the potential of
the approach, and the future work, which is currently planned.

Fig. 1. Location of the 48 turbines in Lillgrund wind farm [40].

II. DESCRIPTION OF THE LILLGRUND WIND FARM

AND THE NOVEL ELEMENT

The Lillgrund wind farm is situated in the sea area between
Denmark and Sweden and consists of 48 identical WTs of
2.3-MW rated power [40]; their distribution is shown in Fig. 1.
The wind farm is owned and operated by Vattenfall. The
original labeling of the turbines made use of a combination of
letters and numbers (rows A to D, see again Fig. 1), but for con-
venience here, the turbines were simply numbered from 1 to 48.
In this paper, only the pure number labeling is going to be used.
The separation between the turbines in the row is 3.3×D,
where D is the diameter of the turbine, and the rows are
separated by 4.3×D (see Fig. 1). The WTs are Siemens SWT-
2.3-93 (see Fig. 2), which are characterized by a rotor diameter
of 92.6 m and a hub height of 65 m, giving a rated power of
2.3 MW. The maximum rated power is reached when wind
speeds take values of 12 m/s (rated wind speed).

It is important to note that the spacing between the tur-
bines in the specific wind farm is significantly closer than
most conventional farms [40], and this unique element is gen-
erally expected to affect their performance. This wind farm
architecture was created deliberately for analyzing the effects
and the interactions of each WT within such closer spacing.
The available data used in this study correspond to a full
year of operation. All the SCADA extracts consist of 10-min
averages, with the maximum, mean, minimum, and standard
deviation of the 10-min intervals being recorded and available.
The actual sampling frequency is less than 10 min, but it is not
disclosed here.

III. POWER CURVE MONITORING OF WTs

The number of sources of information regarding reliability of
WT technology lifetimes is very limited due to the highly com-
petitive market. Offshore wind farms are arguably going to be
the pioneers in future regarding the renewable energy sources;
however, because they operate in remote areas away from land
and are expanding into deeper waters, SHM will be an essen-
tial part of the success of these structures in the competitive
market. Automatic mechanisms for anomalous performance
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Fig. 2. Siemens SWT-2.3-93 in Lillgrund [40].

detection of the WTs are still in the embryonic stage. Following
these thoughts, a view of sensitive and robust damage detec-
tion methodologies of signal processing is investigated in this
paper.

Once more, one has to recall from before that the rare spacing
(worldwide) between the turbines is one of the most challenging
and interesting motivations behind the analysis of this work.
The analysis is based on neural network and GP regression
and is used to predict the measurement of each WT from
the measurements of other WTs in the farm. Neural networks
are standard machine-learning tools, and they were the first
to be applied, but as will be shown, GPs have certain useful
advantages. Regression model error is used as an index of
abnormal response. Furthermore, as will be seen later using this
regression error (residual error, which is the difference between
the algorithm predictions and the actual SCADA data), a strong
visualization that indicates when faults occur will be presented.

A key novel technique in computing these warning levels
(thresholds), which indicate novelty (faults), is the usage of
sophisticated tools in order to obtain these thresholds. As will
be explained later, the warning levels are calculated by using
EVS via evolutionary optimization algorithms such as the self-
adaptive differential evolution (DE).

A. ANNs

Artificial neural networks (ANNs) are algorithms or, to be
more specific, mathematical models, which are loosely based
on the way that the human brain and biological neurons work.

They have been extensively used for regression and classifi-
cation, and they have been very successful in modeling data
originating from various different sources. In the current work,
the multilayer perceptron (MLP), i.e., the most common neural
network, is used [41]. For more details on the MLPs, the reader
is referred to [41] and [42]. Since neural networks have been
successfully used for nonlinear regression, they seem ideal for
learning the power curve of WTs. The wind speed is available,
in 10-min averages, from the SCADA extracts for each turbine
(there is an anemometer in each tower). In addition, the SCADA
data provide a status for the operation of the turbines, usually
in the form of an “error code.” For the creation of the healthy
power curve (the reference curve), data from the whole year
were used, but only when they corresponded to time instances
with a status code equal to “0,” which means “no error” in the
turbines. The one-year healthy data were separated into train-
ing, validation, and testing sets. The training set is primarily
used for the training of the networks, whereas the validation
is used to identify the best structure for the network. Different
numbers of training cycles are applied, and in the end, the
finally selected network is tested with fresh data with the help
of the testing set. The search for the network structure here went
from one up to ten hidden units, and the finally selected number
of training cycles used was 300. All the training was done
with the help of the Netlab [43] package, and the optimization
algorithm for the network output error minimization was the
scaled conjugate gradient method [43], [44]. The measure of the
goodness of the regression fit was provided by the normalized
mean-square error (MSE) shown in

MSE(ŷ) =
100

Nσ2
y

n∑

i=1

(yi − ŷi)
2 (1)

where the caret denotes an estimated quantity, yi is the actual
observation, N is the total number of observations, and σy is
the standard deviation.

In total, 48 different networks (same as the number of tur-
bines) were finally selected to create a power reference curve
for the turbines. After that, each network was provided with
wind speed data from the rest of the turbines and was asked to
predict the power produced from them. In Fig. 3, the normalized
MSE errors of each trained network, when tested with wind
speed data for the turbine for which they were trained, and
subsequently the remaining turbines, is shown. Each axis of
the confusion matrix shown in Fig. 3 corresponds to 1 up to
48 turbines, where on the y-axis is the number of the trained
turbine and on the x-axis the number of the tested turbine. In
general, an MSE error below 5 is considered a good fit and
below 1 excellent.

From the results, it is clear that almost all the trained net-
works are very robust and the maximum MSE error is around
5, which mainly occurs in turbines 3 and 4, which are located
in the outside row of the wind farm. It can also be seen that,
on the diagonal of the confusion matrix (which corresponds
to the testing set of the trained turbines when tested with
data from themselves), the MSE error is very low, with the
maximum appearing in turbine 39 (MSE = 1.4708) and the
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Fig. 3. Confusion matrix with MSE errors created from the neural
networks: testing set.

Fig. 4. MSE error of the neural network models when presented with
data not corresponding to error code “0.”

minimum in turbine 31 with MSE at 0.5408. When the trained
networks for an individual turbine were fed data originating
from the same network, but which did not correspond to “no
error statuses,” the MSE error was everywhere larger, as shown
in Fig. 4; the lowest was 4.7991, which appeared in turbine 12,
and it was still larger than the 0.8262 of the healthy data.
In turbine 4, for example, the MSE increased from 0.768 to
149.033 and the standard deviation of the regression error from
0.0593 to 0.3685. Subsequent scanning of the data revealed
that the majority of the instances where the regression error
becomes high (in turbine 4) happened when the turbine was
not working, either from emergency stops or manual stops.
The emergency stops are associated with faults, but as these
results derive from actual working data, the types of faults
are limited to what was present during the recording period.
Essentially, Fig. 3 shows a map of potential thresholds, which
can be used for the monitoring (in a novelty detection scheme)
of the turbines individually or as a population.

B. GPs

Neural networks have proved to be a very powerful tool,
particularly for nonlinear regression, but they also present
several challenges during their modeling stage. The structure
of the network, including hidden layers and hidden nodes along
with the training cycles, plays a prominent role in the accurate
modeling of data and the overall results of any such analysis.
In addition, different initial conditions for the network weights
must always be explored, and issues regarding overfitting of
data are generally present, making the process nontrivial.

Alternatively, in the area of monitoring a WT via a regres-
sion analysis and in the exact same philosophy as the one
described earlier, another powerful technique can be adopted,
which is much simpler and faster. This technique is the GP for
regression. The GP is a research area of increasing interest,
not only for regression but also for classification purposes.
The GP is a stochastic nonparametric Bayesian approach to
regression and classification problems. These GPs are compu-
tationally very efficient, and the nonlinear learning is relatively
easy. Regression with these algorithms takes into account all
possible functions that fit to the training data vector and gives
a predictive distribution of a single prediction for a given
input vector. As a result, a mean prediction and confidence
intervals on this prediction can be calculated from this pre-
dictive distribution. For more details, the reader is referred to
[42] and [45].

The initial and basic steps in order to apply GP regression
is to obtain mean and covariance functions. These functions
are specified separately and consist of a specification of a
functional form and a set of parameters called hyperparam-
eters. Here, a zero-mean function and a squared-exponential
covariance function are applied (see [45]). When the mean and
covariance functions are defined, then the inference method
specifies the calculation of the exact model and, in simple
terms, describes how to compute hyperparameters by mini-
mization of the negative log marginal likelihood. The software
used for the implementation of GP regression was provided
in [45].

In Fig. 5, a similar confusion matrix to that produced for the
MLPs is shown. The results appear to be very good again, with
the same level of robustness and similar levels of MSE error,
with the worst being again in turbines 3 and 4. In terms of the
comparison between neural networks and GPs, it appears that
the results are very similar with the networks performing with
a slightly lower MSE error. It should be noted that the GPs are
trained with about a third of the data that the neural networks
were provided, but the testing sets are everywhere the same.

Fig. 6 simply shows the average MSE errors contained in
the confusion matrix shown in Fig. 3. It shows how well each
trained (reference) power curve predicts the power produced in
the rest of the turbines on average, and also how well the power
produced in each turbine is predicted by the rest of the trained
curves (corresponding to the rest of the turbines). In Fig. 6, it
can be seen again that the worst turbines are 3 and 4, which
predict and are also predicted by the rest of the turbines with a
greater error than the rest. Similar plots as to those in Fig. 6 can
be produced for the GPs, and the results are equivalent; hence,
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Fig. 5. Confusion matrix with MSE errors created from the GPs:
testing set.

Fig. 6. Average MSE error showing (a) how well the power produced
in each turbine is predicted by the networks trained in the rest of the
turbines and (b) how well each trained network produces the power
produced in the other turbines.

they are not included here. The very low MSE errors show that
the power curves have the potential of being used as a feature
for the monitoring of the whole farm, as they were shown
to be generally robust to the individual differences that the
turbines inevitably present (location, different sensors, different
generators, etc).

IV. VISUALIZING THE DATA USING GP ANALYSIS

THROUGH ROBUST EVS THRESHOLDS

As previously mentioned, GP regression considers all possi-
ble families of functions that fit to the training set observations
and, as a result, provides a predictive distribution, which gives
a mean prediction and confidence intervals on this prediction.
The advantage of the approach is illustrated in Fig. 7, where
the actual and the predicted power for turbine 9 are shown. The
intervals plotted in Fig. 7 are plus and minus three standard

Fig. 7. Predicted and actual power when there was a fault in turbine 9
(smoke in the nacelle).

deviations of the predictive distribution. If one assumes that an
accurate model was obtained, when an observation is outside
these confidence intervals, then it may be considered as an
outlier/novelty and, potentially, a fault. This approach is supe-
rior to the neural networks, where no confidence intervals are
available, and also offers the advantage that, if highly abnormal
conditions occur, which differ from those in the training set, the
confidence intervals will increase, meaning that a performance
anomaly might not be classified wrongly as an outlier.

As previously mentioned, all data were separated equally into
training, validation, and testing sets. The training set was only
used for training, and the testing set was used for the judgment
of the models. The choice for the turbine for illustration was
fairly arbitrary, but turbine 9 had a relatively low MSE of 0.76 in
the testing set (see previous section). Fig. 7 shows the predicted
and the actual power for turbine 9 in some time instances
where a fault had been identified. The fault involved smoke
in a part of the nacelle, and it is clearly shown that the actual
values lie very far from the confidence boundaries of the GP.
It is possible then by monitoring the regression error of the
identified model to identify severe faults in the turbine, which
affect its performance. This critical analysis is investigated in
the next section.

A. Control Chart Monitoring With x Chart Plots

The predictive distribution provided by the GP regression
may present an easy way of monitoring the performance of a
WT; however, an online approach will demand a more robust
quantity to be monitored other than just the confidence intervals
of the prediction. The simplest such quantity is the residual
error between the actual and the predicted power produced. A
control chart is a straight forward way of monitoring the resid-
ual error in the turbines. A standard x chart control approach
was the first to be applied. The residual error used for all control
charts presented here was provided by the models, which were
trained on measurement data from the same WTs, which they
were intended to monitor, and not from the rest of the turbines.
The residual error thus corresponds to the values of the diagonal
of the confusion matrix shown in Fig. 5. The control limits
were calculated by μ+ 2.58σ [46] for a 99% level confidence.
Fig. 8 shows the results of the x chart plot in the training error,
and Fig. 9 shows the results for the validation set. It is reminded
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Fig. 8. Standard x chart plot for the training error in turbine 9.

Fig. 9. Standard x chart plot for the validation set error in turbine 9.

that the validation set was used for the identification of the best
neural network structure, but it was not used at all in the GP
regression. In addition, the training set does not contain any
data, which corresponds to time instances with faults present
(error codes equal to “0” are considered healthy). It is shown in
Fig. 8 that there are 55 instances, which are considered outliers,
out of the 2000 total. If the controlled variable is assumed
to follow a Gaussian distribution, then the proposed control
limits should incorporate 99% of the data, which would mean
approximately 20 outliers out of the 2000, i.e., a number smaller
than the 55 shown in Fig. 8.

In order to check for the correct ratio of false positives (FPs)
and false negatives (FNs) during the monitored period of time,
in this case either the validation or the testing set, the use of the
error codes provided is crucial. The “non-healthy” data, which
appeared during the year, correspond to various types of error
codes, each one representing different parts of the monitored
system, including the whole wind farm and the grid. The error
codes, therefore, were separated into categories of different

severity, according to the type and the recommended action
upon their presence, information which was provided by the
company owning the wind farm, i.e., Vattenfall. For example,
a fault that indicated a warning with a recommended action of
autoreset, was considered of lower severity than the one that
indicated an alarm and a call for a technical team to the turbine.
Finally, for the purposes of identification of the FP and FN in
the specific work, the error codes were separated into those
which were considered relevant to the power produced, which
would therefore be detectable by monitoring the power curve,
and those which were irrelevant (e.g., lamp failures, etc.) and
consequently undetectable by the current methodology.

By using the aforementioned classification of the faults for
the period corresponding to the validation set, Fig. 9 reveals
that there are 486 FPs, meaning wrongly identified outliers, and
235 FNs, meaning instances where faults were present but were
not detected. This means that out of the total 576 time instances
with faults present, 341 were detected.

B. Extreme Value Threshold Calculated With DE

It was shown that the standard x control charts demonstrated
a detection rate of approximately 59% for the whole year of
the recorded data for turbine 9, but they also indicated a high
number of FPs. To alleviate this, EVSs [47] were employed
in order to produce more robust thresholds. The assumption
of a Gaussian distribution, although very common and very
attractive, may not be entirely appropriate in cases where the
problem at hand is concerned with tails of a distribution. In
those cases, EVS may be more suitable.

In order to study the tails of an arbitrary parent distribution,
the maximum of the samples should be used for its right tail
and the minimum for its left. According to Fisher and Tippett
[48], when the number of vector samples originating from
an arbitrary parent distribution tends to infinity, the induced
distribution on the maxima of the samples can only take one
of three forms: Gumbel, Weibull, or Frechet. The distribution
used here is the Gumbel, for reasons that will be explained
further on, and it can be seen in (2) for the maxima and (3)
for the minima, i.e.,

H(x) = e−e
− x−λ

δ (2)

L(x) = 1− e−e
x−λ

δ (3)

where λ and δ are model parameters to be estimated from the
data. The key point in such a situation would be to fit models to
parts of the parent distribution’s tails, as they should follow one
of the three possible distributions and thus identify a parametric
model. Once the parametric model is obtained, a threshold
can be calculated based on the fitted distribution. The chosen
approach for the modeling here was DE [49].

DE belongs to the family of evolution-based algorithms,
where an initial random population of solutions is propagated
through a repeated cycle of mutation and crossover operations
until an optimal (or near optimal according to desired criteria)
solution is obtained. The process is explained in detail in [50]
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Fig. 10. Control chart for the training error in turbine 9 with EVS
thresholds.

Fig. 11. Control chart for the validation set error in turbine 9 with EVS
thresholds.

and [51]. Inherent in an evolution process is the calculation of
a fitness function, which in the particular problem here is to fit
a parametric model to a given cumulative distribution function
(CDF). A normalized MSE similar to (1) was also applied here.

In the case of turbine 9, all three distributions were tried
with the Gumbel providing the best results. After the same
distribution was applied to a few more turbines with similar
results, it was decided to be used for all of them. The parameters
of the DE were a crossover ratio of 0.5, a scaling factor in
the mutation vectors of 0.9, and a population size of 30. A
fixed number of maximum generations was set at 100, after it
was seen that, in most cases, the rate of change of MSE was
stabilizing long before actually reaching this number, and its
increase did not improve the results. Figs. 10 and 11 show the
training and validation sets when the EVS was used in order
to calculate the thresholds. The level of confidence used was
99%, meaning that 1% of outliers was expected to be indicated.

A quick comparison with Fig. 8 reveals that the number of
outliers has been reduced to 24 from 55, i.e., a number which
is very close to the theoretical 1% (out of 2000 training data
points). Subsequent analysis of the validation set reveals that
the number of FPs has now dropped to 252 (from 486), i.e.,
a significant improvement, although the number of FNs has
slightly increased to 250 from 235.

The same approach was followed for all 48 turbines, thresh-
olds were calculated with the standard x chart, and EVS ap-
proaches and FPs and FNs were calculated for the training and
the validation sets. Table I shows those results for ten WTs,
along with the mean values from all of them. It is reminded here
that this table contains results from the residual error supplied
from the models, which were trained on the measurement data
from the same turbines they were intended to monitor and
not from any nearby turbines. It is clear that, in almost all
turbines, the EVS thresholds significantly reduce the FPs (ap-
proximately 53% in the training set and 52% in the validation,
on average) and slightly increase the FNs (approximately 3%,
on average). In the validation set, there is an average of 1.17%
of FPs with the extreme value thresholds, which is very close
to the theoretical 1% of outliers for the 99% confidence level,
while the x chart approach has 2.44% of FPs. It is reminded
that, in order to identify FNs, the error codes, which were not
considered relevant to the power curves, were removed. The
results shown in Table I consider the same error codes as in
the results presented previously for turbine 9. The procedure of
removing error codes is subjective because there were in total
249 different error codes present during the whole year of the
data and it is not always trivial to understand which are relevant
to the power curves.

The whole analysis was repeated without removing any error
codes, and the detection rate was shown to be 23.4% (average
from all turbines) for the x charts and 20.8% for the extreme
value thresholds. When six error codes are removed, then the
detection rate goes to 47.1% (average from all turbines) and
45% for x charts and EVS, respectively. Some turbines have
a low detection rate, which lowers the overall average value.
Those six error codes, which represent types of faults, are
shown in Table II. Those results are a bit higher than those
shown in Table I mainly because two specific error codes were
not previously removed (4 and 6). With more understanding of
the error codes and of the data, it is expected that a maximum
detection rate can be found, which should indicate the actual
sensitivity of the power curves. The faults that were not identi-
fied may correspond to very small changes in the system, which
are essentially undetectable or correspond to faults for which
the power curve feature is insensitive. Finally, the identification
of faults relies heavily on the reliability of the potential faults,
which were present and of the “healthy” data. It is possible
that, while data appeared normal (meaning “0” error code), they
were not in reality and ended up being used in the reference
power curve. The same can be said about the faults, as some
error codes may mask the presence of other faults.

The analysis presented is based on the real SCADA data
from the whole year, which also contain significant influence
from environmental effects, such as temperature, which may
complicate the detection of faults. Although the regression
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TABLE I
FPS AND FNS FOR TEN WIND TURBINES AND THE MEAN VALUES FROM ALL 48. DR STANDS FOR DETECTION RATE. THE MODELS

USED HERE WERE TRAINED ON DATA FROM THE SAME WTS AS THOSE THEY WERE INTENDED TO MONITOR

TABLE II
EXAMPLES OF ERROR CODES THAT WERE REMOVED FROM

THE ANALYSIS (THE NUMBERS DO NOT CORRESPOND
TO THE ACTUAL CODES USED IN THE SCADA)

error was shown to be small for the whole year, it is possible
that modeling the power curves on a smaller time scale, e.g.,
monthly or weekly, will probably increase the detection of
faults, but this may require the frequent update of the reference
power curve. In addition, the SCADA data currently used
are 10-min averages, which may also be a reason for lower
detection of faults; it is expected that 1-min data will improve
the results. The approach does not require a complex physics-
based model of the WTs and does not preprocess the data or
filter out potential outliers; it is generally straightforward to
apply since it only requires wind measurements and power
produced for the development of a reference curve.

The results shown in this paper were presented for x chart
plots under an assumption of Gaussian statistics and using EVS
distributions. It is shown that the EVSs provide the appropriate
thresholds for a given confidence level. One could argue that
better thresholds could be obtained by using an x̄ chart. This
is certainly true; however, it requires grouping the data. For
example, assuming a group size of 12 here for an x̄ chart would
mean that diagnostic results would only be checked every 2 h
instead of 10 min.

V. CONCLUSION

This paper has presented an exploration of the suitability of
SCADA extracts from the Lillgrund wind farm for the purposes
of monitoring the farm via sophisticated machine-learning ar-
chitectures. ANNs and GPs were used to build a reference
power curve (wind speed versus power produced) for each of
the 48 turbines existing in the farm and as well as EVS via
an optimization algorithm in order to define alarm thresholds.
Then, each reference model was used to predict the power
produced in the rest of the turbines available, thus creating a
confusion matrix of the MSE errors for all combinations. The
results showed that nearly all models were very robust with
the highest MSE error to be 4.8291, and this was happening
when the model trained in turbine 4 was predicting power from
turbine 3. Both turbines 3 and 4 are located in the outside row
of the wind farm. It was shown that, when wind speed data,
which did not come from time instances where the error status
was “0” (meaning healthy data), were used as an input to the
trained neural networks, the MSE error was significantly larger
for neural networks and GPs. Comparison between neural
networks and GPs showed that there is no significant difference
in their performance, but the inherent ability of the GPs to
produce confidence intervals is advantageous. The residuals of
the models, which used data from the same turbines, which they
were intended to monitor, were next used in a novelty detection
scheme. It was shown that it is possible to monitor significant
events that will affect the performance of the turbines by simple
control charts, although certain faults remained undetected.
An approach for the calculation of robust thresholds in the
residuals made use of EVS and showed a significant reduction
in the number of FPs. Future work will also focus on extra
features other than the power curve for the improvement of the
approach. In addition, the full analysis of the error statuses that
were presented during the recorded time can lead to a more
intelligent identification of faults, including their classification.
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