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Abstract  

Inherited thrombocytopenias are a rare heterogeneous group of disorders 

characterised by a low platelet count and sometimes associated with excessive 

bleeding, ranging from mild to severe.  A cohort of 36 patients and 17 family 

members all displaying a reduced platelet count were recruited to the UK-GAPP 

(Genotyping and Phenotyping of Platelets) study.  All patients had a history of 

excessive bleeding.  Critically, all major known causes of inherited thrombocytopenia 

(e.g. MYH9-related disorder, Bernard Soulier syndrome and Wiskott-Aldrich 

syndrome), had been ruled out prior to enrolment.  Platelet phenotyping and whole 

exome sequencing was performed on all patients, resulting in identification of 

mutations in the novel gene SLFN14 in 12 patients from three unrelated families. All 

patients displayed an analogous phenotype of moderate thrombocytopenia, enlarged 

platelets, decreased ATP secretion upon stimulation with platelet agonistsmeasured 

by lumiaggregometry and a dominant inheritance pattern. SLFN14 codes for a 

protein of unknown function, Schlafen family member 14 (SLFN14). Three 

heterozygous missense mutations predicting p.K218E, p.K219N, p.V220D 

substitutions within an ATPase-AAA-4, GTP/ATP binding region were identified in 

affected but not unaffected family members. Platelets from all three families had a 

marked reduction in expression of endogenous SLFN14.  This corresponded with 

expression studies in HEK293T cells which demonstrated a significant reduction in 

all three mutants relative to the wild type protein, suggesting instability.  Electron 

microscopy studies demonstrated a significant reduction in the number of dense -

granules in  patient platelets from affected patients relative to those from healthy 

volunteers healthy control platelets, correlating with a decrease in measuredd ATP 

secretion using lumiaggregometryphenotype. Together these results identify 
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mutations in SLFN14 as causeative for an inherited thrombocytopenia and significant 

bleeding, outlining a fundamental role for SLFN14 in platelet formation and 

megakaryopoiesis.  
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Introduction  

Inherited thrombocytopenias are a group of heterogeneous disorders associated with 

bleeding of varying severity depending both on the reduction in platelet count and 

whether there is associated altered qualitative platelet function (1). The normal range 

of platelet count in humans is wide (150-400x109/L), but platelet count is normally 

maintained within a narrow range for each individual. This homeostasis requires a 

constant balance between thrombopoiesis, which is primarily controlled by the 

cytokine thrombopoietin (TPO), and platelet senescence and consumption. Heritable 

forms of thrombocytopenia are usually caused by mutations in genes involved in 

platelet production and megakaryocytic differentiation. Just over 20 forms of 

inherited thrombocytopenia have been described to date in OMIM 

(http://www.ncbi.nlm.nih.gov/omim), however in approximately 50% of patients with 

an inherited thrombocytopenia a causative gene remains to be identified (2, 3).  

Identification of such genes is fundamental to providing information on proteins 

involved in normal platelet physiology and is critical for developing our understanding 

of disease pathogenesis.   

To date the UK-GAPP Study (4) has investigated over 500+ patients 

displaying platelet dysfunction associated with excessive bleeding of unknown 

aetiology, and has identified a platelet defect in approximately 60% of participants.  A 

key criterion for recruitment is that known genetic causes of platelet dysfunction have 

been ruled out on the basis of functional studies and targeted gene sequencing. 

Platelets from patients recruited to this study undergo extensive phenotypic analysis, 

including lumiaggregometry ation to a variety of platelet agonists and detailed 

analysis of platelet number and morphology. This phenotypic analysis is then 

followed by Whole Exome Sequencing (WES) which has greatly enhanced the 
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probability and speed of identifying novel causative gene mutations in such 

conditions (5-7). In this study, we demonstrate how combined phenotyping and 

genotyping has enabled us to identify three single nucleotide variations in a novel 

gene SLFN14,  predicting substitutions of three consecutive amino acids in SLFN14, 

in three unrelated families displaying a moderate form of congenital 

thrombocytopenia and a strong bleeding history.  In all individuals in which these 

mutations were found the bleeding history was more severe than would have been 

predicted on platelet count alone and was associated with a similar reduction in 

platelet count, reduced aggregation and ATP secretion to several platelet agonists 

including ADP, collagen and a PAR-1-activating peptide. This phenotyping and 

genotyping approach has identified SLFN14 as causative gene for a new form of 

platelet thrombocytopenia. 

 

Results and Discussion  

There are approximately 3,000 patients with platelet function disorders associated 

with excessive bleeding within the UK Comprehensive Care Haemophilia Centres, of 

which approximately 10% have a reduced platelet count. A candidate gene mutation 

has not been identified in approximately 50% of these patients.  Over the course of 

the last 6 years, we have recruited over 500+ patients from 25 (~2/3rds) UK 

Haemophilia Care Centres with excessive bleeding and suspected platelet function 

disorders to the UK-GAPP Study. 60 (13%) of these patients have been classified as 

having a low platelet count of unknown cause. The combination of a strong family 

history of low platelet count and significant bleeding platelet function defect allowed 

us to prioritise these for gene identification studies. WES was performed and 

analysis was undertaken in 53 patients (36 index cases) who had reduced platelet 
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counts ranging from 15-140 x 109/l. Family A had 9 affected  members over three 

generations with a strong history of bleeding and moderate thrombocytopenia with 

platelet counts ranging from 74-140 x 109/l (Figure 1A and Table 1). The proband, 

IV:4, was aged 31 years and had a platelet count of 100x109/l when entered into the 

study.  She had a history of frequent and severe cutaneous bruising, prolonged 

bleeding from minor wounds, menorrhagia, postpartum haemorrhage and 

spontaneous muscle haematoma. Several other members of family A also had 

significant bleeding histories and moderate thrombocytopenia (Table 1). 

The gold-standard test for platelet function testing is Born aggregometry, but 

increased information can be obtained by real-time measurement of secretion of 

ATP (lumiaggregometry) (8). We tested affected members of family A (III:2, III:3, 

IV:2, IV:4 and IV:5) and observed reduced aggregation to ADP (10 and 30µM), 

collagen (3µg/ml and 10µg/ml) and PAR-1 activating peptide (100 µM) with reduced 

ATP secretion (Figure 2, A-B). The similar platelet phenotype in the affected 

individuals of family A was consistent with a dominant mode of inheritance. 

Sequencing of the exomes of DNA from IV:2, IV:4 and III:3 in family A 

revealed 22867, 23334 and 23153 sequence variations, respectively. Comparisons 

with dbSNP build 135, the 1000 Genomes project database and our in-house 

database (composed of >600 exomes) identified 124, 137 and 128 heterozygous 

novel variants, respectively. Of these only 8 variants were shared by the 3 affected 

patients of which 4 were significant including 3 non-synonymous variants and 1 

frameshift deletion. Sanger sequencing of these remaining 4 variants in all 

individuals in family A left two remaining candidate variants in NEMF (p.H962Y) and 

SLFN14 (p.V220D) that segregated with disease (Supplementary Table 1). The 

exomes of the further 35 index patients with thrombocytopenia and/or secretion 
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defects who had been recruited to the UK-GAPP study were scrutinised for novel 

variants in either the NEMF or SLFN14 genes. Two further heterozygous missense 

variants were identified in SLFN14 in affected members of family B (p.K219N) and 

family C (p.K218E) (Table 1 and Figure 1, A-B). Strikingly, all three missense 

mutations were predicted to result in substitutions in a three amino acid stretch of the 

ATPase-AAA-4 domain of the protein encoded by SLFN14, schlafen family member 

14 (Figure 1B).  Furthermore the three SLFN14 variants are not present in 

the Exome Aggregation Consortium dataset of 61,486 unrelated individuals 

sequenced as part of various disease-specific and population genetic studies 

(http://exac.broadinstitute.org/gene/ENSG00000236320) and the latest version of 

dbSNP138.  

Affected members of families B and C had remarkably similar platelet counts 

and platelet function defects. Family B included three patients, two of whom were 

recruited to the study (I:2, II:3). The proband in family B (II:3) was 35 years old when 

recruited to the study and had a platelet count of  68x109/l with  a history of 

spontaneous epistaxis starting in childhood.  Her mother (I:2) had a platelet count in 

whole blood of 83x109/L with a less severe bleeding history. The platelet count in II:3 

was too low for lumiaggregometry (8) and so platelet function was analysed by flow 

cytometry for P-selectin expression, revealing reduced responses to CRP and PAR-

1 peptide (Table 1). In line with this, lumiaggregometry on I:2 revealed 

deaggregation to ADP, collagen and PAR-1 and reduced ATP secretion (Table 1). 

These results are similar to those seen in affected members of family A (Figure 2A-

B).  

The index case in family C, II:2 was aged 3 years at the time of enrolment. His 

platelet count in whole blood was 89x109/l and he was noted to bruise easily from a 

http://exac.broadinstitute.org/gene/ENSG00000236320
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young age. The lumiaggregometry findings in this patient are similar to those of other 

study participants from families A and B with a selective loss of response to ADP, 

collagen and PAR-1 and normal responses to arachidonic acid (Table 1, Figure 2, 

Supplementary figure 1).   

 In humans and mice SLFN14 is located in a SLFN cluster with other schlafen 

paralogues (9). Members of the SLFN gene family are highly conserved amongst 

mammalian species and lower vertebrates, and even in viruses. SLFN family 

proteins contain a unique motif of unknown function, the “SLFN box” and an AAA 

domain. The AAA+ domain consists of a P-loop NTPase which is implicated in 

ATP/GTP binding and hydrolysis (10). The SLFN family membersy are divided into 

three groups.  SLFN 5, 8, 9, 10 and 14 all belong to group 3, although SLFN14 is 

unique in containing a putative nuclear localisation RKRRR motif in its C-terminus 

extension (10). The SLFN family of proteins have been suggested to be critical for a 

variety of processes including cell-cycle regulation, proliferation and differentiation 

(10-14), however there is no published data about the function of SLFN14.  

Rowley et al., 2011 (15) previously described SLFN14 mRNA expression in 

human and murine platelets. We also identified expression of SLFN14 mRNA and 

protein in immature and mature megakaryocytes derived from CD34+ hematopoietic 

progenitor cells isolated from cord blood (Supplementary Figure 2). Expression of 

SLFN14 protein was confirmed by Western blotting of platelets from 11 healthy 

individuals, normalized for GAPDH loading control (Supplementary Figure 3). Levels 

of SLFN14 in healthy volunteers ranged from 1.0 to 2.3 arbitrary units (mean 1.5, 

95% CI 1.2 to 1.8).                   

The effect of the SLFN14 variants on protein expression in platelets from 

affected family members was investigated by Western blotting (Figure 3A).  Platelet 

Field Code Changed
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lysates from carriers of the three SLFN14 variants showed a 65-80% reduction in 

SLFN14 protein expression when compared to control platelets (Figure 3 A-B).  

Patient III:2 from family A expressing the p.V220D mutation demonstrated a 

reduction in SLFN14 expression to ~24% of control (Pӊ0.001), both patients I:2 and 

II:3 from family B expressing the K219N mutation showed a reduction to 33% (Pӊ

0.005) and 34% (Pӊ0.001) respectively, and patient II:2 from family C expressing the 

K218E mutation showed a decrease to 19% (Pӊ0.001). This reduction in SLFN14 

levels in all three patients is over 50% despite the heterozygosity suggesting that the 

mutant gene/protein influences the translation of mRNA or stability of the wild type 

protein (e.g. due to protein dimerization).  Significantly, the reduction in SLFN14 

levels in platelets from carriers of the SLFN14 variants was confirmed in 

overexpression studies, where despite there being no significant difference in 

transfection efficiency, average field of view intensity measurements and western 

blot analysis demonstrated a significant reduction in expression of all SLFN14 

variant constructs compared to the wild type construct i.e. SLFN14(K218E)-myc, 

SLFN14(K219N)-myc and SLFN14(V220D)-myc expression was reduced to 5%, 8% 

and 52% of SLFN14(WT)-myc expression respectively (Supplementary Figure 4).  

The much larger reduction in both SLFN14(K218E)-myc and SLFN14(K219N)-myc 

expression may be a result of increased instability in these mutations in comparison 

to the SLFN14(V220D)-myc. 

Expression of SLFN14(WT)-myc in HEK293T cells revealed a punctate 

structure localized throughout the cytoplasm, with low level nuclear punctate staining 

also observed.  No significant difference in protein localization was observed 

between overexpression of all SLFN14 mutants and the wild type construct 

(Supplementary figure 5).      
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 The morphology of platelets derived from patients carrying heterozygous 

SLFN14 mutations was examined by transmission electron microscopy (TEM). 

Compared with healthy control platelets from healthy volunteers the number of 

alpha-granules and other organelles present per platelet section showed a small 

increase but this was not statistically significant (Supplementary Figure 6).  A small 

increase in platelet area was also observed corresponding with data shown in Table 

1, however a statistically significant increase was only observed in patient I:2 of 

Family B (Pӊ0.005).  When alpha granule number was normalized to account for 

surface area, no significant difference was observed (Figure 3C and D).  

Whole mount electron microscopy was utilized in order to quantify electron 

dense granules (dense granules) within platelets of both affected patients and 

healthy control plateletsvolunteers.  A significant reduction in the number of dense-

granules was observed in patient platelets from families A and B, patients IV;4 and 

II:3 respectively (Figure 3E and F).  Decreased platelet dense granule contentThis 

observation correlates with boththe reduced ATP secretion measured by 

lumiaggregometry (Figure 2). Spreading of platelets on fibrinogen was not 

significantly different in platelets between affected individuals and healthy controls 

(Supplementary figure 7).  

Finally, we examined megakaryocytes derived from CD34+ cells isolated from 

the peripheral blood of patients or healthy donors.  We saw no significant difference 

in the level of ploidy between megakaryocytes derived from healthy donors or 

patients from Family A (patient IV;4) or Family B (patient II:3) (Supplementary figure 

8).  Proplatelet formation was also examined and a small but significant decrease in 

the number of megakaryocytes bearing tubulin positive proplatelet-like extensions 

was reduced from ~20% in control megakaryocytes to ~11% in patient A IV;4, a non-
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significant reduction to ~16% was observed in megakaryocytes derived from patient 

II:3 from family B.  This data may be indicative of decreased proplatelet formation in 

patients carrying heterozygous SLFN14 mutations. 

 To further investigate the effect of SLFN14 on ploidy levels, DAMI cells were 

treated with siRNAs against SLFN14 (SLFN14-s50927 and SLFN14- s50928) or with 

a non-silencing control (control-siRNA). SLFN14 mRNA levels were reduced by 50% 

in DAMI cells  for both siRNAs (Supplementary figure 9). However knockdown of 

siRNA by SLFN14 did not effect ploidy levels after 72 hours when compared with 

control cells (control-siRNA transfection), corresponding with findings in patient 

derived megakaryocytes. 

In summary we report 3 unrelated families with a dominantly inherited 

moderate thrombocytopenia with more severe bleeding than would have been 

predicted from their platelet count alone. We have used a combination of extensive 

platelet phenotyping and WES to identify three mutations in a novel gene, SLFN14 

that underlies a moderate thrombocytopenia and platelet secretion defects. The 

patients have a distinct platelet phenotype with loss of responses to ADP, collagen 

and PAR1. Together the reduced aggregation to ADP, collagen and PAR-1 may 

points towards a defect in the Gi signalling pathway. A reduction in  dense granule 

secretion may also result in a loss of positive feedback during platelet activation. 

Patient platelets from affected patients display a relatively normal ultra-structure 

howeverbut show a significant reduction in dense granule number, correlating with 

secretorylumiaggregometry data showing decreased ATP secretion and storage.  

Finally analysis of megakaryocytes isolated from patient peripheral blood show 

decreased proplatelet formation in comparison to control megakaryocytes.  This 
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study is the first description of a major role for SLFN14, in human disease and 

suggests that it has a critical function in platelet formation and megakaryopoiesis.    
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Methods 

Extensive methods are detailed in supplementary methods.  

 

Study approval 

The GAPP study was approved by the National Research Ethics Service Committee 

West Midlands – Edgbaston (REC reference: 06/MRE07/36) and participants gave 

written informed consent in accordance with the Declaration of Helsinki. This study 

was registered at www.isrctn.org as #ISRCTN 77951167. The GAPP study is 

included in the National Institute of Health Research Non-Malignant Haematology 

study portfolio, ref 9858. 
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Table 1 

Family 

/Patient 

ID 

SLFN14 

nucleotide 

alteration 

¥ 

Effect on 

SLFN14 

Protein 

Platel

et 

count 

(x10
9
/

L)^ 

Mean 

Platel

et 

Volum

e (fL) 

(7.83-

10.5)^ 

ISTH 

BAT 

scor

e ȥ 

Lumiaggregometry/ 

Flow cytometry 

defects 

ATP 

Secreti

on  

nmol/1

x10
8 

platele

ts* 

Family 

A; II:1 

c.659 T>A p.Val220Asp NA NA NA NA 

 

NA 

Family 

A; III:2 

c.659 T>A p.Val220Asp 140 9.1  5 ADP (10, 30, 100 ȝM)  

collagen (1, 3 µg/ml) 

PAR-1 (100 ȝM) 

0.81  

Family 

A; III:3 

c.659 T>A p.Val220Asp 74 10.4 10 ADP (10 ȝM)  

collagen (3 µg/ml) 

PAR-1 (30 ȝM) 

0.42 

Family 

A; IV:2 

c.659 T>A  p.Val220Asp 110 9.3 13 ADP (10, 30 ȝM) 

collagen (1, 3 µg/ml) 

PAR-1 (100 ȝM) 

ND 

Family 

A; IV:4 

c.659 T>A p.Val220Asp 100 11.1 22 ADP (30 ȝM),  

collagen (3 µg/ml)  

PAR-1 (100 ȝM)  

0.28  

Family 

A; IV:5 

c.659 T>A p.Val220Asp 116 11.2 

 

21 ADP (10 ȝM) 

collagen (3 µg/ml) 

PAR-1 (30 ȝM) 

0.48  

Family 

B; II:3 

c.657 A>T p.Lys219Asn 68 11.9 20 Flow cytometry 

reduced responses to 

high conc. CRP and 

PAR-1 

NA 

Family 

B; I:2 

c.657 A>T p.Lys219Asn 83 11.9 13 ADP (10, 30 ȝM),  

collagen (3, 10 µg/ml) 

PAR-1 (100ȝM) 

0.63  

Family 

C; II:2 

c.652 A>G p.Lys218Glu 89 13.0 NA ADP (10, 100 ȝM) 

collagen (1, 3 µg/ml)  

PAR-1 100 ȝM 

0.12 

 

Heterozygous nucleotide changes present in SLFN14 and their predicted effects on the resulting 
protein are shown. Index cases are indicated in bold font; ¥ Alterations are numbered according to 
positions in the NM_001129820; ^Mean platelet counts are shown, normal reference range is 150-400 
x 10

9
 platelets/L, thrombocytopenia is defined as platelet count <150 x 10

9 
platelets/L; ȥ ISTH 
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bleeding assessment tool score, 95
th
 percentile (score of 4) calculated from healthy volunteers (16); 

*ATP secreted in response to 100 M PAR-1 receptor specific peptide SFLLRN, 5th centile in healthy 
volunteers is 0.82 nmol / 1x10

8
 platelets. ND= not detectable. NA= not available 
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Figures and legends 

Figure 1 

 

 

Figure 1. Identification of SLFN14 mutations in 3 unrelated families with a 

dominant form of thrombocytopenia.  (A) Pedigrees from 3 families with moderate 

thrombocytopenia. Affected individuals are shaded, in some individuals the platelet 

count is not known (?). Asterisks indicate those patients whose exomes were 

sequenced. Representative Sanger sequencing electropherograms confirming the 

presence of the SLFN14 mutations in patients are shown below the relevant families. 

Black arrows indicate the nucleotide change. SLFN14 mutation status is shown for 

individuals that were genotyped as +/- for heterozygous state or -/- for wild type state 

(B) Linear domain organisation of SLFN14 protein showing the amino acid position 

of each of the 3 different missense SLFN14 mutations (K218E, K219N, V220D) 

located in the ATPase-AAA-4 domain and conservation of the protein in higher order 

species.  
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Figure  2  

 

  

Figure 2. Platelet phenotyping of patients from the 3 families with SLFN14 

mutations (A) Impaired aggregation in PRP from patients represented from of each 

of the 3 families (Family A; IV:4, Family B; III:3, Family C; II:2 and representative 

control) following lumiaggregometry performed on native undiluted PRP to assess 

percentage aggregation after stimulation with ADP (10M), collagen (3g/ml) and 

PAR1-peptide (100M). (B) Reduced ATP secretion from dense granules in 

representative patients from each of the 3 families using Chronolume® after 

stimulation with PAR1-peptide (100M). (C) Flow cytometric assessment of platelet 

function in PRP from patient III.2 from family A. Responses to different agonists are 

determined using anti-CD62P. Data for healthy volunteers shown as mean + SD 

(n=9). Isotype control = IgGk1.  Data for healthy volunteers 1 in 3 dilution (with PBS) 

shown to demonstrate expected effect of moderate thrombocytopenia alone on this 

assay.  
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Figure 3 

Figure 3. Functional characterisation of SLFN14 in patient platelets. (A) 

Western blot analysis of both healthy control and patient platelet lysates, 

demonstrating significantly decreased SLFN14 protein levels in platelets from 

carriers of the SLFN14 variants when compared with platelets from healthy 

individuals.  (B) Quantification of 4 repeats of the experiments shown in A, **Pӊ0.005 

and ***Pӊ0.001 when compared to control. (C) Transmission electron micrographs of 

patient platelets showing normal morphology in comparison to healthy control 

platelets.  (D) Quantification of (C) demonstrating no significant difference in alpha 

granule number per µm2 between patient and heathy control platelets.  (E) 

Quantification of whole mount EM images of patient/health donor platelets (F) 

showing a reduction in the number of dense granules in patient platelets from 

affected patients in comparison to those from healthy volunteerscontrols, *Pӊ0.05 

and ***Pӊ0.001 when compared to control. At least 40 platelets analysed per patient/ 

healthy volunteercontrol. All values are mean ± SD.   
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