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Abstract 

The most remarkable peculiarity of the so-called Theory of Critical Distances (TCD) is that, 

independently from the level of ductility characterising the considered material, this method 

allows the strength of notched/cracked components to be estimated accurately by simply 

post-processing the entire linear-elastic stress fields acting on the material in the vicinity of 

the stress concentrator being designed. By taking as a starting point the above idea, in the 

present study the TCD was reformulated to make it suitable for predicting the strength of 

notched metallic materials subjected to dynamic loading. The accuracy and reliability of the 

proposed reformulation of the TCD was checked against a number of experimental results 

generated by testing, under different loading/strain rates, notched cylindrical samples of 

aluminium alloy 6063-T5, titanium alloy Ti-6Al-4V, aluminium alloy AlMg6, and an AlMn 

alloy. To further validate the proposed design method also different data sets taken from the 

literature were considered. Such an extensive validation exercise allowed us to prove that the 

proposed reformulation of the TCD is successful in predicting the dynamic strength of 

notched metallic materials, this approach proving to be capable of estimates falling within an 

error interval of ±20%. Such a high level of accuracy is certainly remarkable, especially in 

light of the fact that it was reached without the need for explicitly modelling the stress vs. 

strain dynamic behaviour of the investigated ductile metals. This suggests that the proposed 

design methodology has the potential of changing the way notched metallic components are 

designed against dynamic loading in situations of practical interest. 

Keyw o rds : Theory of Critical Distances, notches, dynamic fracture, metallic materials. 
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1. In troduction  

In situations of practical interest (such as car crash, forging & rolling, sudden impacts, etc.), 

engineering components and structures have to be designed to withstand high rate of 

loading. In this context, examination of the state of the art suggests that, since about the 

beginning of the last century, the international scientific community has made a tremendous 

effort to understand and model the mechanical/cracking behaviour of engineering materials 

subjected to high rate of loading. This large body of work shows that this problem has been 

extensively addressed by tackling it both from an experimental and a theoretical angle. Back 

in 1914, Hopkinson [1] developed the device which became known as Hopkinson Pressure 

Bar, suitable for measuring the impulse and pressure generated by the impact of bullets or 

the detonation of explosives. Thirty years later, Davies [2] revisited Hopkinson�s pressure 

bar developing the theoretical basis of the wave propagation analysis required to understand 

the results, and introducing electronic measurement of the stress waves in the bar. In 1949,  

Kolsky [3] developed what has become known as the Split-Hopkinson Pressure Bar or Kolsky 

bar test, in which a small sample of material is sandwiched between the ends of two long 

cylindrical bars. When an axial dynamic load is induced in one bar, this partially reflects and 

partially transmits through the sample. By analysing the iuncident, reflected and transmitted 

waves, Kolsky showed that it was possible to determine the dynamic stress, strain and strain 

rate which the specimen experienced during the loading. This pioneering work has been 

followed by a multitude of subsequent investigations further confirming the validity of 

Kolsky�s findings, that, generally, the mechanical behaviour of materials is strain rate 

dependent. In this context, a number of experimental studies [4-10] have proven that, at 

room temperature, the failure stress tends to increase with the increase of the loading/strain 

rate, this holding true both for aluminium alloys and steels. 

After the advent of Linear Elastic Fracture Mechanics (LEFM), accurate investigations were 

carried out also to study the existing relationship between material fracture toughness and 

rate of the applied loading. As to this aspect, examination of the state of the art [10-12] 
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suggests that, at room temperature, the fracture toughness can either decrease, increase, or 

remain constant as the Stress Intensity Factor (SIF) rate increases, this mainly depending on 

the microstructural features of the metallic material being investigated. 

It is well known that under quasi-static loading, notches have a detrimental effect on the 

overall static strength of engineering materials. Accordingly, appropriate design methods 

have to be used to accurately design components experiencing stress concentration 

phenomena. In this context, it is recognised that the so-called Theory of Critical Distances 

(TCD) is the most effective tools which can be used by structural engineers to take into 

account the weakening effect of notches of all kinds. The fundamental idea on which the TCD 

is based was first proposed in about the middle of the last century to specifically estimate the 

high-cycle fatigue strength of notched components. In more detail, Neuber [13] suggested 

performing the high-cycle fatigue assessment of metals containing notches through an 

effective stress calculated by averaging the linear-elastic stress over a straight line emanating 

from the notch tip. A few years later, Peterson [14] observed that the problem could greatly 

be simplified by directly using, as effective stress, the linear-elastic stress evaluated at a given 

distance from the notch apex. In both Neuber�s and Peterson�s approach, this length scale 

parameter was treated as a material property. Late in the 1960s, Novozhilov [15, 16] has 

proven that Neuber�s method could also be derived by using an elegant energy argument. In 

1974, Whitney and Nuismer [17] showed that the TCD could be used to estimate the static 

strength of notched composite, the material critical length being directly determined through 

the LEFM fracture toughness and the ultimate tensile strength. Toward the end of the last 

century, Tanaka [18] and Taylor [19] have proven that the TCD could successfully be 

employed to estimate notch fatigue limits also by calculating the necessary critical distance 

via the threshold value of the stress intensity factor and the plain fatigue limit. Owing to its 

accuracy in assessing the detrimental effect of notches, in recent years, the TCD has gained 

new popularity being used to address a variety of structural integrity problems [20]. For 

instance, the TCD applied along with the so-called Modified Wöhler Curve Method was seen 
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to be capable of accurately designing notched components against multiaxial fatigue [21-23]. 

Recently, it was also proven that the TCD is successful in estimating the static strength of 

both ductile and brittle notched materials subjected to uniaxial as well as to multiaxial static 

loading [24-25]. Finally, Cicero et al. [26-28] have successfully used the TCD to model the 

effect of the notch sharpness on the apparent fracture toughness.  

Independently from the structural integrity ambit in which it is used, the most important 

feature of the TCD is that this theory is seen to be capable of accommodating any kind of 

material non-linearities into a linear-elastic framework, this allowing the time and costs 

associated with the design process to be reduced remarkably [29]. Another important aspect 

which is worth being mentioned is that, by nature, the TCD can be calibrated by using pieces 

of experimental information generated via conventional testing equipment. 

Owing to its unique features, the challenging aim of this paper is to reformulate the linear-

elastic TCD to make it suitable for designing notched metallic components against dynamic 

loading, the material behaviour being, by nature, highly non-linear. 

 

2 . TCD and s tatic assessm en t o f no tched com ponen ts  

As far as notched engineering materials subjected to quasi-static loading are concerned, the 

TCD postulates that the static strength of notched components can be estimated by directly 

post-processing the entire linear-elastic stress field acting on the material in the vicinity of 

the stress raiser being assessed. Examination of the state of the art suggests that, since about 

the middle of the last century, the above idea has been formalised (and validated through 

appropriate experimental investigations) in different ways which include the Point, the Line, 

the Area, and the Volume Method [20]. 

If attention is focussed on notches subjected to Mode I quasi-static loading, according to the 

TCD, breakage takes place as soon as a critical distance depending effective stress, eff, 

becomes larger than the material inherent strength, 0 [24]. Therefore, the notched 
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component being designed is supposed to be capable of withstanding the applied loading as 

long as the following condition is assured: 

 

0eff               (1) 

 

One of the most interesting features of the TCD is that effective stress eff can be estimated 

by adopting a simple linear-elastic constitutive law [19, 20], this holding true independently 

from the level of ductility characterising the material under investigation [24, 25]. This 

results in a great simplification of the design problem, allowing structural engineers to 

perform the required stress analysis via simple linear-elastic models done using commercial 

Finite Element (FE) software packages. 

According to condition (1), to properly use the TCD in situations of practical interest, the 

second important information which is needed is the material inherent strength, 0. As to 

the expected values for 0, it is worth recalling here that the inherent strength equals the 

conventional ultimate tensile strength, UTS, solely under particular circumstances, this 

mainly depending on the mechanical behaviour as well as on the microstructural features of 

the material being designed. In particular, when breakage is preceded by a certain amount of 

plastic deformation, 0 takes on a value which is larger than the ultimate tensile strength 

[20]. This obviously applies also to metallic materials [29], even if, for certain metals, 0 is 

seen to be so close to UTS [24] that the TCD can successfully be used by simply taking 

0=UTS. On the contrary, as far as brittle materials (such as ceramics [30]) or quasi-brittle 

materials (such as fibre composites [17]) are concerned, 0 is seen to be invariably equal to 

UTS. Lastly, it should be noted that 0 is seen to be different from UTS also in those 

situations where the presence of stress raisers leads to different failure mechanisms to those 

resulting in the breakage of the un-notched material [31]. These considerations clearly 

suggest that the most accurate way to estimate material inherent strength 0 is by running 
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appropriate experiments, the recommended experimental procedure for the determination 

of 0 being explained below. 

Turning back to the different formalisations of the TCD, effective stress eff can be calculated 

according to either the Point Method (PM), the Line Method (LM), or the Area Method (AM) 

as follows [19]: 
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The meaning of the adopted symbols as well as of the effective stress calculated according to 

definitions (2), (3), and (4) is explained in Figures 1a to 1d. 

Equations (2) to (4) show that, independently from the strategy adopted to determine eff, 

the TCD makes use of a length scale parameter which can be estimated via the LEFM plane 

strain fracture toughness, KIc, and the material inherent strength, 0, as follows [20]: 

 

2

0

IcK1
L 




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
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              (5) 

 

According to definition (5), as soon as KIc is known from the experiments, the determination 

of critical distance L is straightforward solely for those materials for which inherent material 

strength 0 is invariably equal to the ultimate tensile strength, UTS. On the contrary, when 

0UTS, the only way to determine L is by testing samples containing notches of different 

sharpness [24, 25]. This procedure is summarised in Figure 1e: as postulated by the PM, the 
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coordinates of the point at which the two linear-elastic stress-distance curves, plotted in the 

incipient failure condition, intersect each other allow length scale parameter L and inherent 

strength 0 to be estimated directly. To conclude, it is worth observing that such an 

experimental procedure based on notches of different sharpness was seen to be very accurate 

also to estimate the LEFM plane strain fracture toughness [32]. In fact, after determining 

both L and 0 according to the procedure schematically depicted in Figure 1e, KIc can directly 

be estimated via Eq. (5), the LEFM plane strain fracture toughness obviously becoming the 

unknown variable in the problem. 

 

3. Re fo rm u lating the  TCD to  des ign  notched m ate rials  agains t dynam ic loading 

As briefly mentioned in the previous section, the TCD postulates that the static assessment 

has to be performed by post-processing the entire stress field damaging the so-called process 

zone (i.e., that material portion controlling the overall strength of the component being 

assessed) [20]. Through length scale parameter L, the size of the process zone depends 

mainly on: (i) material microstructural features, (ii) local micro-mechanical properties, and 

(iii) characteristics of the processes resulting in the final breakage [20]. Examination of the 

state of the art [3-11] suggests that, in general, the mechanical response, mechanical 

properties and cracking behaviour of metallic materials subjected to dynamic loading are 

different from the ones observed under quasi-static loading. If these universally accepted 

concepts are reinterpreted according to the TCD�s philosophy, one may argue that, since 

both the dynamic failure stress, f, and the dynamic fracture toughness, KId, vary as the 

applied load/strain/displacement rate increases, in the same way also the inherent strength, 

0, and the length scale parameter, L, have to vary. In particular, if Z  is used to denote 

either the loading rate, F , the strain rate,  , the displacement rate,  , or the Stress 

Intensity Factor (SIF) rate, IK , the effect of the dynamic loading on both the failure stress, 

f, and the fracture toughness, KId, can be expressed as follows: 
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)Z(f)Z(
ff


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where )Z(f
f


  and )Z(f

IdK
  are functions which can be either estimated experimentally or 

derived theoretically. The strategy we propose to define such functions will be discussed in 

the next section in great detail. 

Since, under static loading, 0 is seen to be proportional to UTS [20], the hypothesis can be 

formed that, similar to the dynamic failure stress, Eq. (6), also the inherent material strength 

varies with Z , i.e.: 

 

)Z(f)Z(
00


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where, again, function )Z(f
0


  can be either estimated experimentally or derived 

theoretically. If this assumption is correct, then, in the most general case, also the length 

scale parameter has to change with Z . Therefore, by rewriting definition (5) for the dynamic 

case, L can directly be expressed as: 
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To design notched materials against dynamic loading, according to definitions (2), (3), and 

(4), effective stress eff can now be rearranged as follows: 
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where, as postulated by the TCD [20], the stress analysis is still done by using a simple 

linear-elastic constitutive law. In other words, the hypothesis is formed that the behaviour of 

notched metallic materials subjected to dynamic loading can directly be modelled via )Z(0
  

and )Z(L   without taking into account the actual dynamic stress vs. strain response of the 

material being assessed.  

Turning back to the design issue, according to the assumptions made above, notched 

components undergoing in-service dynamic loading are then supposed not to fail as long as 

the following conditions is assured: 

 

)Z()Z( 0eff
  ,           (13) 

 

the dynamic safety factor, D, taking on the following value: 

 

1
)Z(

)Z(

eff

0
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





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Having reformulated the TCD to make it suitable for designing notched metals against 

dynamic loading, it is useful to recall here that, back in the 90s, Morozov and Petrov have 

proposed to estimate the dynamic strength of cracked brittle materials according to the so-
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called Structural-Time Criterion [33, 34]. If critical distance L is calculated via definition (5) 

independently from the rate of the applied loading, this failure criterion can be rewritten 

(according to the symbols adopted in the present paper) as follows: 

 

  





f

f

T

T

L2

0

UTSy dtdrt,r,0
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11
                     (15) 

 

where t is time, Tf is the time to failure, and  is the so-called incubation time (which is 

treated as a material property [33, 34]). By comparing criterion (15) to the effective stress 

determined in terms of the LM, Eq. (3), the existing similarities between Morozov and 

Petrov�s approach and the TCD become evident. In particular, the Structural-Time Criterion 

postulates that the strength of a cracked material subjected to dynamic loading can be 

brought back to the static case by simply averaging over time the LM�s effective stress, the 

temporal integration domain being defined via time-related material constant . In other 

words, in Morozov and Petrov�s criterion, the required critical distance is kept constant and 

equal to its value determined under quasi-static loading, the effect of the dynamic loading 

being assessed via the incubation time, . The reformulation of the TCD proposed in the 

present paper assumes instead that both the reference material strength, Eq. (8), and the 

size of the process zone, Eq. (9), vary as the rate of the applied loading increases. This 

assumption can be justified by observing that, in metallic materials, the micro-mechanisms 

resulting in the formation of the fracture surface are seen to change as the rate of the applied 

loading increases, this resulting in a variation of the morphology of the fracture surface itself 

[37-40]. As recalled above, according to the TCD�s m odus operandi, the size of the process 

zone depends mainly on the characteristics of those processes resulting in the final fracture 

[20]. Therefore, since the microstructural mechanisms leading to dynamic breakage vary as 

the loading rate increases, the size of the process zone is expected to change accordingly. 

This phenomenon is modelled in the proposed reformulation of the TCD by forming the 
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hypothesis that critical distance has to vary as the loading/strain/displacement rate 

increases, Eq. (9). 

As far as critical length based approaches are concerned, it is worth recalling here also that 

the closed form approach to describe the �inertia� of fracture and introduce the characteristic 

length and time into the fracture mechanics problem was also proposed by Naimark and 

Plekhov [39, 40]. In this approach, the characteristic length and characteristic time of 

fracture were introduced based on the analysis of self-similar solutions of constitutive 

equations describing the defect evolution. It was shown that the processes resulting in the 

final breakage are accompanied by the collective modes of defect ensemble, which develop as 

instabilities with the blow-up kinetics localised on the spectrum of spatial scales. The 

Naimark and Plekhov�s description includes the discrete spectrum of critical distances 

considered as characteristics of both material structure and loading conditions. Each critical 

distance has own critical (incubation) time and can be realised under corresponding loading 

conditions [40]. 

Turning back to the new reformulation of the TCD proposed in the present paper, it is 

possible to conclude by observing that, owing to the complexity of the reasoning on which 

the devised design method is based, a set of appropriate experimental results is obviously 

required to check the validity of the formed hypotheses. However, before performing such a 

validation exercise, the next step in the development of the theory is rewriting functions

)Z(f
f


 , )Z(f

0


 , )Z(f

IdK
 , and )Z(fL

  in explicit form. This will be done in the next section. 

 

4 . De fin ing the  gove rn ing equations  

In order to find appropriate mathematical laws suitable for expressing functions )Z(f
f


 , 

)Z(f
0


 , )Z(f

IdK
 , and )Z(fL

  in explicit form, a number of experimental data were selected 

from the technical literature. The log-log diagrams reported in Figure 2 show the way both 

engineering failure strength f and dynamic fracture toughness KId vary as Z  increases. The 
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charts of Figure 2 clearly support the idea that, independently from the way Z  is defined, the 

selected experimental data can all be summarised by adopting simple power laws. This 

implies that both the f vs. Z  relationship and the KId vs. Z  relationship can be rewritten as: 

 

fb
ff Za)Z(              (16) 

 Z)Z(K Id
 ,           (17) 

 

where af, bf, , and  are material constants to be determined by running appropriate 

experiments. 

Remembering that, under static loading, 0 is seen to be proportional to UTS [20], the 

hypothesis can be formed that also the 0 vs. Z  relationship can be expressed by adopting a 

power law, i.e.: 

 

0b
00 Za)Z(   ,                       (18) 

 

a0 and b0 being again material dependent constants. 

According to Eq. (9), length scale parameter )Z(L   can now be rewritten in explicit form as: 
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                   (19) 

 

In Eq. (19), A and B are material constants which have to be determined by post-processing 

appropriate experimental results. In particular, if )Z(0
  equals )Z(f

 , then constants A and 

B can directly be estimated as soon as function )Z(K Id
 , Eq. (17), is known from the 

experiments. On the contrary, for those situations in which )Z(0
  is different from )Z(f

 , 
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such constants are suggested to be determined by adopting a strategy similar to the one 

summarised in Figure 1e. To conclude, it should be noted that, in the latter case, at least two 

sets of results generated by testing two different notches under two different values of Z  are 

required to determine constants A and B, the accuracy obviously increasing as the number of 

data used to calibrate the model increases. 

 

 

 

5. Experim en tal de tails  

In order to check the accuracy of the novel reformulation of the TCD formalised in the 

previous sections, three experimental trials were run in the testing laboratory of the Sheffield 

University at Harpur Hill, Buxton, UK and in the laboratory of the Institute of Continuous 

Media Mechanics UB RAS, Perm, Russia. 

The experimental investigation performed at the University of Sheffield involved plain and 

notched cylindrical samples of Al6063-T5, such samples being tested under both quasi-static 

and dynamic tensile loading. In terms of conventional quasi-static mechanical properties, 

the investigated aluminium alloy had an ultimate tensile stress, UTS, equal to 205 MPa, a 

yield stress, y, of 145 MPa, an elastic modulus, E, of 68900 MPa, and a Poisson�s ratio, , of 

0.33. The geometries of the tested specimens are sketched in Figure 3. The plain samples had 

net diameter, dn, equal to 5 mm and gross diameter, dg, to 10 mm. The bluntly notched 

specimens had dn=5 mm, dg=10 mm, and notch root radius rn equal to 4 mm, these resulting 

in a net stress concentration factor, Kt, of 1.25. The samples containing both the intermediate 

and the sharp stress concentrators had dn=5.2 mm and dg=10 mm, the notch root radius 

being equal to 1.38 mm (Kt=1.69) and to 0.38 mm (Kt=2.93), respectively. 

Figure 4a shows the experimental arrnagement which was used to generate the results 

summarised in Table 1. The specimens were mechanically attached to two purpose-built load 

cells by using nuts. The load cell at the distal end of the sample was fixed to a stiff end-stop 
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whilst the load cell at the proximal, or loaded end of the specimen was connected through 

transfer bars to a pneumatic loading system. The transfer bars were constrained to travel 

axially by being passed through PTFE-coated holes in the flanges of a steel column section, 

and the proximal load cell was sat on a PTFE slider. In this way, the loading system was free 

to translate under the applied load, subject only to the resistance of the specimen.  The 

pneumatic pressure was generated by releasing pressurised bottled nitrogen into a barrel of a 

�gas gun� where it reacted against a close-fitting nylon sealing piston, to drive the a loading 

rod � cross-head � transfer bar system and hence apply a tensile load to the proximal load 

cell. Quasi-static loading was applied by slowly releasing the pneumatic pressure into the gas 

gun barrel. Dynamic loading was produced by releasing the pressurised nitrogen into a 

receiver vessel, separated from the gas gun barrel by a brass diaphragm which burst at a 

suitable pressure, causing a rapidly increasing load (typically of the order of 100-2000kN/s) 

to be applied to the specimen. The dynamic loading rate was changed by using different 

thickness bursting diaphragms and introducing a choke to limit the rate of gas flow from the 

reciver to the loading system.    

The axial deformation and the cracking behaviour of the tested Al6063-T5 cylindrical 

samples were monitored by using a high-speed camera which was synchronised with the 

signals gathered from the loading cells. Camera Phantom V4.2 (8-bit image resolution, 2100 

frames per second, recording at up to 90000 frames per second maximum) was used for 

Series 1 (S1 in Table 1), whereas camera Phantom V9.1 (14-bit image resolution, recording at 

up to 153846 fps) was employed for Series 2 (S2 in Table 1). By post-processing the video of 

any test it was possible to confirm that, in the force vs. time curve, a sharp decrease of the 

load signal corresponded to the formation of a visible crack. Accordingly, the maximum force 

recorded during each test was taken as the failure force, Ff, the corresponding instant being 

used to define the time to failure, Tf. The force vs. time diagram reported in Figure 4b shows 

the way the gathered signals were post-processed to determine Ff and Tf for test S1 T18 (see 

also Table 1). Here, the load is that recorded by the distal load cell, i.e. the load which was 
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transmitted through the specimen. It should be noted that the load does not immediately fall 

to zero on complete fracture of the specimen, due to inertia of the distal load cell which takes 

a few hundred microseconds to fully relax. The pictures extracted from the corresponding 

high-speed video and reported in the above diagram also confirm that the maximum force 

recorded during testing corresponded to the formation of a visible crack. The values for Ff 

and Tf determined according to the procedure briefly discussed above were then used to 

calculate the nominal loading rate, F , as follows: 

 

f

f

T

F
F                        (20) 

 

Commercial software Cine viewer 2.14b was employed to post-process the high-speed videos 

in order to determine, for each test, the corresponding nominal strain, nom, vs. time curve. 

For the notched samples, the gauge length was taken equal to the distance (measured along 

the axis) between the corners resulting from the intersection of the notch flanks with the 

cylindrical surface delimiting the gross volume of the specimens themselves. Accordingly, 

the gauge lengths, l0, for the sharp, intermediate and blunt notches were equal to 3.2 mm, 

4.4 mm and 7.8 mm, respectively (see Figure 3). For each test, by post-processing the high-

speed videos, the actual distance, l, between the two reference points was measured frame by 

frame throughout the test, the corresponding nominal strain being calculated as follows: 

 

0

0
nom l

ll 
                        (21) 

 

The diagram reported in Figure 4b shows an example of the nominal strain, nom, vs. time 

curve determined according to the procedure described above. Finally, from any nom vs. time 
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curve, the nominal failure strain, f, was estimated at instant Tf, so that, the nominal strain 

rate, nom , could directly be calculated as follows: 

 

f

f
nom T


                        (22) 

 

Table 1 summarises the results generated by testing the samples of Al6063-T5 in terms of 

failure force, Ff, time to failure, Tf, nominal loading rate, F , and nominal strain rate, nom . 

The experimental investigation carried out at the Institute of Continuous Media Mechanics 

UB RAS involved three different metallic materials, i.e. titanium alloy Ti-6Al-4V having 

UTS=1031 MPa, aluminium alloy AlMg6 having UTS=616 MPa and an AlMn alloy having 

UTS=161 MPa. The geometries of the tested samples are shown in Figure 5. In particular, 

independently from the sharpness of the notch, the specimens had gross diameter, dg, equal 

to 9 mm and net diameter, dn, to 7.6 mm. The three stress raisers had root radius equal to 2 

mm, 1 mm, and 0.1 mm, resulting in a net stress concentration factor, Kt, equal to 1.67, 2.08, 

and 5.2 respectively. 

The tensile tests under a nominal strain rate, nom , equal to 10-2 s-1, 10-1 s-1, and 10 s-1 were 

ran using a 100 kN servo-hydraulic machine Bi-00-100. The sharply notched samples 

instead were tested under nom 104 s-1 by employing a classic Hopkinson-Kolsky split bar in 

the Nicholas�s modification [56]. The experimental setup is a typical compression setup with 

incident and transmission bars. The threaded metallic specimens located on both the 

incident and transmission ends, while placing a metal collar over the specimen. The 

specimen and the metal collar had a snug fit on the incident and transmission side in order 

to bypass an initial compression wave. The initial compression wave was generated by an 

impact in the incident bar with a striker. The compression wave would ideally pass through 
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the metal collar and then reflect off the free end in tension. The tensile wave would then pull 

on the specimen. 

The experimental setup in the Institute of Continuous Media Mechanics UB RAS includes 

two coaxial incident and transmitter bars with diameter of 25 mm and a 18-mm-caliber gas 

gun, which was used to accelerate a 200-mm-long projectile to a final velocity of 15-30 m/s. 

Two strain gauges fixed to the incident and transmitter bars were used to measure the stress 

waves in both bars. Following the classical consideration of elastic waves propagation in bars 

proposed by Kolsky and assuming the homogeneous stress-strain state into the sample we 

can derive the equation for calculation of stress, strain and strain rate of the specimen during 

the test [3] 

 

   t
S

ES
t T

b
s  ,     

t

0

Rs dtt
L

C2
t ,    t

L

C2
t Rs                   (23) 

 

where t is time, C the velocity of sound into the bars, L the initial specimen length, s(t) the 

stress in the specimen, s(t) and  ts  the strain and strain rate, respectively, t(t) the strain 

wave into transmitter bar , and R(t) the strain wave reflected into incident bar. Parametric 

functions s(t), s(t) and  ts  were used to directly calculate the stress-strain and strain rate-

strain curves. 

Finally, the results generated by testing plain and notched specimens of both Ti-6Al-4V and 

AlMn are summarised in Table 2 and 3, respectively, in terms of failure force, Ff, time to 

failure, Tf, nominal loading rate, F , and nominal strain rate, nom . 

 

 

6 . Validation  by experim en tal data 
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In order to check the accuracy of the proposed reformulation of the TCD in predicting the 

strength of the notched samples we tested under both quasi-static and dynamic loading, 

attention was initially focussed on the stress analysis problem. The relevant stress fields in 

the vicinity of the investigated stress concentrators were determined by using commercial FE 

software ANSYS®, where, independently from the considered loading/strain rate, the 

analysed materials were assumed to obey a linear-elastic constitutive law. The cylindrical 

samples were modelled by using axisymmetric bi-dimensional elements Plane42. For any 

notched geometry, the mapped mesh was gradually refined in the vicinity of the stress raiser 

apex until convergence occurred. 

To use the TCD to re-analyse the results generated by testing the notched cylindrical samples 

of Al6063-T5, the initial assumption was made that the inherent strength could be taken 

equal to the corresponding parent material strength, that is: 

 

)F()F( f0
   or )()( nomfnom0                       (24) 

 

According to the plain results reported in Table 1, )F(f
  and )( nomf    were expressed as 

follows: 

 

0118.0
f F9.209)F(    [MPa]                     (25) 

0118.0
nomnomf 1.218)(    [MPa]                    (26) 

 

The chart of Figure 6a shows the linear-elastic stress-distance curves plotted, under quasi-

static loading (i.e., F ≈0.15 kN/s, nom ≈0.01 s-1), in the incipient failure condition. This 

diagram fully confirms that, for this aluminium alloy, the inherent material strength could be 

taken equal to UTS with little loss of accuracy. In particular, as shown in Figure 6a, the use of 

the material ultimate tensile strength (UTS=205 MPa) together with a conventional best fit 
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procedure resulted in a value for the critical distance equal to 1.37 mm. The same chart 

shows also that the use of the TCD applied in the form of the PM with 0=UTS=205 MPa and 

L=1.37 mm resulted in estimates falling within an error interval of ±20%. Owing to the fact 

that this is the usual level of accuracy which is obtained when the TCD is used in other 

ambits of the structural integrity discipline [20, 57], hypothesis (24) was adopted to check 

the overall accuracy of TCD itself in estimating the strength of notched Al6063-T5 subjected 

to both quasi-static and dynamic loading. 

After confirming the validity of assumption (24), the necessary critical distance value was 

then directly estimated through the results generated by testing both the plain and the 

sharply notched specimens (see Figure 3 and Table 1). In particular, functions )F(L   and 

)(L nom  were derived by post-processing the linear-elastic stress fields according to a 

procedure similar to the one summarised in Figure 1e, the only difference being that 

)F()F( f0
   and )()( nomfnom0    were assumed to be known a priori. This m odus 

operandi allowed us to obtain the following relationships � see Eq. (9): 

 

0368.0F541.1)F(L    [mm]                     (27) 

0343.0
nomnom 695.1)(L    [mm]                    (28) 

 

By making use of power laws (27) and (28), the effective stress was then calculated, in the 

incipient failure condition, according to both the PM, Eq. (10), the LM, Eq. (11), and the AM, 

Eq. (12). The results of this final re-analysis are summarised in the two charts reported in 

Figures 6b and 6c, where the error is calculated as: 
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According to the above definition, when the error is positive, estimates are conservative, 

whilst, when the error is negative, estimates are non-conservative. 

The diagrams of Figures 6b and 6c make it evident that the novel formalisation of the TCD 

proposed in the present paper was highly accurate in predicting the dynamic strength of 

notched Al6063-T5, resulting in estimates falling within an error interval of ±20%. This level 

of accuracy is considered to be acceptable, because, in general, it is not possible to 

distinguish between an error of ±20% and an error of 0% due to the problems which are 

usually encountered during testing as well as during the numerical analyses, the local 

material morphology playing a role of primary importance in defining the physiological level 

of scattering characterising the mechanical behaviour of engineering materials [20]. 

To check the accuracy of the TCD against the data generated by testing the samples of  

Ti-6Al-4V (see Table 2), also in this case, the initial hypothesis was formed that inherent 

strength could be taken equal to the corresponding plain material strength, the validity of 

such an hypothesis being checked a posteriori via the notch results. Accordingly, by using a 

conventional best fit procedure, functions )( nom0    and )F(0
  were directly derived from 

the results generated by testing the un-notched specimens, i.e.: 

 

0094.0
nomnomfnom0 8.1080)()(    [MPa]                  (30) 

0129.0
f0 F1027)F()F(    [MPa]                   (31) 

 

The linear-elastic stress fields plotted, in the incipient failure condition, in the chart of 

Figure 7a fully confirm the validity of the formed hypothesis. In more detail, the two stress-

distance curves reported in the above graphs were determined by considering both the blunt 

(Kt=1.67) and the intermediate (Kt=2.08) stress raisers, the nominal failure force being 

calculated by averaging, for any notched geometry, the three results generated under  

nom =0.01 s-1 ( F ≈1.27 kN/s). This simple procedure resulted in a critical distance value 
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under quasi-static loading equal to 3.724 mm. The same strategy (Fig. 7b) was followed also 

to estimate the critical distance value under nom 104 s-1 ( F ≈2.4106 kN/s): the use of the 

liner-elastic stress-distance curve determined by averaging the two results generated by 

testing the sharply notched samples (Kt=5.2) together with the failure stress estimated 

according to Eq. (30) resulted in a critical distance value of 1.792 mm. Therefore, the two 

critical distance values estimated as described above allowed us to directly calculate 

constants A and B in Eq. (19), obtaining: 

 

053.0
nomnom 92.2)(L    [mm]                    (32) 

051.0F77.3)F(L    [mm]                    (33) 

 

The error diagrams reported in Figures 7c and 7d prove that the proposed reformulation of 

the TCD was capable of accurately estimating also the strength of the notched specimens of 

Ti-6Al-4V, with the estimates falling within an error interval of ±20%. It also interesting to 

point out that such a high level of accuracy was reached independently from the form in 

which the TCD was applied (i.e., in terms of either the PM, the LM, or the AM). 

The results generated by testing the samples of the investigated AlMn alloy (Tab. 3) were re-

analysed by adopting the same strategy as the one used to post-process the data obtained by 

testing the Ti-6Al-4V specimens. In particular, initially the inherent strength was assumed to 

be equal to the plain material failure stress, i.e.: 

 

0363.0
nomnomfnom0 5.182)()(    [MPa],                   (34) 

0424.0
f0 F167)F()F(    [MPa]                    (35) 

 

where )( nomf    and )F(0
 were determined through a conventional best fit procedure by 

considering the un-notched results listed in Table 3. The chart of Figure 8a reports the 
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critical distance value determined under nom =0.01 s-1 ( F ≈0.154 kN/s) by averaging the 

three results generated by testing the bluntly notched specimens (Kt=1.67) - see Table 3. The 

chart of Figure 8b plots instead the linear-elastic stress distance curve determined, in the 

incipient failure condition, from the result obtained by testing a sharply notched specimen 

(Kt=5.2) under nom 104 s-1 ( F =8.6104 kN/s). According to this chart, the corresponding 

critical distance value was estimated to be equal to 0.136 mm. The L values reported in 

Figure 8a and 8b were then used to estimate constants A and B in Eq. (19), obtaining: 

 

198.0
nomnom 841.0)(L    [mm]                     (36) 

206.0F42.1)F(L    [mm]                     (37) 

 

The error diagrams reported in Figures 8c and 8d prove that the proposed reformulation of 

the TCD was highly accurate also in estimating the strength of the notched samples made of 

the investigated AlMn alloy, this holding true when the method was applied in terms of both 

strain (Fig. 8c) and loading rate (Fig. 8d). 

The results generated by testing the samples of AlMn6 (Tab. 4) were post-processed by 

following the same strategy as the one adopted to re-analyse the data generated by testing 

the specimens made of both Ti-6Al-4V and AlMn alloy. By assuming that the inherent 

strength could be taken equal to the plain material failure stress, the following plain material 

calibration functions were obtained via a conventional best fit procedure: 

 

01.0
nomnomfnom0 8.591)()(    [MPa],                  (38) 

01.0
f0 F4.605)F()F(    [MPa]                    (39) 
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The negative exponents in Eqs (38) and (39) make it evident that this material was 

characterised by an inverse strain rate sensitivity, this representing a very interesting 

condition to further validate the accuracy of the proposed approach. 

The chart of Figure 9a shows the L value determined under nom =0.01 s-1 ( F ≈0.094 kN/s) 

by averaging the three results obtained by testing the notched specimens having Kt equal to 

2.08 - see Table 4. The diagram reported in Figure 9b shows instead the linear-elastic stress 

distance curves determined, in the incipient failure condition, by post-processing the result 

generated by testing, under nom =10 s-1 ( F 73.3kN/s), the notched specimens having stress 

concentration factor, Kt, equal to both 1.67 and 2.08, the corresponding critical distance 

value being equal to 0.651 mm. The L values estimated under nom =0.01 s-1 as well as under 

nom =10 s-1 were then used to calculate the constants in Eq. (19), obtaining: 

 

0256.0
nomnom 614.0)(L    [mm]                    (40) 

0253.0F614.0)F(L    [mm]                     (41) 

 

The error diagrams reported in Figures 9c and 9d make it clear that the proposed 

reformulation of the TCD was capable of accurately estimating the strength of the tested 

notched samples, even though aluminium AlMn6 was characterised by an inverse strain rate 

sensitivity. 

To further investigate the reliability of the proposed reformulation of the TCD, the accuracy 

of our approach was also checked against the experimental results generated, back in the 

60s, by Brisbane [51] by testing, under quasi-static and dynamic tensile loading, notched 

specimens of 301XH stainless steel, René-41 alloy, and Jet-1000 steel. The un-notched flat 

samples had width equal to 12.7 mm and gauge length equal to 50.8 mm. The V-notched flat 

specimens had a net width, wn, of 15.24 mm and a gross width, wg, of 25.4 mm. Four 

different values of the root radius, rn, were investigated, i.e., rn=0.05 mm (Kt=14.7), rn=0.25 
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mm (Kt=6.8), rn=1.27 mm (Kt=3.3), and rn=4.95 mm (Kt=1.9). The above samples were 

tested under the following values of the nominal displacement rate,  : 0.002 mm/s, 0.021 

mm/s, 0.423 mm/s, and 3.387 mm/s. Table 4 summarises all the results generated by 

Brisbane [51], n,f being the nominal failure strength referred to the net area of the samples. 

It is worth observing here that the n,f values reported in Table 4 were supplied by Brisbane 

himself as the average from three different tests. 

The linear-elastic stress fields needed to apply the TCD were calculated via bi-dimensional 

FE models done using commercial software ANSYS®, where the mesh in the vicinity of the 

stress raiser apices was gradually refined until convergence occurred. 

The stress-distance curves plotted, in the incipient failure condition, in the charts of Figure 9 

clearly prove that, for these three metallic materials, inherent strength )(0    was larger 

than the corresponding failure strength, )(f   , this holding true independently from the 

considered value of the displacement rate. Accordingly, cases  =0.002 mm/s and  =3.387 

mm/s were used to calibrate the constants not only in functions )(L   but also in functions 

)(0   , obtaining: 

 

301XH Stainless steel   027.0
0 8.1889)(    [MPa]                 (42) 

0051.0449.1)(L    [mm] -                 (43) 

René-41 Alloy    012.0
0 9.2477)(    [MPa] -               (44) 

084.0529.0)(L    [mm] -                 (45) 

Jet-1000 Steel   005.0
0 3.2503)(    [MPa] -                (46) 

0188.0468.1)(L    [mm] -                 (47) 
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The error charts reported in Figure 10 show that the proposed approach was successful also 

in estimating the strength of the notched samples tested by Brisbane [51] under different 

values of the nominal displacement rate. 

It is worth concluding the present section by observing that the accuracy obtained by using 

the proposed reformulation of the TCD is certainly promising, especially in light of the fact 

that it allows notched metals subjected to dynamic loading to be designed without the need 

for explicitly modelling the stress vs. strain non-linear behaviour of ductile metals. 

Accordingly, this novel reformulation of the TCD can be seen as a powerful engineering tool 

allowing practitioners to safely and accurately design notched metallic 

components/structures against dynamic loading by remarkably reducing the time and costs 

associated with the design process. 

 

8 . Co nclus ions  

In the present paper a novel reformulation of the linear-elastic TCD suitable for designing 

notched metallic materials against dynamic loading is devised and validated by using a large 

number of experimental results. The most important conclusions can be summarised as 

follows: 

 the proposed design methodology allows real components to be designed against 

dynamic loading by directly post-processing the relevant stress fields determined via 

conventional linear-elastic FE models. This implies that accurate estimates can be 

obtained without the need for explicitly modelling the mechanical response under 

dynamic loading of metallic materials; 

 the proposed reformulation of the TCD is seen to be successful in estimating the 

strength of notched metallic materials subjected to dynamic loading; 

 the performed validation exercise proves that the use of TCD in the form of either the 

PM, the LM, or the AM results in the same level of accuracy; 
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 the TCD is seen to be capable of estimates falling within an error interval of about 

±20%. Accordingly, when used in situations of practical interest, this approach is 

recommended to be used to design notched metallic materials against dynamic 

loading by adopting safety factors always larger than 1.2; 

 more work needs to be done in this area to extend the use of the proposed design 

approach to those situations involving dynamic multiaxial loading. 
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Lis t o f Captions  
 
Table  1.  Summary of the experimental results generated by testing plain and notched 

cylindrical samples of Al6063-T5. 

Table  2 .  Summary of the experimental results generated by testing plain and notched 
cylindrical samples of Ti-6Al-4V. 

Table  3 .  Summary of the experimental results generated by testing plain and notched 
cylindrical samples of AlMn alloy. 

Table  4 .  Summary of the experimental results generated by testing plain and notched 
cylindrical samples of AlMg6. 

Table  5.  Summary of the results generated by Brisbane [51] by testing plain and V-
notched flat samples of 301XH Stainless steel, René-41 Alloy, and Jet-1000 
Steel. 

 

Figure  1.  Definition of the local systems of coordinates (a). Effective stress, eff, 
calculated according to the Point Method (b), Line Method (c), and Area 
Method (d). Determination of length scale parameter L and inherent strength 

0 through experimental results generated by testing notches of different 
sharpness (e). 

Figure  2 .  f vs. Z  and KId vs. Z  relationships determined by post-processing 
experimental data taken from the technical literature. 

Figure  3 .  Geometries of the samples of Al6063-T5 tested at the University of Sheffield 
(dimensions in millimetre). 

Figure  4 .  Experimental rig used to test the notched cylindrical samples of Al6063-T5 (a); 
force vs. time and nominal strain vs. time curve for test S1 T18 (b). 

Figure  5.  Geometries of the samples tested in the laboratory of the Institute of 
Continuous Media Mechanics UB RAS, Perm, Russia (dimensions in 
millimetres). 

Figure  6 .  Local linear-elastic stress fields, in the incipient failure condition, under quasi-

static loading ( F ≈0.15 kN/s, nom ≈0.01 1/s) for notched Al6063-T5 (a); 

accuracy of the TCD applied in terms of both loading rate (b) and nominal 
strain rate (c) in predicting the strength of notched Al6063-T5. 

Figure  7.  Local linear-elastic stress fields, in the incipient failure condition, under  

nom =0.01 1/s (a) and nom =104 1/s (b) for notched Ti-6Al-4V; accuracy of the 

TCD in predicting the strength of notched Ti-6Al-4V (c, d). 

Figure  8 .  Local linear-elastic stress fields, in the incipient failure condition, under  

nom =0.01 1/s (a) and nom =104 1/s (b) for notched AlMn alloy; accuracy of the 

TCD in predicting the strength of notched AlMn alloy (c, d). 

Figure  9 .  Local linear-elastic stress fields, in the incipient failure condition, under  

nom =0.01 1/s (a) and nom =104 1/s (b) for notched AlMg6; accuracy of the TCD 

in predicting the strength of notched AlMg6 alloy (c, d). 

Figure  10 .  Local linear-elastic stress fields, in the incipient failure condition, under  

 =0.002 mm/s and  =3.387 mm/s for notched metallic materials 301XH, 
René-41, and Jet-1000 (data taken from Ref. [51]). 

Figure  11.  Accuracy of the TCD in predicting the strength of notched metallic materials 
301XH, René-41, and Jet-1000 (data taken from Ref. [51]). 
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Tables  
 

Code  dg dn  r n  K t F f Tf F  nom  

[m m ] [m m ] [m m ] [kN] [s] [kN/ s] [1/ s] 

S1 T1 10 5 Plain 1.00 3.8 4.1 0.9268 0.02 

S1 T2 10 5 Plain 1.00 4.8 0.08 60.00 1.3 

S1 T3 10 5 Plain 1.00 4.1 35 0.1171 0.007 

S1 T5 10 5 Plain 1.00 4.6 0.05 92.00 3.5 

S1 T6 10 5 Plain 1.00 4 0.02 200.0 8.2 

S1 T7 10 5 Plain 1.00 4.4 0.006 733.3 19.8 

S1 T8 10 5 Plain 1.00 4.5 0.005 900.0 21.7 

S1 T11 10 5 Plain 1.00 4.1 0.004 1600 30.66 

S1 T12 10 5 Plain 1.00 4.7 0.01 470.0 11.33 

S1 T9 10 5.2 0.38 2.93 5.4 22 0.2455 0.013 

S1 T10 10 5.2 0.38 2.93 6.7 0.004 1675 125 

S2 T1 10 5.2 0.38 2.93 6.8 0.007 971.4 52.15 

S2 T2 10 5.2 0.38 2.93 6.7 0.007 957.1 32.35 

S1 T17 10 5.21 1.38 1.69 4.6 29 0.1586 0.01 

S1 T18 10 5.21 1.38 1.69 6.2 0.003 2066.7 89.29 

S2 T5 10 5.21 1.38 1.69 5.3 21 0.2524 0.01 

S2 T6 10 5.21 1.38 1.69 5.1 16 0.3188 0.019 

S2 T7 10 5.21 1.38 1.69 6.7 0.007 957.1 61.59 

S2 T9 10 5.21 1.38 1.69 6.2 0.009 688.9 49.42 

S2 T10 10 5.21 1.38 1.69 6.9 0.007 985.7 56.43 

S2 T11 10 5.21 1.38 1.69 4.9 11 0.4455 0.03 

S2 T12 10 5.21 1.38 1.69 5.2 16 0.3250 0.017 

S2 T13 10 5.21 1.38 1.69 6 0.007 857.1 48.17 

S2 T14 10 5.21 1.38 1.69 5.9 0.009 655.6 42.62 

S1 T15 10 5 4.00 1.25 3.7 30 0.1233 0.01 

S1 T16 10 5 4.00 1.25 3.5 23 0.1522 0.01 

 
 

Table  1. Summary of the experimental results generated by testing plain and notched 
cylindrical samples of Al6063-T5. 
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Code  dg dn  r n  K t F f Tf F  nom  

[m m ] [m m ] [m m ] [kN] [s] [kN/ s] [1/ s] 

Ti-P1 9 7.6 plain 1.00 65.5 32.86 1.994 0.01 

Ti-P2 9 7.6 plain 1.00 65.6 30.55 2.147 0.01 

Ti-P3 9 7.6 plain 1.00 65.7 38.42 1.710 0.01 

Ti-P4 9 7.6 plain 1.00 67.3 3.25 20.71 0.1 

Ti-P5 9 7.6 plain 1.00 68.2 3.23 21.10 0.1 

Ti-P6 9 7.6 plain 1.00 67.6 3.13 21.60 0.1 

Ti-P7 9 7.6 plain 1.00 70.4 0.15 469.5 10 

Ti-P8 9 7.6 plain 1.00 70.6 0.26 271.6 10 

Ti-P9 9 7.6 plain 1.00 69.3 0.24 288.9 10 

Ti-B1 9 7.6 2.0 1.67 56.3 52.77 1.067 0.01 

Ti-B2 9 7.6 2.0 1.67 55.9 43.91 1.274 0.01 

Ti-B3 9 7.6 2.0 1.67 57.1 43.09 1.326 0.01 

Ti-B4 9 7.6 2.0 1.67 58.1 5.12 11.35 0.1 

Ti-B5 9 7.6 2.0 1.67 58.2 5.19 11.22 0.1 

Ti-B6 9 7.6 2.0 1.67 56.8 4.93 11.52 0.1 

Ti-B7 9 7.6 2.0 1.67 61.9 0.38 162.9 10 

Ti-B8 9 7.6 2.0 1.67 61.7 0.19 324.5 10 

Ti-B9 9 7.6 2.0 1.67 61.9 0.21 294.6 10 

Ti-I1 9 7.6 1.0 2.08 59.0 45.96 1.284 0.01 

Ti-I2 9 7.6 1.0 2.08 58.8 43.31 1.358 0.01 

Ti-I3 9 7.6 1.0 2.08 60.2 46.92 1.282 0.01 

Ti-I4 9 7.6 1.0 2.08 59.8 4.7 12.72 0.1 

Ti-I5 9 7.6 1.0 2.08 60.2 5.06 11.91 0.1 

Ti-I6 9 7.6 1.0 2.08 60.6 5.3 11.43 0.1 

Ti-I7 9 7.6 1.0 2.08 63.7 0.21 303.4 10 

Ti-I8 9 7.6 1.0 2.08 63.5 0.23 276.0 10 

Ti-I9 9 7.6 1.0 2.08 63.8 0.21 304.0 10 

Ti-S1 9 7.6 0.1 5.2 56.3 2.6·10-5 2.2·106 ≈104 

Ti-S2 9 7.6 0.1 5.2 71.2 2.7·10-5 2.6·106 ≈104 

 
Table  2 . Summary of the experimental results generated by testing plain and notched 

cylindrical samples of Ti-6Al-4V. 
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Code  dg dn  r n  K t F f Tf F  nom  

[m m ] [m m ] [m m ] [kN] [s] [kN/ s] [1/ s] 

AlMn-P1 9 7.6 plain 1.0 10.3 58.52 0.1752 0.01 

AlMn-P2 9 7.6 plain 1.0 10.2 87.78 0.1167 0.01 

AlMn-P3 9 7.6 plain 1.0 10.2 60.35 0.1690 0.01 

AlMn-P4 9 7.6 plain 1.0 10.5 4.12 2.560 0.1 

AlMnP5 9 7.6 plain 1.0 9.2 3.8 2.416 0.1 

AlMn-P6 9 7.6 plain 1.0 10.5 4.25 2.462 0.1 

AlMn-P7 9 7.6 plain 1.0 19.6 0.18 109.1 10 

AlMn-P8 9 7.6 plain 1.0 10.5 0.18 58.07 10 

AlMn-P9 9 7.6 plain 1.0 10.4 0.16 65.10 10 

AlMn-B1 9 7.6 2.0 1.67 8.2 44.79 0.1840 0.01 

AlMn-B2 9 7.6 2.0 1.67 8.1 57.64 0.1412 0.01 

AlMn-B3 9 7.6 2.0 1.67 7.4 54.75 0.1354 0.01 

AlMn-B4 9 7.6 2.0 1.67 8.4 4.11 2.054 0.1 

AlMn-B5 9 7.6 2.0 1.67 8.3 4.49 1.856 0.1 

AlMn-B6 9 7.6 2.0 1.67 8.4 4.5 1.857 0.1 

AlMn-B7 9 7.6 2.0 1.67 8.0 0.21 38.29 10 

AlMn-B8 9 7.6 2.0 1.67 7.1 0.2 35.72 10 

AlMn-B9 9 7.6 2.0 1.67 8.9 0.18 49.47 10 

AlMn-S1 9 7.6 0.1 5.2 5.0 5.8·10-5 8.6·104 ≈104 

 
Table  3 . Summary of the experimental results generated by testing plain and notched 

cylindrical samples of AlMn alloy. 
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Code  dg dn  r n  K t F f Tf     

[m m ] [m m ] [m m ] [kN] [s] [kN/ s] [1/ s] 

AlMg6-P1 9 7.6 plain 1.0 27.9 280.15 0.0996 0.01 

AlMg6-P2 9 7.6 plain 1.0 27.8 269.69 0.1031 0.01 

AlMg6-P3 9 7.6 plain 1.0 28.2 286.83 0.0982 0.01 

AlMg6-P4 9 7.6 plain 1.0 27.7 26.22 1.058 0.1 

AlMg6-P5 9 7.6 plain 1.0 27.7 26.98 1.027 0.1 

AlMg6-P6 9 7.6 plain 1.0 27.7 26.064 1.061 0.1 

AlMg6-P7 9 7.6 plain 1.0 26.2 0.31 84.5 10 

AlMg6-P8 9 7.6 plain 1.0 26.2 0.29 90.41 10 

AlMg6-P9 9 7.6 plain 1.0 26.1 0.32 81.47 10 

AlMg6-B1 9 7.6 2.0 1.67 21.4 245.18 0.0874 0.01 

AlMg6-B2 9 7.6 2.0 1.67 21.8 255.7 0.0853 0.01 

AlMg6-B3 9 7.6 2.0 1.67 21.9 248.2 0.0882 0.01 

AlMg6-B4 9 7.6 2.0 1.67 21.7 26.24 0.826 0.1 

AlMg6-B5 9 7.6 2.0 1.67 21.6 25.08 0.860 0.1 

AlMg6-B6 9 7.6 2.0 1.67 21.5 26.29 0.818 0.1 

AlMg6-B7 9 7.6 2.0 1.67 20.9 0.32 65.31 10 

AlMg6-B8 9 7.6 2.0 1.67 21.4 0.32 66.84 10 

AlMg6-B9 9 7.6 2.0 1.67 21.0 0.32 65.72 10 

AlMg6-I1 9 7.6 1.0 2.08 21.7 228.54 0.09 0.01 

AlMg6-I2 9 7.6 1.0 2.08 21.4 220.5 0.10 0.01 

AlMg6-I3 9 7.6 1.0 2.08 21.3 224.77 0.09 0.01 

AlMg6-I4 9 7.6 1.0 2.08 21.5 24.46 0.88 0.1 

AlMg6-I5 9 7.6 1.0 2.08 21.3 22.88 0.93 0.1 

AlMg6-I6 9 7.6 1.0 2.08 21.2 22.82 0.93 0.1 

AlMg6-I7 9 7.6 1.0 2.08 21.1 0.3 70.30 10 

AlMg6-I8 9 7.6 1.0 2.08 21.1 0.3 70.37 10 

AlMg6-I9 9 7.6 1.0 2.08 21.5 0.33 65.091 10 

 
 

Table  4 . Summary of the experimental results generated by testing plain and notched 
cylindrical samples of AlMg6. 
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w g w n  r n  
K t 

  
30 1XH René-4 1  Je t-10 0 0 

n ,f n ,f n ,f 

[m m ] [m m ] [m m ] [m m / s] [MPa] [MPa] [MPa] 

12.7 12.7 plain 1.0 0.002 1392.1 1379.0 1410.7 

12.7 12.7 plain 1.0 0.021 1390.7 1347.2 1407.2 

12.7 12.7 plain 1.0 0.423 1393.4 1363.8 1413.4 

12.7 12.7 plain 1.0 3.387 1405.2 1368.6 1508.6 

25.4 15.24 0.05 14.7 0.002 1481.0 1132.8 1732.0 

25.4 15.24 0.05 14.7 0.021 1529.9 1157.6 1676.1 

25.4 15.24 0.05 14.7 0.423 1522.4 1194.2 1692.7 

25.4 15.24 0.05 14.7 3.387 1212.8 909.4 1737.5 

25.4 15.24 0.25 6.8 0.002 1522.4 1254.8 1709.9 

25.4 15.24 0.25 6.8 0.021 1510.0 1300.4 1732.0 

25.4 15.24 0.25 6.8 0.423 1521.7 1291.4 1737.5 

25.4 15.24 0.25 6.8 3.387 1270.0 992.8 1748.5 

25.4 15.24 1.27 3.3 0.002 1532.7 1373.4 1816.1 

25.4 15.24 1.27 3.3 0.021 1516.8 1363.8 1799.5 

25.4 15.24 1.27 3.3 0.423 1482.4 1421.0 1760.2 

25.4 15.24 1.27 3.3 3.387 1263.1 1174.2 1782.3 

25.4 15.24 4.95 1.9 0.002 1521.7 1442.4 1737.5 

25.4 15.24 4.95 1.9 0.021 1516.8 1450.7 1743.0 

25.4 15.24 4.95 1.9 0.423 1503.1 1443.8 1760.2 

25.4 15.24 4.95 1.9 3.387 1256.9 1462.4 1720.9 

 
Table  4 . Summary of the results generated by Brisbane [51] by testing plain and V-notched 

flat samples of 301XH Stainless steel, René-41 Alloy, and Jet-1000 Steel. 
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Figures  
 
 

 

 

 
 

Figure  1. Definition of the local systems of coordinates (a). Effective stress, eff, calculated 
according to the Point Method (b), Line Method (c), and Area Method (d). Determination of 

length scale parameter L and inherent strength 0 through experimental results generated by 
testing notches of different sharpness (e). 
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Figure  2 . f vs. Z  and KId vs. Z  relationships determined by post-processing experimental 
data taken from the technical literature.
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Figure  3 . Geometries of the samples of Al6063-T5 tested at the University of Sheffield (dimensions in millimetres). 
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(a)  

 

 
(b)  

 
Figure  4 . Experimental rig used to test the notched cylindrical samples of Al6063-T5 (a); 

force vs. time and nominal strain vs. time curve for test S1 T18 (b).
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Figure  5. Geometries of the samples tested in the laboratory of the Institute of Continuous Media Mechanics UB RAS, 
Perm, Russia (dimensions in millimetres). 
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(a) 

(b)  

(c)  
 

Figure  6 . Local linear-elastic stress fields, in the incipient failure condition, under quasi-

static loading ( F ≈0.15 kN/s, nom ≈0.01 1/s) for notched Al6063-T5 (a); accuracy of the TCD 

applied in terms of both loading rate (b) and nominal strain rate (c) in predicting the 
strength of notched Al6063-T5. 
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(a) 

(b)  

(c)  

(d)  
 

Figure  7. Local linear-elastic stress fields, in the incipient failure condition, 
under nom =0.01 1/s (a) and nom =104 1/s (b) for notched Ti-6Al-4V; accuracy of 

the TCD in predicting the strength of notched Ti-6Al-4V (c, d).  
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(a)  

(b)  

(c)  

(d)  
Figure  8 . Local linear-elastic stress fields, in the incipient failure condition, 

under nom =0.01 1/s (a) and nom =104 1/s (b) for notched AlMn alloy; accuracy of 

the TCD in predicting the strength of notched AlMn alloy (c, d). 
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(a) 

(b)  

(c)  

(d)  
Figure  9 .  Local linear-elastic stress fields, in the incipient failure condition, under  

nom =0.01 1/s (a) and nom =104 1/s (b) for notched AlMg6; accuracy of the TCD in 

predicting the strength of notched AlMg6 alloy (c, d).  
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Figure  10 . Local linear-elastic stress fields, in the incipient failure condition, 

under  =0.002 mm/s and  =3.387 mm/s for notched metallic materials 
301XH, René-41, and Jet-1000 (data taken from Ref. [51]). 
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Figure  11. Accuracy of the TCD in predicting the strength of notched metallic materials 
301XH, René-41, and Jet-1000 (data taken from Ref. [51]). 
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