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ABSTRACT: The paper investigates ways to model the respohséro-isolation mounts that

utilise viscoelastic materials. Simple models based on linear and nonlinear static stiffness are
developed. Dynamic response is approximateduthin appropriate scaling of the viscoelastic
Young’'s modulus and use of the measured matkrsal factor. The appach is validated using
cylindrical mounts made of polyurethane. Theponse of a 68 kg mass supported by two mounts
and subjected to two different high-amplitudesck loads is predicted. Measured and predicted
behaviour correlate closely of the nonlineaodal while the linear model gives a reasonable
representation. It is noted that the sensitivity ahsmounts to temperature is high: the change in
response associated with a temperature excursion ofC1l& significantly greater than the
inaccuracy involved with using the linear model.

KEYWORDS: Computer modelling, viscoelastic materials, shock-vibration loading, dynamic
response.

1 INTRODUCTION

Shock mounts made of viscoelastaterials are often used pootect equipment from excessive
accelerations. In naval applications for examplsgoelastic mountsupport sensitive electronic
equipment and their effectiveness in reducing blast-induced acceleration is an important factor in
overall warship survivability. The ability to @dict the behaviour of shock mounts under high
severity shock loads is an important design badipa acceleration levelsrre needed to specify
equipment ruggedness while the displacement epedlefines the sway/rattle spaces needed.

There has been significant activity in tmaval shock community to develop appropriate
modelling methods [1-7]. A seriad studies have been carriedit to establish guidelines for
Finite Element (FE) method for predicting largatist [8, 9] and dynamic [1, 5] deformations (up
to 70% length change in cylindalcviscoelastic mounts). The disadt@ge of FE approach is that
it places high demands on computer time and nngn#t the early concept design stages, when
many different options are being considered, anrateuut numerically more efficient method is
needed.

The aim of the work presented here was to ldgva prediction capabilitased on simple models
that could, with reasonable acaay, predict the lagshock response of an equipment and shock
mount system. For each mount, the approach wsesito model the mount stiffness using a
nonlinear spring and to represent the dampinggusin equivalent viscous dashpot. Simple
experiments were used to fit appropriate peeters to the models. Finally, a comparison was
made between the predicted and measuregonsg of a system (protected using two shock
mounts) subjected to two differestiock loadings in order to asséiss suitability of the proposed
method.



2 MODELLING APPROACH

The simplest model for equipment mounted on alshmaded host structursuch as ta hull of a
ship, is a single degree-of-freedom (SDOF) systehjected to base exditan as shown in Figure

1.
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Figure 1: SDOF system with base excitation

The equation of motion is,
mi+c(X—y) +k(x—y) = 0 (N
where the overdot symbol represents time diffeation. Note that tb damping and stiffness

terms are nonlinear functions of the relativetiomo between the base amhss respectively. For a
given input displacement and velocity history(t) and y(t), the response of the mass

(representing the equipment) can be obtained lecdintegration. For such a simple system, the
forward difference algorithm is adequate as the 8@ can be kept very small without incurring
significant computational cost. Denoting the relative motipr x asX and the time step

thq —t, ash, the response can be obtained using,

% = =[co)= + k(X)) @)
m
where,
Xi = ¥Vi— %, X = X_g+hX_ (3)
Xi = ¥i—X%, X = Xa+hX (4)

Thus the response of the system can be leaéxml by obtaining apppriate functions for
representing stiffness and damping.

3 STIFFNESS AND DAMPING FUNCTIONS

3.1 Nonlinear stiffness function

Homogenous polymeric (viscoelastic) materialsnmally display near-linear behaviour to large
strain levels. Geometric effects however, caeate amplitude-depenaenonlinearity. Shock
mounts with various different geatnies exist. In tis paper, a simple mount is used to
demonstrate the modelling procedure althoughesapproach may be applied to mounts with
more complex shape.

The mount considered in thisvestigation comprised a polyathane cylinder bonded to steel
discs at either end — see Figure 2. iotin the axial direction was considered.
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Figure 2:  Shock mount configuration and dimensions

An approximation of the geometrnonlinearity of a munt was obtained byoasidering its quasi-
static stiffness. The load-displacement curvetlie mount was obtaindxy compressing it slowly,
to almost one third of its original length, in adngulic test machine and gesented in Figure 3.
Significant hardening nonlinearity wabserved at high deformation.
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Figure 3:  Static compression test — measureahd fitted load-displacement behaviour

To match this behaviour, three stiffness functiohgliffering complexity were fitted to the test
data.

k(x)linear = klX 5)
KX apic = ki X +kg X3 ©)
K(X)hiorg = ki X +kg X3 +kgX®+ky X’ (7)

For convenience, the linear coefficidatwas set as the axial stiffness of a cylinder with fixed
ends specified as
2
= £A (14457 . for a cylinder with rigid endsS zrﬁ ®)

Ly v

whereE,, A, andL, are the Young’'s modulus, cross secticara@a and length of the viscoelastic
cylinder respectively. The terBitakes into account the nominatigid boundary between the end
plates and the viscoelastic and is referredgothe shape factor [10]. A scaling coefficight



depends on the compressibility of the materiajuestion — for solid, unfilled polymers, it can be

assumed thgf = 2.

For the polyurethane material used, the stabiming’s modulus was taken as 3.9 MPa. The
coefficientk; was obtained from Equationvéhile the higher ater coefficients were selected to

give the best fit to the measureadta and are summarised in Table 1.

Model Stiffness coefficient
ki E, ka/ ki ks/ ki kal ki
(m) (m?) () (m®)
linear 6.185107 0 0 0
cubic 6.185¢10° 500 0 0
high order| 6.185¢10° 672.2 —4.853k10° -3.168x10°

Table 1: Fitted stiffness coefficients

In Figure 3 it can be seen that the linear madale a reasonable estimatiestiffness until the
deformation reached15mm, the cubic model B&ihm while the high order model worked over
the entire range tested. For convenience, it was adsumed that the load displacement curve in
tension was similar to the one on compressicerethy allowing charactesation on only one part

of the curve. In reality, at tlge deformations, this would not have been the case because under
compression, the free sides otthiscoelastic came into caat with the overhung end caps
thereby increasing the stiffness.

3.2 Nonlinear damping function

Energy dissipation in viscoelastic materialsugially characterised and modelled as frequency
dependent hysteretic dampingher than viscous. For time-domain response prediction however,
it is more convenient to use viscous dampers. &upeoach is to fit a generalised Maxwell model
(i.e. several series spring-dashpetits in parallel) to the nterial property data. The main
challenge with this method is to find suitable ¢oe#nts for the individubsprings and dampers.

A simpler alternate approximation was used ii$ thork. Hysteretic damping was represented
using equivalent viscous dampéeFfsie main approximation in this approach is that a characteristic
frequencya, that relates to the response can be fipdciFor this work, the system was assumed
to respond at frequencies close to the lineatural frequency of the SDOF system (i.e.
®. =~k /m) wherem is the mass of the equipment supported by the mount. The damping

functions were then,

C(Xlingar = 2L X (9)
2
. k, .. Ky o
c(X)ape = 2BX 4 M8 %3 10)
(OF ¢
C(x)hiord — 77V 1 x + 77V33 x3 + 77V55 x5 + 77V77 X7 (ll)
e O @ @

wherer, is the loss factor of the viscoelastic material.

3.3 Temperature and frequency dependence

An additional challenge in developing a modeltd mount is that the elastic modulus and loss
factor of a viscoelastic matati depends on its temperaturedaexcitation frequency. For the



expressions developed (Egoas 5-7 and 9-11) the appropriate value€pfind 7, need to be
input. Typically such data immeasured at very small strdievels using Dynamic Mechanical
Thermal Analysis (DMTA) equipment. For the potethane material considered, the effect of
temperature and frequency on the Young’'s maslahd loss factor are shown in Figure 4.
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Figure 4: Complex modulus of polyurethane material (solid line, 28C; dotted line 15°C)

The sensitivity of the material properties can be seen®@ &Bange in temperature (or a decade
in frequency) results in a ahge in modulus of over 50%.

4 INITIAL VALIDATION

A simple experiment was carried out in order to assess the validity of the stiffness and damping
scaling suggested. A heavy mass (60 kg) swggported on one mourkhe response following a
sharp impact from a heavy hammer was messurThe time trace showing decaying vibration
amplitude and fitted properties (natural frequeacy modal loss factor) is presented in Figure 5.

natural frequency=11.8 Hz
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Figure 5: Response to hammer impact of 60 kghass supported on one shock mount



Note that the excitation in this case differs frodrat modelled in Equation 2: for this test, a force

was applied directly to the massdathe base was held rigid (iy==0).

While a comparison could have been be achidwe predicting the time response to a suitable
shock, the lack of input force measurement (e.g. force transducer on the hammer) made it more
convenient to consider the response in the freqgeomain. For this initial study, only the cubic
system was studied. Also, becaiiseas carried out in the fgglency domain, it was possible to

use hysteretic damping directly rather tham&form it to an equivalent viscous value.

The equation of motion for the undamped cudyistem under harmonic excitation is given by,

mX + kX +ksX® = Fsin(et) (12)
wherem is the mass of the system aRdhe magnitude of the force. Substituting a trial soution
X=Xpsin(wt) and applying a little trignometry gives,

—mw®Xg sin(@t) + kKXo sin(t) + kg X g{2sin(et) - Lsin@wt)} = Fsin(t) (13)
Retaining only the fundamental components, yields,
(-mo®X, + kKX, +3K,X3) = F (14)

The correspondence principle [11] was invokedefalace the real stiffrss terms in Equation 14
with complex values to take into accotime hysteretic damping in the viscoelastic.
For a shock impact, the for€eis not constant with frequency. fFan idealised half-sine impact of

durationz (the force history is given Wy sin(zt/ z) for 0< t < 7) the force spectrum is give by,
_ 7 Cosr/2)
Flo) = 2Fp—~ Twrin)? [w=#7xl7] )

Fl) = Fus [o=7l7]

Note that at low frequency, the force spectrum tends towaFggr2at. Using Equations 14 and
15 in conjunction with the stiffness coefficierfigable 1) and the material data, the response to
half-sine shock inputs were calculated. Fey6 shows the response of the system & a
half-sine impact lasting 2.5 ms and reaching a pelkofal kN. It is intersting to observe that at
this amplitude the effect of nonlinearity is maskgdthe relatively high level of damping in the
viscoelastic material.

Linear natural frequency=11.9 Hz, loss factor = 0.15

frequency response, mm/N

frequency, Hz

Figure 6: Predicted frequency response of cubisystem to 1 kN peak half-sine shock

Comparison of measured and predicted behayiBigures 5 and 6 respéeatly) reveals that a
close agreement was reached for the natural fregyu@nd hence stiffrss). The measured modal



loss factor was a little higherah the predicted one (0.19 rather than 0.15). As deformation only
occurs in one material the modal loss factondentical to the material loss factor for the
polyurethane. For subsequent cadtians, the loss factor of the material was assumed to be 0.19
for the conditions of interest as the impact wwas thought to be less prone to error than the
DMTA measurement.

The maximum displacement in the test discudseid was barely visible. The effect of input
amplitude on the frequency response was stuasaty the cubic model — results are presented in
Figure 7.
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Figure 7:  Effect of shock magnitude on frequency response (dashed linex1D* N peak;
chain line, 3x10° N peak; solid line, x10° N peak;

For half-sine impacts below KN peak, linear and cubic modejgsve the same response. At
higher levels, nonlinear effects stiffagion the FRF) can clearly be seen.

5 VALIDATION OF MODEL FOR LARGE SHOCK INPUTS

In this section, a comparison is made betwienpredicted and measured time domain response
of a shock mount protected system A sketch efrttount and test rig configuration used for these
studies is presented in Figure 8.

A substantial shock table, capable abguicing accelerations iexcess of 5000 nfisvas used in

these studies. A heavy mass (92.5 kg), represetttengquipment to be peatted, was attached to

the shock table using the cylindrical mounts dssed earlier. One mount was fixed between the
mass and the base plate of the shock tableed®nd mount was fixeldetween the mass and an

upper plate which was itself fixedgidly to the base plate. T arrangement was used to
minimise the effect of differences between thadlaisplacement curves of the mounts in tension

and compression: deviations above or below #quilibrium point resulted in identical
compression of one mount and tension in therofhiee stiff rods connecting the base and upper
plates were also used as guides for the mass, preventing transverse motion. Note that the static
deflection of the mounts caused by gravity acting on the mass was less than 1 mm.
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Figure 8:  Sketch of shock test arrangement

Two shock loading time histories were considerethis study. The measured input (motion at the
table, ory in Equation 1) and output (motion of the “equipment”’xom Equation 1) time
responses for the first one (nanfetlot08”), are presented in Figude This figure also shows the
deformation seen by the mounts (displayeggsn Equation 1).
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Figure 9: Measured time histories for shotO§upper figure: dotted line, input y; solid line,
responsex)

The second time history (named “shot13”) invotyimuch higher accelerations, is presented in
Figure 10.



displacement, mm

deformation, mm

time, s

Figure 10: Measured time histories for shot13(upper figure: dotted line, input y; solid line,
responsex)

Response predictions were obtd by using the direct integgion algorithmdescribed in
Equations 2-4. Because of the symmetrical aearent of the mounts, the stiffness and damping
coefficients for the system were simply twice thalues found for the coefficients measured in
Section 3.

The temperature at which tests were carriedvwag not measured but was assumed to BE.25
The characteristic frequency of the system was then given by,

m
WOc = \/2:k1 16)

which was found to be approximately 12 Hz. \gsthese properties, thresponse was predicted
for the input history shown in Figures 9 and Ile deformation of the mounts (from output-
input) is presented in Figures 11 and 12.
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Figure 11: Predicted and measured mount deformaon history for shot08 (dotted lines,
measuredx-y; upper figure solid line, predicted x-y using nonlinear model,
lower figure solid line, predictedx-y using linear model)
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Figure 12: Predicted and measured mount deformaon history for shot13 (dotted lines,
measuredx-y; upper figure solid line, predicted x-y using nonlinear model,
lower figure solid line, predictedx-y using linear model)

For shot08, there is a close match betweeniqgtestiand measured responses in both amplitude

and frequency. The nonlinear model gave slighéyter agreement than the linear one. For the
higher amplitude shock (shot13) good agreemergashed for amplitude — although the largest
peak (around is underestimated by 15%, the frequency appears to be overestimated. Note that for
all the responses calculated, the cubic model gaweinally identical results to the high order

one. This is not overly surprising as the deformation remained below 35mm

One reason for the apparent inaccuracy of tkdiption of the high amplitude shock (shot13) was
thought to be uncertainty of the exact Young’s modulus. Sensitivity of modulus to temperature,



frequency and manufacturing procees is well known in viscoedic polymers: this can easily
exceed 20%. Test data for the polyurethane material used here (Figure 4) indicates that this sort of
change could be brought about by°&€ hange in temperature. The simulation for shotl3 was
therefore repeated with the modsilreduced by 20%. Results areganted in Figure 13, where it

can be seen that the match for thalmear model is very much closer.
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Figure 13: Predicted and measured mount deformabn history for shot13 with reducedE
(dotted lines, measured-y; upper figure solid line, predictedx-y using
nonlinear model; lower figure solid line, predictedx-y using linear model)

6 CONCLUSIONS

This work has shown that the transient dynamegponse of a mass supfed on viscoelastic
mounts can be predicted using simple modelsdasethe static load-deftéon behaviour of the
mounts. For low level shocks a linear model wasitbto be adequate while for higher levels (up
to 60% mount deformation) aibic model gave good results.

The correct mount stiffness was obtained by scaling the static response by the Young’s modulus
ratio between quasi-static and dynamic beha at the appropriate temperature and a
characteristic frequency (the norairsystem resonance frequency).

Nonlinear damping was also modelled usinguieglent viscous dampers. The appropriate
coefficient was obtained from material propesti@s the correct temperature and characteristic
frequency.

The accuracy of the prediction (in particular, pinecipal frequency of the response) was found to
be sensitive to the environmentanditions to such an extent. The level of uncertainty from this
source was found to be more significant that the modelling error.
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