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Street, Sheffield, S1 8JD, UK

Abstract

We propose the use of Vapnik’s vicinal risk minimization (VRM) for training
decision trees to approximately maximize decision margins. We implement
VRM by propagating uncertainties in the input attributes into the labeling
decisions. In this way, we perform a global regularization over the decision
tree structure. During a training phase, a decision tree is constructed to
minimize the total probability of misclassifying the labeled training exam-
ples, a process which approximately maximizes the margins of the resulting
classifier. We perform the necessary minimization using an appropriate meta-
heuristic (genetic programming) and present results over a range of synthetic
and benchmark real datasets. We demonstrate the statistical superiority of
VRM training over conventional empirical risk minimization (ERM) and the
well-known C4.5 algorithm, for a range of synthetic and real datasets. We
also conclude that there is no statistical difference between trees trained by
ERM and using C4.5. Training with VRM is shown to be more stable and
repeatable than by ERM.

Keywords:
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1. Introduction

Decision trees are a popular and widely-used classification paradigm,
largely due the ease with which the trained classifiers can be interpreted.

Email addresses: naodai.mmx@gmail.com (Yilong Cao),
p.rockett@sheffield.ac.uk (Peter I. Rockett)

Preprint submitted to Applied Soft Computing March 10, 2015



Unfortunately, it has been shown that constructing an optimal decision tree
(DT) is an NP-complete problem [1] and so a number of greedy heuristics
have been proposed over the years, probably the foremost being the C4.5
algorithm [2], which seek sequentially to maximize information gain at each
node in the tree. Typically with C4.5, a DT is trained to the point of over-
fitting and then pruned with a second heuristic to improve generalization.

As an alternative training method for DT's, a wide range of meta-heuristics
have been explored; see [3] for a recent survey. In this work we have used
genetic programming (GP) since, as a population-based stochastic search
method, GP has been shown to be well-suited to finding approximate solu-
tions to NP-hard problems, such as DT training. Koza [4] seems to have been
the first to propose GP for this purpose although see [5] for a comprehensive
review.

Previous work on the evolutionary training of DTs has clearly established
that credible decision trees can be induced by minimizing empirical risk [6]
(i.e., misclassification error, or the fraction of patterns incorrectly classified)
over some training set. Notwithstanding, there is a dearth of work which
quantitatively compares GP results with conventional tree induction meth-
ods, such as C4.5. A number of authors—for example, [7]—have noted that
GP-induced trees can give smaller misclassification errors compared to C4.5
but smaller errors do not necessarily denote any statistical significance. Since
conventional tree induction methods are greedy algorithms, one would expect
sub-optimal performance. The theoretical advantage of meta-heuristic meth-
ods is that they have been demonstrated to provide good—although not nec-
essarily optimal—solutions to NP-hard problems with acceptable computing
times. Evolutionary methods could therefore be expected to out-perform
greedy methods, in general.

The principal and novel contribution of this paper is to introduce a new
risk functional, vicinal risk, for training D'Ts, which addresses the challeng-
ing issue of how to regularize tree structures. To support this, we present
statistically-founded comparison between trees induced using the new risk
and conventional methods. Since, we believe, minimizing new risk functional
can only be carried-out using an appropriate meta-heuristic, this paper re-
ports the application of soft computing to an important problem in machine
learning.

In general, training in machine learning is ill-posed [6] and empirical risk
minimization (ERM) does not necessarily produce best generalization over an
unseen test set, a problem which is exacerbated by small datasets; it is this



‘small data’ scenario we explicitly address in this paper. The deficiencies
of ERM are illustrated in Fig. 1 for the trivial case of classifying linearly
separable patterns with a plane. Reduction of the ER to zero can be achieved
by any of the infinite number of hyperplanes passing between the two groups
of patterns. In particular, hyperplane ‘B’—although minimizing the risk to
zero—lacks the robustness to cope with even small noise perturbations of the
pattern attributes. It is obvious that hyperplane ‘A’ will deliver the greatest
‘margin’ against noise. Since empirical risk minimization (ERM) does not
necessarily produce acceptable margins, this motivates us to investigate a
superior risk functional and apply it to decision trees.

X

Figure 1: Tlustration, for the simple case of classifying linearly separable patterns, of
the deficiency of minimizing empirical risk. The crosses and circles represent patterns of
differing classes.

The principal contribution of this paper is to report the induction of
decision trees using vicinal risk minimization (VRM) [8] which displays sig-
nificantly greater stability than ERM. Since this new risk is a continuous
function, it is able to discriminate between the competing decision surfaces
in Fig. 1 which (discrete) ERM cannot distinguish. We make statistical com-



parisons with decision trees induced with VRM and conventional ERM using
the same GP method. As an underpinning baseline, we compare the above
results with trees induced using the popular, deterministic C4.5 algorithm.
We demonstrate that VRM is able to produce decision trees with superior
generalization performance compared to C4.5, and GP-trained trees which
minimize ER.

In Section 2 we describe the adaptation of VRM to decision trees. In
Section 3 we discuss related work on decision trees and their training using
genetic programming (GP); we review genetic programming and its single
and multiple objective variants. We outline our experimental methodology
in Section 4, and present experimental results in Section 5. We offer further
insights into the application of VRM to decision trees in Section 6; Section 7
concludes the paper.

2. Vicinal Risk

Starting with the development of vicinal risk for a conventional scoring
classifier given by Vapnik [8], for some set of ¢ training data, D = {x; —
Y1,Xo — Ya2,...Xy — y¢} drawn from a data distribution P(x,y), where
x; € RY and y € {1, +1}, the task of training a scoring classifier is to select
some discriminant function f(x) — y. We desire to select the f(x) which
minimizes the expected risk R(f), which will ensure optimum generalization
over future unseen examples drawn from P(x,y) where:

R(f) = / LI/ (%), 4] dP(x.y) (1)

and L is some loss function. Unfortunately, P(x,y) is not known in practice
and so the conventional approach has been to approximate P(x,y) using the
set of samples {x;,y;}i € [1.../]:

¢
1
P(X,y)zzgfs(x—xi) (2)
where 4 is the Dirac delta function, and to minimize the empirical risk, Repyp

(i.e., the expected 0/1 loss) over the training set. We can conveniently take
the loss function to be [§]:

LIf(x),y] = H[=yf(x)] (3)



where H is the Heaviside step function. Thus for x-values which would give
rise to a misclassification, (3) is unity; conversely, for x-values which yield
correct classification, the loss is zero. Thus, empirical risk, R, is defined
as:

Rennl(F) = 3 3 Hl-3i () (@)

As is clear from Section 1, the fundamental shortcoming of the 0/1 loss is
due to its discrete nature, in particular, that a pattern is either classified cor-
rectly, in which case it contributes zero to the cumulative loss, or the pattern
is misclassified and so contributes unity to the loss. Crucially, no account is
taken of the margin by which a pattern is misclassified (or indeed, correctly
classified). A misclassified pattern which is just the wrong side of a decision
surface is weighted equally with a pattern that is a very large distance from
the decision surface; intuitively, the latter case should be treated as more
serious than the former. As a logical consequence, a pattern’s distance from
the decision surface should weight its contribution to the loss.

Vapnik [8] has motivated vicinal risk by assuming that the (unknown)
data distribution is locally ‘smooth’ in which case P(x,y) can be approxi-
mated by placing a vicinity function on each training datum—this process
can be thought of as either resampling or, equivalently, interpolating D.
Since the shortcomings of 0/1 loss are due to its discrete nature, smooth-
ing the training set will have the effect of stabilizing the training process.
Vapnik [8] described two possible types of vicinity functions, hard and sofft.
Hard vicinity functions have an abrupt cutoff at some distance from a train-
ing datum—under a 2-norm, this would be a ball or hypersphere centered
on each datum. Whereas a hard vicinity function has a constant, non-zero
value up to the cutoff distance and zero beyond, a soft vicinity function, such
as a Gaussian kernel, typically has a peak value at the training datum and a
monotonically-reducing value with increasing distance from the datum. En-
tirely equivalently, placing a kernel over each training datum can be viewed
as approximating P(x,y) using a Parzen windows density estimator [9, 10]
for which a Gaussian kernel is a natural choice. Here we develop the soft
vicinity function approach because: i) it is more tolerant of the setting of
scale of the kernel and ii) there is a technical requirement with hard vicinity
functions that they do not overlap in pattern space [8].

Taking the loss function given in (3), analogous to minimizing (1), we wish



to select the f which minimizes the vicinal risk, Ryg which is the expectation
of (3) over the data distribution. Writing this functional in modified form
from that given by Vapnik [8]:

Ren() = [ LIF69.) dP .y (5)
~ %Z [ Hlmr) Glxixi, o ax (6)

where G() is the Gaussian kernel of variance o? placed on the i-th datum.
Here P(x,y) is approximated by the Parzen windows estimate of a sum of
Gaussians. The integral within (6) has a straightforward interpretation as
the hypervolume, in the N-dimensional pattern space, of the portion of the
i-th kernel which falls on the ‘wrong’ side of the decision surface and would
hence give rise to misclassification. A number of properties of vicinal risk
minimization (VRM) is apparent:

e Under VRM, we seek to minimize a continuous function (6), thereby
removing the problem with 0/1 loss of being discrete. Patterns con-
tribute to the loss depending on their distance from the decision surface,
or more strictly, the hypervolume of the kernel function falling on the
‘wrong’ side of the decision surface. It is clear that correctly-classified
patterns a long way from the decision surface will make a very small
contribution to the loss and will hence have a minimal influence on the
placement of the decision surface—this is highly desirable since only
data in the vicinity of the decision surface run the risk of misclassifica-
tion and should ‘negotiate’ the location of the decision surface.

e At distances greater than ~ 3¢ from the decision surface, the contri-
bution to the loss of an incorrectly-labeled datum saturates at unity,
conferring robustness to outliers.

e As 0% — 0, the Gaussian kernel in (6) tends to a §-function and so the
vicinal risk tends to the empirical (i.e., 0/1) risk in (4). Thus empirical
risk can be understood as a special case of vicinal risk.

e 02 defines a characteristic ‘scale’ for the learning problem which will
vary by dataset.



Chapelle et al. [9] have directly minimized VRM for linear classifiers,
assigning each training datum kernel its own value of o? proportional to a
measure of local density although the constant of proportionality had to be
determined by cross-validation.

Key to the computational tractability of VRM is the evaluation of the
integral under the summation in (6), the wicinal loss for the i-th pattern,
which, in general, needs to be performed in N-dimensional pattern space
over the arbitrary-shaped decision surface prescribed by f. In a monothetic
decision tree (i.e., one that splits at each node on a single pattern attribute),
this N-D integral can be reduced to a sequence of trivial, analytical 1D
integrations, one per internal node decision, which we can consider as the
probability of misclassifying the i-th training pattern at the node in question.
By propagating the probabilities of errors at each internal node through to
the leaf nodes, we evaluate the total probability of misclassification of the
i-th training pattern. It is the expectation of these probabilities over the
whole training set that we seek to minimize.

Ultimately, we desire a risk functional which is more predictive of (i.e.,
better correlated with) test error than empirical risk, which is a one-to-
many mapping. Namely, minimizing a given risk functional will produce a
classifier with superior generalization performance. We return to this theme
in Section 6 where we present results that demonstrate that vicinal risk does
indeed have this key property of superior correlation with test error. In
Section 5 we show that VRM yields statistically lower generalization errors
over a range of datasets.

3. Related Work

In this section we briefly review the relevant concepts in decision trees
and genetic programming before describing our implementation of vicinal
risk for decision trees in Section 3.3.

3.1. Decision Trees

Decision trees [10, 11] have remained an active area in pattern recogni-
tion for many decades, largely because they frame classification as a human-
comprehensible sequence of questions. (In addition, they can handle mixed
pattern attributes straightforwardly although in this paper we focus on real
attributes.) Further, we consider only binary, axis-parallel DTs, that is, each
(internal) tree node produces a two-way ‘split’ on a single pattern attribute



since such trees have the advantage of ready human interpretation which
more sophisticated tree architectures lack [11]. A typical decision tree is
shown in Fig. 2 where the root and internal nodes represent some decision of
the form if(x; < t), where x; € R is the i-th pattern attribute and ¢ € R is
some threshold on this attribute for a specific node. If this predicate returns
true, the left exit path from the node is taken. Otherwise the right path is
taken. The leaf nodes of the tree represent some predicted class label. Under
classification, a pattern vector is presented to the root node of the tree, and
the process follows a single traversal path until it reaches a leaf node which
indicates the predicted class of the pattern.

Key to the innovation in this paper is the replacement of the ‘hard’
(x; < t) decision within an internal node with a probabilistic split lead-
ing to multiple evaluation paths. It is thus relevant to review other DT
architectures which employ ‘soft’ splits.

The notion of a soft split is far from new. Friedman [12] suggested han-
dling a missing attribute in a DT by following both left and right successor
nodes, thereby producing multiple paths of evaluation, and taking as the
classifier prediction, the majority class of the terminal nodes reached.

Hierarchical mixtures of experts (HMEs) are tree-like structures in which
a set of experts specialize on different regions of the input space, and a hierar-
chical set of gates form a weighted prediction over the set of experts [11, 13].
HMEs are fundamentally different from the work in this paper since, although
they employ internal nodes with ‘soft” outputs, they use this information to
weight the predictions of an independent set of classifiers rather than as part
of the classification process. Moreover, due to their complex architecture,
HMESs do not lend themselves to human interpretation as a set of rules.

Irsoy et al. [14] have implemented ‘soft’ binary nodes in DT's by combining
the predictions of the left and right sub-trees with a logistic gating function;
this requires the recursive, parallel traversal of the tree to the leaf nodes and
then the upwards propagation and combination of predictions at the internal
nodes. The tree construction process is a greedy algorithm which grows the
tree by adding nodes based on local improvement of the error metric. Yildiz
and Alpaydin [15] have subsequently extended this work to include either L;
or Lo regularization at the individual node level.

Yildiz [16] has considered the optimal node thresholds for a univariate
decision tree classifier which maximizes the margins although this is a local
(i.e. per node) margin maximization; the method used for constructing the
whole DT was not specified but, by implication, was a greedy method and
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therefore probably globally sub-optimal.

A number of authors [17, 18] have considered the problem of maximizing
the margins at each internal node in oblique decision trees, typically using
greedy construction algorithms. Again, oblique trees do not lend themselves
to ready human interpretation.

Unfortunately, optimal decision tree induction is known to be NP-complete [1]
and conventional algorithms employ ‘greedy’ methods which can be expected
to be sub-optimal. In recent years, heuristic approaches have gained popu-
larity for finding good, although not necessarily truly optimal, solutions to
NP-hard problems using acceptable computer resources. GP is a natural ap-
proach to tree induction since it is typically formulated as a tree structure.
The principal contribution of this work is to propose, within an evolutionary
framework, a regularization method for the whole decision tree structure as
opposed to within individual nodes [15, 17, 18].

3.2. Genetic Programming

Genetic programming is a population-based evolutionary meta-heuristic [19]
loosely inspired by Darwinian ‘survival of the fittest’. GP starts with a
randomly-generated population of individuals; here we have used the ramped
half-and-half method of initialization [19]. Like all evolutionary algorithms,
GP performs repeated iterations of: stochastically selecting two parents for
‘breeding’ biased in their fitness on the task in hand, followed by some ge-
netic operation(s) to produce two offspring. Fitter individuals tend to be
more likely to be chosen for breeding leading to a tendency for the offspring
to be fitter.
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Pattern

Figure 2: Tllustration of the propagation of decision probabilities down a decision tree.

Typical genetic operations (and those used in this work) are: crossover,
sub-tree mutation, and node mutation [19]. In crossover, a ‘crossover’ point
is stochastically and independently chosen in each of the two parent trees
and offspring are formed by exchanging the genetic fragments. In sub-tree
mutation, a point is (again stochastically) chosen in each offspring and the
sub-tree below this point replaced with a randomly-generated sub-tree. Fi-
nally, in node mutation a randomly-selected node in a tree is modified either
by flipping the class in the case of a terminal node, or changing the decision
variable or threshold in the case of an internal node. Node mutation can
facilitate ‘fine-tuning’ of the tree.

The key driving force in evolutionary methods is the fitness objective, the
measure of an individual’s performance on the task in hand. Previous work on
GP-evolution of DTs has mostly used the single objective of empirical risk
calculated over the training set. A naively-used single objective, however,
invariably results in ‘bloat’; the tendency of the size of the GP-trees to grow
without limit but without any accompanying increase in performance. The
issue of bloat has received a great deal of attention in the GP literature since
it is highly undesirable—see [20] for a recent survey. In the single-objective
work reported in Section 5 we have employed the dynamic depth control

10



method [21] to control bloat.

A highly successful alternative to explicitly limiting tree depth for con-
trolling bloat is the multi-objective parsimony method [19, 22]. Here, the
fitness of an individual is a 2-vector comprising the risk, and a measure of
tree complexity, here the number of nodes in the tree. The resulting popu-
lation can be ranked for selection using Pareto dominance [23]. Given two
vectors, x and y where x,y € RY, x is said to dominate y iff:

x<y iff Vi:1l...N x; <y
ANdj:1...Nax; <y,

As well as effectively controlling bloat by exerting a selective pressure to
minimize the tree size for a given value of risk, MOGP explores the range
of possible models across the bias-variance trade-off [11]. It thus implicitly
addresses the model selection problem in designing a classifier. In this work,
we have used a GP adaptation of the steady-state Pareto Converging Genetic
Algorithm (PCGA) [24] in which crossover, sub-tree mutation and node mu-
tation are always applied — the effective crossover and mutation probabilities
are both, therefore, 100%. The experimental parameters used in this work for
both the single and multiple objective GP approaches are given in Section 4.

Typically, GP-induced decision trees have been trained to minimize only
the single objective of empirical risk (or misclassification error) over a train-
ing set, but minimization of multiple objectives has been explored previously
for DTs [25-28]. Usually in multi-objective optimization (MOO), the objec-
tives conflict and so what tends to emerge is a set of trade-offs between the
objectives. Haruyama and Qiangfu [29] have suggested that Pareto-based
methods give the best compromise between error rate and tree size for DT,
and it is this approach we use here.

3.3. Vicinal Risk Minimization in Decision Trees

In a conventional binary, axis-parallel decision tree (DT) [11], each inter-
nal node implements a simple threshold, ¢ on a single pattern attribute z;
where i € [1...n]. If z; <t then the recursive evaluation procedure follows
the left sub-tree, otherwise it follows the right sub-tree. Eventually, this sin-
gle evaluation path leads to a unique leaf node which indicates the predicted
class of pattern x. Training the decision tree by minimizing empirical risk
over a training set using, say, GP, inevitably leads to the variability in the

11



test error performance depicted in Fig. 1; note that this variability is a fun-
damental property of the discrete empirical risk measure, not of the training
method.

For VRM, in terms of a single decision-tree node and considering an indi-
vidual pattern attribute z;, we can treat x; as our best (i.e., mean) estimate
Z; of the attribute value but superimpose on it a Gaussian to smooth the
empirical distribution in (2). This is illustrated in Fig. 3a. Whereas train-
ing by conventional ERM would be framed in terms of a binary predicate of
the form x; < t returning either true or false, VRM is framed in terms of
calculating the probability, Pr that x; > t and the complementary quantity
Py which is the probability that z; < ¢t. Pg is shown as the shaded portion
under the curve for z; > t in Fig. 3a. Note that if a probability value P, is
passed into a node, P, = Pr,+ Pr. Rather than following a single evaluation
path to either the left or the right child nodes as would be done with em-
pirical risk, training with VR allows us to propagate continuous probability
measures P, = 1 — Py, and Pr down to both the left and the right sub-trees,
respectively, as illustrated in Fig. 3b. The probability values, P, r are simply
the areas under the probability density function (PDF') for the regions x; < t
and z; > t, respectively—see Fig. 3a.
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Figure 3: (a) Probability of z; > t for a single decision node assuming , and (b) the
propagation of probabilities to child nodes.
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Calculation of the empirical risk in training proceeds by passing a pat-
tern vector x to the root node of the tree and then following a single path
of execution—to either the left or the right—at each internal node until a
leaf node is reached. The label associated with this terminal node is the
tree’s class prediction for x and is either correct—in which case the loss is
unchanged—or is incorrect in which case the running count of the number of
errors is incremented by one. Passing the whole training set through the tree,
and dividing the total number of errors by the cardinality of the training set
yields the empirical risk.

For training with vicinal risk, however, each x is passed to the tree root
and an initial probability of one is divided by the root node between left and
right sub-trees. This process of splitting the probability passed into each
node is continued recursively until the probabilities are propagated down to
the leaf nodes. Note that under VRM we have a multiple paths of execution
(only) during training since, in general, some probability is passed to the
left and some to the right at each internal node. The vicinal risk for a
pattern can be calculated by summing the probabilities that propagate to
the leaf nodes that predict the wrong class. Averaging over the training set
produces a continuous measure of the mean probability of misclassifying a
training set pattern. Minimizing this vicinal risk (i.e., average probability
of misclassification) using GP places the decision surface such that the final
classifier has (approximately) the greatest margins under classification.

Our proposed training procedure thus involves minimizing the expected
VR over a training set, which (approximately) maximizes the tree’s margins.
Thereafter, classification of query patterns proceeds as for conventional DT's
with no further consideration of vicinal risk. That is, VRM only influences
the training phase and the structure of the tree. (A further option—which
we do not explore in this paper—is to calculate the vicinal risk while classi-
fying an unknown pattern. The VR will thus be a measure of confidence in
assigning a class prediction).

When the variances associated with all pattern attributes tend to zero, the
tree traversal will reduce to a single evaluation path. Therefore, conventional
ERM can be considered as a limiting case of VRM for no errors on the pattern
attributes [9].

Considering the VRM training method in detail, Fig. 2 shows an exam-
ple tree. Both internal and terminal nodes of the tree need to be slightly
modified for the training procedure. An internal node receives some proba-
bility mass from its parent node and apportions this between left and right

14



sub-trees according to the method described above. A terminal node indi-
cates a class label but also accumulates the incoming probability masses for
training exemplars for which the label predicted by the node is incorrect. In
Fig. 2, for each training pattern, a probability of 1.0 is initially propagated
into the root node of the tree which applies the test x1 < 0.4. Depending on
the value of pattern attribute x;, ¢t and the width of the distribution of xq,
some fraction of the probability will propagate to the left sub-tree, say 0.44,
and the remainder, 0.56 will pass to the right sub-tree!. Fig. 3 depicts this
process in detail. Following (arbitrarily) the left sub-tree in Fig. 2, the next
node will apply the test x; < 0.2. Since a probability mass of 0.44 passes into
this node, this will divide with, say, 0.2 passing to the left sub-tree and 0.24
passing to the right. Note that the sum of probabilities leaving an internal
decision node is always equal to the probability which flows into that node.
The process repeats along multiple paths until the total probability mass is
distributed across all the leaf nodes. In the case of the example tree in Fig. 2,
the class-1 (C) leaf nodes accumulate a probability of 0.2 4+ 0.224 = 0.424
and the class-2 (C3) nodes accumulate a probability of 0.24 4+ 0.336 = 0.576.
If this particular pattern is really of class C}, its value of vicinal loss (i.e.,
probability of misclassification) is 0.576. Such a large value of vicinal risk
(> 0.5) would imply the pattern is quite close to, but nonetheless on the
‘wrong’ side of, the decision surface since this DT would classify it as be-
longing to class Cs. This process of propagating unit probability down the
tree for each training pattern is repeated for the whole training set and the
vicinal losses summed. It is the average vicinal loss over the training set, the
vicinal risk, that we wish to minimize to obtain the best compromise location
of the decision surface.

Although the previous paragraph presents a general outline of training
by VRM, the tree in Fig. 4 illustrates a special case where refinement is
necessary. No patterns for which x; > 0.5 can propagate down to the right
sub-tree of the ‘zy < 0.5” node since they will have all been removed by
the 1 < 0.4 test implemented by the root node. Therefore, the division
of probability at a node has to take into account previous decisions on the
same variable, in this case x1. Consequently, the training procedure has to
be refined to propagate not only the probability mass from the node above
but also the upper (t,) and lower (¢;) limits on the thresholds already applied

!These arbitrary values of probability have been used purely for illustration.
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to each attribute. (Starting at the root node, the upper and lower limits are
initially 400, respectively.) Thus the probabilities propagated to left and
right sub-trees can be generalized to:

t ty
PL:/p(xi)dxi and PR:/ p(x;)dx;

t t
where ¢ is the current node threshold and p(x;) the PDF for x;, and the
integrals involve the calculation of the cumulative probability. Since Pr g
must be strictly non-negative, if t < t; then P, = 0, and if ¢t > ¢,, then Pg = 0.
The thresholds ¢, and t;, of course, need to be updated and propagated
onward during training on each pattern.

Input
Pattern

No patterns
\ can
propagate
down this
branch

Figure 4: Example for which the basic propagation of probabilities has to be refined.

4. Methodology

We compare results of training decision trees by ERM and VRM over
a number of datasets, both real and synthetic, to explore the properties of

16



vicinal risk. In addition, we have also employed both single objective genetic
programming (SOGP) and multiple objective genetic programming (MOGP).
Throughout, we use the conventional C4.5 method? as a benchmark; although
pruning methods are frequently used with C4.5, we have found that in this
work that they have little effect.

4.1. Datasets

The two-class synthetic datasets used are:

e Linearly-separable 2D Data: A linearly-separable dataset comprising
20 training examples per class with an (optimal) decision surface in-
clined at 45 degrees to the attribute axes. The test set comprises 1000
examples per class.

e 2D Gaussian Dataset: Bivariate Gaussians with mean vectors (0,0)7
and (\/Li’ \%)T respectively, and identical unit covariance matrices. The
training set comprised 90 data and the test set, 10 000 data. The two
classes are balanced. The Bayes’ error on the test set is estimated to
be about 31%.

e 10D Gaussian Dataset: 10D Gaussians with mean vectors (0...0)" and
(\/% e J%)T respectively, and identical unit covariance matrices. The
training set comprised 1000 data per class and the test set 10 000 data.
The two classes are balanced. The Bayes’ error on the test set is also
about 31%.

The datasets above were chosen as they have Bayes-optimal decision sur-
faces inclined at 45 degrees to the attribute axes [10]. Such datasets are
challenging to an axis-parallel DT as the decision surface has to be approxi-
mated with a ‘staircase’ of axis-parallel splits. The sizes of the test sets were
chosen to give accurate estimates of the test errors.

Eighteen, two-class real datasets were taken from the UCI Machine Learn-
ing Repository and the Statlog project, and are summarized in Table 1. Any
instances with missing attributes were removed. The Adult dataset was ran-
domly sub-sampled to reduce its size to 20% of the original. Ripley’s version

2We have used the Weka version 3.6 implementation of C4.5, known as ‘J48’ in Weka.
See http://http://www.cs.waikato.ac.nz/ml/weka/. We have used the default J48
settings in Weka.
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of the Pima dataset® has been modified to remove implausible records. The
Glass dataset was converted to a two-class problem (float glass vs. non-float
glass). Any categorical attributes were recoded to integers (0,1,...) in the
sequences listed in the UCI/Statlog documentation; binary attributes were
recoded as true/yes = 1 and false/no = 0. Finally, we have pre-processed
the data such that all attributes in the training set had unit variance, and
then scaled each individual test set accordingly.

It is worth noting that our VRM training procedure assumes real at-
tributes. Some of the attributes in the datasets in Table 1 are categorical,
not real. In part, we have examined these datasets to explore robustness to
any assumptions, and partly because only very few of the standard bench-
mark UCI datasets contain purely real attributes. Regardless, the use of
categorical attributes in regression is well-established [30].

4.2. Statistical Testing

As suggested by Demsar [31], we have adopted two non-parametric sta-
tistical tests depending on the experimental situation: the Wilcoxon signed-
ranks test where the comparison is between two algorithms on a single data
set, and the Friedman test for comparing between multiple algorithms over
multiple data sets. For the Friedman test we used the improved Iman-
Davenport statistic [32] followed by the step-down post hoc correction to
the critical value [33]. See [31] for further details. The UCI/Statlog datasets
were repeatedly split into two equal-sized training and test folds, and the ex-
pected test error estimated by averaging over ten replications of this splitting
process.

Due to the fact that GP is a non-deterministic approach where the final
solutions may vary depending on the starting population and evolutionary
path, for each fold, we carried out 30 independently-initialized runs and took
the median test error as the central tendency for statistical testing.

4.3. GP Parameters

The genetic programming parameters used in this work are summarized in
Table 2. The numbers of iterations used were adjusted empirically to account
for the varying difficulties of the test problems; for a given dataset, training
with both vicinal and empirical risks used identical numbers of iterations to
ensure a fair test.

3Downloadable from http://www.stats.ox.ac.uk/pub/PRNN/.
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Table 1: Summary of the 18 UCI/Statlog datasets used, with the number of examples and the number/type of attributes.

Dataset #Examples #Real #Integer #Ordinal #Binary #Nominal
Adult 904 0 6 0 0 8
Australian Credit 690 3 3 0 4 4
Bands 365 13 6 0 0 0
BUPA 345 0 6 0 0 0
Credit Approval 653 3 3 0 4 5
German Credit 1000 0 7 0 1 12
Glass 163 9 0 0 0 0
Haberman 306 0 3 0 0 0
Heart 270 6 0 1 3 3
Hepatitis 80 2 4 0 13 0
Ionosphere 351 32 0 0 2 0
Mammographic 830 0 ) 0 0 0
Pima (Ripley) 532 2 5 0 0 0
Pima (Original) 768 2 6 0 0 0
Spect Heart 267 0 44 0 0 0
Sonar 208 60 0 0 0 0
Wisconsin (Original) 683 0 9 0 0 0
Wisconsin (Diagnostic) 569 30 0 0 0 0




Table 2: GP parameters used in this work

Population size 100

Population initialization Ramped half-and-half [19]
Crossover Point crossover [19]
Mutation Point mutation [19]

& Node mutation [34]

Crossover probability 100% — see text

Mutation probability 100% — see text
Static depth limit 10
Dynamic depth limit See [21]

Number of iterations Separable = 20K
2D Gaussian = 20K
10D Gaussian = 1 million
UCI = 200K

5. Experimental Results

We report the results of training by both minimizing the empirical and
vicinal risk measures. In this section we report results for the median test
errors corresponding to the trees which had the lowest training errors taken
over 30 independent runs. We have used zero-mean, normally-distributed
attribute kernels with 02 = 0.1 for all datasets; we discuss this choice in
Section 5.4. The repeatability of the results is considered in Section 5.5 and
the variability of training considered in Section 5.6.

Although we have explored single-objective GP (SOGP), on the three syn-
thetic datasets we find that over 100 independent training sets, there is no
evidence of statistical difference between the test errors for SOGP and MOGP
on a given risk functional. For example, for the 2D Gaussian dataset, com-
paring ERM-trained trees for SOGP and MOGP yields a p-value of 0.5026
for the Wilcoxon signed-rank test. Similarly, comparing VRM for the same
dataset gives a p-value of 0.7014. That is, training with single or multiple-
objectives for a given risk functional yields essentially the same test error.
Where there is a difference, however, is in the sizes of the evolved trees, with
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the use of multiple objectives producing trees around 40% to 200% smaller
(depending on dataset) implying that MOGP leads to faster training since
the runtime is dominated by the fitness evaluations. Consequently, we there-
fore present only test errors for MOGP.

5.1. Linearly Separable Data

The results of training on the synthetic separable data set are summarized
in Table 3. The clear ranking of test errors is: training by VRM, training
with empirical risk, and C4.5.

Table 3: Median test error results—synthetic datasets.

Dataset Method Test Error #Nodes
Separable C4.5(J48) 0.1064 5
ERM MOGP 0.0689 23
VRM MOGP 0.0245 55
2D Gaussian ~ C4.5(J48) 0.3683 5
ERM MOGP  0.3596 31
VRM MOGP 0.3429 53
10D Gaussian C4.5(J48) 0.3941 157
ERM MOGP 0.3910 193
VRM MOGP 0.3821 225

The typical decision surfaces generated by these trees are shown in Fig. 5.
The C4.5 decision surface is very rudimentary explaining this method’s poor
error performance. The decision surfaces induced by SO- and MOGP make
better attempts at approximating the true decision surface although they still
deviate well outside the margins (dotted lines). We can also infer that both
GP trees contain many more nodes than necessary to implement the decision
surfaces shown in Fig. 5. For example, the ERM-SOGP decision surface in
Fig. 5 would require a minimum of 11 nodes whereas the actual evolved DT
contains 43 nodes. Redundant (non-functional) code is a common feature of
GP trees [20] and it appears MOGP is better able than SOGP to reduce,
although not eliminate, this.

The decision surfaces for training by VRM are shown in Fig. 6. It is clear
that the inclined surfaces are much more complicated than for ERM (shown
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Figure 5: Decision surfaces obtained by ERM for the linearly-separable data (stars and
circles). The diagonal dashed lines is the optimal decision surface and the light dotted
lines above and below this are the margins. The gray dashed line is for C4.5, the solid line
for SOGP, and the medium-dashed line for MOGP.

in Fig. 5) but come much closer to the Bayes-optimal surface. In addition,
the VRM surfaces come far closer to staying within the two decision margins.

5.2. 2D Gaussian Data

The test errors for the 2D Gaussian data are also shown in Table 3. Typ-
ical decision surfaces induced by ERM and C4.5 are shown in Fig. 7 and 8.
Again, the C4.5 decision surface is overly simple for this data set. The ERM
decision surfaces for SO- and MOGP are rather complex although both ba-
sically resemble the C4.5 surface but with seemingly ‘opportunistic’ disjoint
boxes which correctly classify one or two extra training points. For example,
in Fig. 7, the two boxes, top-left and bottom-right, serve to correctly clas-
sify the two class ‘1’ training instances (open circles) contained within those
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Figure 6: Decision surfaces obtained training on VRM for the linearly-separable data
(stars and circles). The diagonal dashed lines is the optimal decision surface and the light
dotted lines above and below this are the margins. The solid line is for SOGP, and the
grey line for MOGP.

boxes. The additional features generated by GP training produces a slightly
better test error compared to C4.5 although it appears to be something of
an over-specialization on the particular training examples and therefore, ar-
guably, over-fitting.

The two decision surfaces for VRM are shown in Fig. 9 from which it
is clear that VRM has produced decision surfaces which well approximate
the Bayes-optimal surface, at least in the top-left quadrant of the pattern
space. Closer inspection of the decision surfaces in the bottom-right quadrant
reveals an absence of Class 1 training data (open circles) in the region of the
Bayes-optimal surface. Given this training set, the induced decision trees are
reasonable.
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and circles) by SOGP. The diagonal dashed lines is the Bayes-optimal decision surface.
The gray dashed line is for C4.5 (J48). The decision regions for class ‘0’ are the interiors
of the regions labeled Class ‘0.

5.3. 10D Gaussian Data

The test errors for the 10D Gaussian data are shown in Table 3 and a
similar pattern can be seen as for the 2D Gaussian dataset. Again, MOGP
results in smaller trees than SOGP, this time by slightly more than a factor
of two.

5.4. UCI and Statlog Data

We have repeated the experiments of the preceding sections on the eigh-
teen benchmark UCI and Statlog datasets described in Section 4.1, and ap-
plied the statistical testing procedure of Section 4.2. Since experience with
the synthetic data indicates that there is little between SOGP and MOGP
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Figure 8: Decision surfaces obtained training by ERM for the 2D Gaussian data (stars
and circles) by MOGP. The diagonal dashed lines is the Bayes-optimal decision surface.
The gray dashed line is for C4.5 (J48). The decision regions for class ‘0’ are the interiors
of the regions labeled Class ‘0.

training other than MOGP producing systematically smaller trees, we have
considered only MOGP-trained trees.

The mean test errors over 10 splits of the datasets are shown in Table 4
together with the ranks, shown in parentheses, computed in the Friedman
test. In most cases, the VRM trees have the smallest errors and are therefore
of first rank, the only exceptions being the BUPA, Glass and Mammographic
datasets; Adult is a draw with C4.5. The mean rank for VRM is notably
lower than for the other two algorithms. Pairwise comparison between C4.5
and ERM shows mixed rank results.

From the data in Table 4, we have computed the Iman-Davenport F-
statistic which, for 2 and 34 degrees of freedom, is 8.77 corresponding to a p-
value of 2.4 x 1073 providing strong evidence for rejecting the null hypothesis
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Figure 9: Decision surfaces obtained training by VRM for the 2D Gaussian data (stars
and circles). The diagonal dashed lines is the Bayes-optimal decision surface. The solid
line is for SOGP, and the gray line for MOGP.

that the algorithms are equivalent.

We have then considered VRM as a control method and followed Holm’s
treatment to compare VRM against both C4.5 and ERM leading to p-values
of 1.15 x 1073 and 5.96 x 1073, respectively. Again this is strong evidence
to reject the null hypotheses and to infer that VRM is superior to both C4.5
and ERM.

To compare C4.5 and ERM, we have repeated the above procedure but
making C4.5 the control method. The p-value is 0.617 which implies that
there is very little evidence to reject the null hypothesis that C4.5 and ERM
perform identically.

Garcia et al. [35] have suggested that the Friedman aligned-ranks test
may be preferable when the number of algorithms being compared is low.
The Friedman aligned-ranks produces even stronger evidence to support the
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Figure 10: Mean test error over 10 replications for the Glass dataset as a function of o2.
The solid line shows the (constant) value for ERM as a reference.

superiority of VRM over both C4.5 and ERM (p = 5.96 x 1071 and 1.81 x
1077, respectively). Comparing C4.5 and ERM yields a p-value of 0.33, still
not sufficient evidence to reject the null hypothesis. The conclusions using
this test remain unchanged over the regular Friedman test.

Although VRM has been formulated here to deal with real attributes, it
is interesting to observe that for the only purely-real UCI problem, Glass,
VRM is the lowest-ranked algorithm. We have made no attempt in the above
experiments to tune the value of o2, rather taking a fixed value of 0.1 which
appeared a reasonable compromise value for all datasets. Fig. 10 shows the
mean test errors over 10 replications for Glass but varying 2. It is clear that
0% = 0.1 is sub-optimal for this dataset and that a value of o2 ~ 0.007 gives
a minimum test error of 0.2493, which would easily elevate VRM to rank 1 in
Table 4; a similar observation holds for the BUPA dataset. In general, tuning
o2 could, of course, be carried-out for a given dataset by cross validation. We
reiterate that the statistical results above were obtained with a single, fixed
value of 02 = 0.1.

To summarize the key findings on the real datasets: i) VRM significantly
outperforms both C4.5 and ERM, and ii) the performance of C4.5 and ERM
are not statistically different.
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Table 4: The Friedman ranks of three algorithms (C4.5, ERM and VRM). The numbers
in parentheses are the ranks computed in the Friedman test; where algorithms return the
same error the rank is averaged.

Dataset C4.5 ERM VRM
Adult 0.1540 (L5) 01594 (3)  0.1540 (1.5)
Australian Credit 0.1609 (3) 0.1549 (2) 0.1490 (1)
Bands 0.3699 (3) 0.3650 (2) 0.3489 (1)
BUPA 0.3780 (1)  0.3902 (2.5)  0.3902 (2.5)
Credit Approval 0.1557 (3) 0.1485 (2) 0.1454 (1)
German Credit 0.2884 (2) 0.2944 (3) 0.2866 (1)
Glass 02793 (2) 02628 (1)  0.2876 (3)
Haberman 02784 (2) 02961 (3) 02725 (1)
Heart 0.2556 (3)  0.2452 (2)  0.2430 (1)
Hepatitis 0.1850 (3) 01763 (2)  0.1650 (1)
Ionosphere 0.1216 (2) 0.1247 (3) 0.1068 (1)
Mammographic 0.1723 (1) 0.1775  (2) 0.1828 (3)
Pima (Ripley) 0.2613 (3) 0.2556  (2) 0.2462 (1)
Pima (Original) 02784 (3) 02770 (2) 02671 (1)
Spect Heart 0.2470 (3) 0.2425 (2) 0.2298 (1)
Sonar 02644 (2) 02798 (3) 02442 (1)
Wisconsin (Original)  0.0477 (3)  0.0423 (2)  0.0385 (1)
Wisconsin (Diagnostic) 0.0709 (3) 0.0693 (2) 0.0621 (1)
Mean Ranks 2.4167 2.2500 1.3333
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Figure 11: Histograms of tests errors for training on the 10D Gaussian dataset (MOGP).
Open bars = VRM. Filled bars = ERM. Solid black line = (deterministic) C4.5 result.

5.5. Repeatability of Training

It has been argued [31, 36] that other properties of algorithms should
be considered rather than simply testing on benchmark datasets. Although
VRM has been demonstrated to yield lower test errors than ERM, the con-
sistency with which such a result can be produced is an important criterion.
We examined the histograms of test errors for the competing training meth-
ods for a fixed training set but 100 independent initializations to provide a
measure of the repeatability of the stochastic GP search process. For brevity,
only the typical results for the 10D dataset and MOGP are shown in Fig. 11.
VRM is much more likely to produce more consistent test error values with
more compact distributions compared to ERM. The modes from VRM train-
ing are also at lower values than for ERM, and the two histograms overlap
little, implying that VRM produces consistently superior training to ERM.
The modes of the ERM distributions are lower than the (deterministic) C4.5
results although by only a small amount. The superiority of VRM training
relative to ERM and C4.5 is manifest.

Further, the VRM formulation embeds the variance on the pattern at-
tributes as a parameter. It is appropriate to ask: how sensitive is the training
outcome to the value of attribute variance 0?? We have explored this issue
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by varying the o2 up and down by a factor of 10 and examining the resulting
test errors. The test error is observed to be fairly insensitive to the exact
value of 02 with a slight increase as o2 is reduced. For example, for the 2D
Gaussian dataset, decreasing o by x 10 increases the test error from 0.3201
to 0.3300; increasing o by x10 changes to test error to 0.3217. This effect
can be understood in terms of a physical analogy since reducing o2 reduces
the distance in pattern space over which an individual datum can affect a
reduction on its own vicinal loss. The compromise placement of the decision
surface over the whole training set is thus slightly degraded. The overall
‘tuning’ effect is, however, small.

5.6. Variability of Training

Complementary to the question of the repeatability of training is the
question: how variable is the test error when the training set is varied? We
have investigated this issue by examining the spread of test errors using 100
independent training sets for the 2D and 10D Gaussian problems. Again,
VRM produces more compact distributions with modes at smaller values
than ERM. C4.5 produces the poorest results with the largest variability
which is interesting since it is a deterministic method, unlike the stochastic
search employed for ERM and VRM; again see [37] for more details. Wilcoxon
signed-rank tests on these data imply that VRM is superior to both ERM
and C4.5 with p-values of effectively zero (Z-values of -6.75 to -8.64).

6. Discussion

An enduring problem in empirical modeling of data—either regression or
classification—has been how to ensure best generalization over the set of,
as yet unseen, examples the model would encounter in operation. Due to
the ill-posedness of the learning problem, minimization of some risk, such as
empirical risk in the case of classification, has typically been supplemented
with an a priori ‘smoothness’ or complexity measure, most commonly framed
as regularization [6, 8]. Minimizing the ERM over a training set does not
necessarily imply a minimum risk over an independent test set. In Figure 12
we plot the correlations between training risk (ERM or VRM) and test error
for the 10D synthetic Gaussian datasets for examples of trees ranging from
randomly-created through partially trained to fully trained by GP. From
Figure 12(a) for conventional ERM, it is clear that there is a many-to-1
correspondence between ERM and test error. The test error which results
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from a particular instance of a training procedure is presumably random.
Figure 12(b) for VRM presents as a ‘cloud’ of correspondences but, most
crucially, this cloud reduces to a cusp near the minimum of vicinal risk.
In fact, the minimum VR does not coincide exactly with the minimum of
observed test error, but minimizing VR gives a single, more consistent and
repeatable optimization of test error.

An intuitive understanding of VRM can be gained by noting that a given
training pattern can minimize its own vicinal loss (i.e., its probability of
misclassification) by egocentrically forcing the decision surface as far away
from itself as possible. Every pattern in the training set, however, will try
to use a similar strategy. What results will be a compromise placement
of the decision surface which provides (approximately) the lowest expected
probability of misclassification over the whole training set. In the sense that
the decision surface will be forced as far away from the training data as
possible, VRM approximately maximizes the classifier margins.

Although we have only considered 2-class problems in this initial report,
the vicinal risk approach presented here is readily extensible to multi-class
problems. In Section 3.3, we describe how, for a 2-class problem, the prob-
abilities of misclassification were propagated down to the leaf nodes of the
decision tree. This same mechanism applies equally well to multi-class prob-
lems, where our objective is still to minimize the overall probability of mis-
classification over the training set. Any probability mass propagating down
to a leaf node that predicts the wrong class (compared to the true class of the
training exemplar) will contribute to the probability of error. The practical
demonstration of the approach presented here for multi-class problems will
be an area for future work.

Finally, despite the fact that Vapnik’s formulation of vicinal risk strictly
only applies for real-valued attributes, the results shown in Section 5.4 for the
UCI datasets indicates that the method is able to handle nominal attributes if
these attributes are encoded as integers. A more detailed study of application
to nominal /categorical attributes is another area for future work.

7. Conclusions

In this paper we have described the application of Vapnik’s vicinal risk
minimization for training axis-parallel decision trees. This risk functional is
founded on propagating the uncertainty in the pattern’s attributes through
to uncertainties on the assigned class labels during training. By minimizing
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the total uncertainty over the training set, VRM approximately maximizes
the margins of the trained classifier; in this way, we have performed a regu-
larization over the whole decision tree rather than at the level of individual
decision nodes. We have conveniently performed the necessary training op-
timization using genetic programming.

For synthetic datasets, VRM exhibits a consistently superior performance
to both C4.5 and ERM. In addition, VRM produces intuitively pleasing de-
cision surfaces, at least for the 2D datasets. On the benchmark UCI/Statlog
datasets, we again observe highly-significant statistical differences in favor of
VRM. Further, training with vicinal risk displays high degrees of repeatabil-
ity and low variability.
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