
Atmos. Meas. Tech., 8, 3985–4000, 2015

www.atmos-meas-tech.net/8/3985/2015/

doi:10.5194/amt-8-3985-2015

© Author(s) 2015. CC Attribution 3.0 License.

Fuzzy logic filtering of radar reflectivity to remove

non-meteorological echoes using dual polarization

radar moments

D. R. L. Dufton1,2 and C. G. Collier1,2

1Institute for Climate and Atmospheric Science, University of Leeds, Leeds, UK
2National Centre for Atmospheric Science, University of Leeds, Leeds, UK

Correspondence to: D. R. L. Dufton (eedrld@leeds.ac.uk)

Received: 15 April 2015 – Published in Atmos. Meas. Tech. Discuss.: 18 May 2015

Revised: 12 August 2015 – Accepted: 16 September 2015 – Published: 1 October 2015

Abstract. The ability of a fuzzy logic classifier to dynam-

ically identify non-meteorological radar echoes is demon-

strated using data from the National Centre for Atmospheric

Science dual polarisation, Doppler, X-band mobile radar.

Dynamic filtering of radar echoes is required due to the vari-

able presence of spurious targets, which can include insects,

ground clutter and background noise. The fuzzy logic classi-

fier described here uses novel multi-vertex membership func-

tions which allow a range of distributions to be incorporated

into the final decision. These membership functions are de-

rived using empirical observations, from a subset of the avail-

able radar data. The classifier incorporates a threshold of cer-

tainty (25 % of the total possible membership score) into the

final fractional defuzzification to improve the reliability of

the results. It is shown that the addition of linear texture

fields, specifically the texture of the cross-correlation coef-

ficient, differential phase shift and differential reflectivity, to

the classifier along with standard dual polarisation radar mo-

ments enhances the ability of the fuzzy classifier to identify

multiple features. Examples from the Convective Precipita-

tion Experiment (COPE) show the ability of the filter to iden-

tify insects (18 August 2013) and ground clutter in the pres-

ence of precipitation (17 August 2013). Medium-duration

rainfall accumulations across the whole of the COPE cam-

paign show the benefit of applying the filter prior to making

quantitative precipitation estimates. A second deployment at

a second field site (Burn Airfield, 6 October 2014) shows the

applicability of the method to multiple locations, with small

echo features, including power lines and cooling towers, be-

ing successfully identified by the classifier without modifica-

tion of the membership functions from the previous deploy-

ment. The fuzzy logic filter described can also be run in near

real time, with a delay of less than 1 min, allowing its use on

future field campaigns.

1 Introduction

Weather radars (henceforth just radar) are a major compo-

nent of many national weather services’ capabilities, and

the introduction of dual polarisation across these networks

presents the opportunity to further improve the quality of

the data available from these radar. With the ever increasing

availability of high-resolution weather forecasting models

and multi-dimensional flood models, high-resolution quan-

titative precipitation estimates (QPE) are in great demand

for the assimilation of boundary conditions, output valida-

tion and hydrological hindcasting. Given the high spatial and

temporal resolution of these models, the current status quo of

interpolated rain gauge data (Shao et al., 2012; Rauthe et al.,

2013; Mariani et al., 2014) or gauge-adjusted radar data (Col-

lier, 1986; Löwe et al. , 2014, for example) present a high de-

gree of uncertainty, which should be lessened by establishing

the use of dual polarisation radar QPE (Villarini and Kra-

jewski, 2010). One of the benefits of dual polarisation QPE

lies in correcting the many sources of uncertainty present

in weather radar measurements, particularly attenuation, un-

certain rainfall–reflectivity relationships, beam blockage and

spurious echoes.

One of the most prevalent sources of uncertainty in radar

data is the contamination of returns by spurious echoes, par-
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ticularly ground clutter (echoes produced when the beam in-

tersects the ground, including buildings and vegetation). This

is often intensified by anomalous beam propagation (AP)

where the radar beam is refracted towards the ground by

strong gradients in the refractive index of the atmosphere.

Other sources of non-meteorological echoes include biolog-

ical scatterers (typically insects and birds), sea-clutter and

chaff. Removing these spurious echoes is possible using ei-

ther static techniques for known clutter, signal-level correc-

tion of the return pulse (Torres and Zrnić, 1999; Nguyen

et al., 2008) or dynamic filtering of the single polarisation

(Steiner and Smith, 2002) or dual polarisation moment data

(Chandrasekar et al., 2013). Static maps, usually developed

over time with summary statistics, are reasonably success-

ful at removing the effect of ground clutter (Harrison et al.,

2014, 2000), yet are insufficient when AP increases the area

of the returns and cannot remove echoes from other, non-

meteorological sources. Dynamic systems that respond to

the variation in ground clutter returns have been developed

as a response to these issues. Signal level, spectral filtering

of the raw IQ data received by the radar is one approach

to this problem (Doviak and Zrnić, 1984). As ground clut-

ter has a near-zero Doppler velocity and a narrow spectral

width the returns from clutter can be removed, however this

can lead to the removal of weather echoes which also have

zero radial velocity, along the so-called zero-velocity isodop

(Hubbert et al., 2009). Both of these schemes also fail to ac-

count for other sources of spurious echoes. Dynamic filtering

using dual polarisation moments presents itself as a capa-

ble solution, as it can account for the zero-velocity isodop

and identify other non-meteorological targets, such as in-

sects. One noticeable feature of these spurious returns is the

ease at which they can be identified by eye, particularly on

a clear day, while they also have distinct polarimetric signa-

tures which aid their identification.

1.1 Polarimetric signatures of typical radar echoes

Dual polarisation radars, transmitting horizontally and ver-

tically aligned signals, allow more detailed observations of

the atmosphere than those transmitting along a single plane.

Here we present a review of the polarimetric signatures from

typical radar echoes, focusing on those variables available

for this study, which will contribute to the identification of

radar echoes. For a more detailed description of how dual po-

larimetry functions see Bringi and Chandrasekar (2001) for

example.

1.1.1 Differential reflectivity (ZDR)

Differential reflectivity (the observed difference between the

horizontally and vertically polarized reflectivity measure-

ments), was first proposed as a method of observing rainfall

by Seliga and Bringi (1976), with the aim being to quan-

tify the rainfall drop size distribution. Due to the oblate

spheroidal shape of falling raindrops, they produce a low

positive reflectivity shift in the horizontal, relative to the ver-

tical, which is proportional to their size. Scattering simula-

tions and field measurements show that ZDR ranges from

0.2 dB in very light drizzle to over 4.5 dB for very large rain

drops (greater than 4 mm diameter) (Seliga and Bringi, 1978;

Hall et al., 1984; Balakrishnan and Zrnić, 1990, for exam-

ple). As drop size diameter increases non-Rayleigh scattering

can occur, this effect happens sooner at shorter radar wave-

lengths. This effect is most prevalent at C-band, with strong

resonance above 4.5 mm while X-band experiences minor

resonance at around 3–4 mm diameter (Ryzhkov and Zrnić,

2005).

Mueller and Larkin (1985) made the first dual polarisa-

tion observations of insects, using the S-band CHILL radar.

Earlier, single polarisation, observations had successfully at-

tributed some clear air radar echoes to both insect and bird

targets (Plank, 1956; Harper, 1958, for example). The dual

polarisation observations show ZDR to be a function of insect

orientation, ranging from 0.5 dB if the insects are aligned ra-

dially (head-on/tail-on) to the radar, increasing to 5 dB when

viewed azimuthally (broadside) to the radar. More recent

studies have confirmed these results with a range of radar

systems, with the typical reported insect ZDR range being 2–

9 dB (Zrnić and Ryzhkov, 1998; Chilson et al., 2012).

In contrast, ground clutter returns have no obvious ZDR

signature, being broadly distributed, with an average value

of 0 dB (reported in Zrnić and Ryzhkov, 1999; Zrnić et al.,

2006, for example).

1.1.2 Copolar cross correlation coefficient (ρHV)

The copolar cross correlation coefficient (the correlation be-

tween the horizontal and vertical received powers within

a pulse volume) is another parameter often used as a discrim-

inator between precipitation and non-meteorological echoes

(Zrnić and Ryzhkov, 1999; Chandrasekar et al., 2013). Me-

teorological echoes return a ρHV of greater than 0.8, with

pure phase echoes (rain/snow only) returning much greater

ρHV values (> 0.97 for pure rain) (Balakrishnan and Zrnić,

1990). However, biological scatterers and ground targets re-

turn a much lower cross-correlation, typically less than 0.7

(Zrnić and Ryzhkov, 1998; Zrnić et al., 2006).

1.1.3 Differential phase shift (9DP)

The total differential phase shift (the observed phase dif-

ference between the received horizontal and vertical pulses)

contains two components, the backscatter differential phase

(δ) and the propagation differential phase 8DP (Bringi and

Chandrasekar, 2001) and may also contain the transmitted

system offset between the pulses. Large backscatter differ-

ential phase shifts are known to occur as a result of insects

and birds (Zrnić and Ryzhkov, 1998), and also ground clut-

ter (Zrnić et al., 2006). Meanwhile, propagation differential
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phase is near zero in light precipitation, scaling smoothly

with volume concentration of meteorological scatterers, of-

ten being converted to specific differential phase (the range

derivative) for hydro-meteorological applications. Therefore,

where 8DP is observed to be monotonically increasing with

low noise, rainfall can be inferred, while variable signals with

large fluctuations are indicative of non-meteorological scat-

terers.

1.2 Artificial intelligence filtering of returns using

radar signatures

These distinctive polarimetric signatures have led to the de-

velopment of several artificial intelligence type, dynamic fil-

tering algorithms including the use of decision trees, neural

networks, Bayesian classification and fuzzy logic classifica-

tion (Berenguer et al., 2006; Lakshmanan et al., 2007; Chan-

drasekar et al., 2013).

Fuzzy logic classification schemes have been implemented

for the filtering of spurious echoes (Gourley et al., 2007;

Rico-Ramirez and Cluckie, 2008) and also for the identifica-

tion of hydrometeors (Dolan and Rutledge, 2009; Park et al.,

2009). These schemes all rely on the basic principles of fuzzy

logic (Zadeh, 1983), but take different approaches to the vari-

ables, classifications and post processing used. Gourley et al.

(2007), for example, limit the fuzzy classifier to three fields

(texture of specific differential phase (σ(8DP)), texture of

differential reflectivity (σ(ZDR)) and cross-correlation co-

efficient (ρHV)), using probability density functions to de-

fine their sets. They then apply post-fuzzy reclassification

based on an additional three fields (velocity, reflectivity and

8DP). Their scheme successfully identifies non-precipitating

echoes in a range of cases. In contrast, Dolan and Rut-

ledge (2009) use five fields, including temperature, to define

their one-dimensional beta functions (MBFs) for hydrome-

teor classification. In this way, fuzzy logic presents a highly

adaptable framework, the advantage of which is the ability to

use the increasing number of moments available from dual

polarisation weather radars to produce dynamic filters. These

schemes are highly adaptable and can be trained with a lim-

ited volume of both empirical and simulated data, which al-

lows rapid implementation in the field. When more data are

available a more autonomous clustering algorithm, such as

GDBSCAN (Sander et al. , 1998) or agglomerative hierarchi-

cal clustering (Grazioli et al., 2015) can be implemented to

remove the need for subjective human identification of train-

ing data, which is one of the current limitations of fuzzy logic

and similar trained machine learning techniques.

The fuzzy classification scheme presented here uses novel

radial texture parameters of dual polarisation variables (in-

cluding ρHV), corrected for range effects, in combination

with standard dual polarisation moments and beam height

to identify and remove spurious echoes in two UK locations.

The fuzzy filter has been developed using data from an X-

band dual-polarimetric, Doppler, mobile radar (see follow-

Table 1. NCAS Meteor 50DX specifications.

Performance parameters Specifications

Half power beam width 0.98◦

Peak transmit power 83 kW

Antenna diameter 2.4 m

Dual polarisation Simultaneous H &V

Radome None

Range resolution 0.150 km

Operational range 150 km

Pulse repetition frequency 1000/800 Hz

Pulse width 1 µs

Antenna speed 20 ◦ s−1

Scan duration 240 s

Volume elevations 10 (0.5, 1.5,. . . , 8.5, 9.5◦)

ing section for details), with empirically derived member-

ship functions of variable form. Currently the scheme has

been used for reprocessing data for use in validating numeri-

cal weather models, and for assessing the sensitivity of sim-

ple hydrological models to rainfall input uncertainty. The

scheme has also been designed to compute classifications

in near real time, allowing filtering of echoes during future

radar deployments. The following sections will describe the

radar used in the project and its deployment, the fuzzy filter-

ing methodology used in this work, including the derivation

of the empirical membership functions used and the combi-

nation of these functions using fuzzy logic and finally present

examples of the fuzzy filter applied to varied test cases.

2 Mobile X-band radar and its deployment

X-band radars are becoming increasingly popular as an alter-

native or an addition to S- and C-band radar networks, par-

ticularly for urban hydrology and in complex terrain (Del-

rieu and Creutin, 1991; Michelson et al., 2005). The main

advantage of X-band is the higher achievable resolution at

a lower cost, particularly in areas where long range is unnec-

essary or impossible (typically beyond 50 km). The mobile

radar used in this study is a modified Meteor 50DX (Selex

ES GmbH) dual-polarised Doppler radar, fitted with a larger,

2.4 m, antenna to produce a narrower beam-width (0.98◦).

Full technical details for the radar are shown in Table 1,

with scan specific parameters given for the main deploy-

ments referenced in this paper. The data used in this study

were obtained during the Convective Precipitation Experi-

ment (COPE) (Bennett, 2015), a 3 month field deployment at

Davidstow Airfield, in the south-west UK (Blyth et al., 2015)

and during single day testing deployments at Burn Airfield

in North Yorkshire, UK. Both locations (shown in Fig. 1)

have clear clutter targets, caused by topography, buildings,

wind turbines and vegetation. This presented the opportunity

to calibrate and validate the fuzzy filter based on observa-
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Burn
Davidstow
50km range
150km range

0 200 400100
Kilometers

Figure 1. Location of the Davidstow and Burn field deployment

sites used in this study.

tions resulting from known targets. The site at Davidstow

observes clutter from the high topography of Bodmin Moor

(within 10 km) and Dartmoor (at approx. 40 km range), from

Davidstow woods to the south-west (2 km), from the wind

farm at St Clether (6 km east) and radio masts to the north-

west. The site at Burn suffers from nearby vegetation (within

2 km), along with three local power stations and their associ-

ated power lines. There is also high topography to the north-

west. These features are all visible in Fig. 2, which shows ex-

ample data from both deployment sites. Prior to the analysis

presented here, reflectivity and differential reflectivity were

corrected for radar miss-calibration and frequency drift us-

ing a modified version of the self consistency approach pre-

sented by Gourley et al. (2009). Correction for attenuation

has not been applied, as correction using the commonly ap-

plied ZPHI method (Testud et al., 2000) requires clutter fil-

tered data to accurately distribute attenuation along the rain

path. Attenuation correction of the data will follow in future

work, after the application of the clutter filter and removal of

non-meteorological echoes.

3 Filtering methodology

Filtering requires the identification of spurious or unwanted

information and its removal, while passing through the re-

Figure 2. Identifiable ground clutter, shown here in the unfiltered

horizontal reflectivity field, within 50 km of Davidstow (a), with

range rings every 10 km and within 10 km of Burn (b), with range

rings every 5 km.

maining, useful, data. In this study, the filter identifies spu-

rious radar echoes and passes through precipitation data for

further correction routines. It is also possible to invert the fil-

ter, thereby retaining spurious data for further investigation.

This is likely to be of most interest with the biological scat-

terers identified by the filter. Echo identification is achieved

using a fuzzy logic classification scheme, applying direct and

secondary dual polarisation radar moments and beam geom-

etry.

3.1 Defining classification parameters

Fuzzy logic filtering requires membership functions to be de-

fined which identify the features to be classified, with each

radar parameter requiring a separate function. In addition

to the dual polarisation moments available directly from the

radar processing software, texture parameters have also been

used in this study to provide additional information to the

fuzzy classifier. All of the parameters used for classification

are defined in Table 2. To define membership functions, ex-
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Table 2. Fuzzy logic parameters used in the classification scheme.

Parameter Units

Uncorrected horizontal radar reflectivity dBuZ dBZ

Texture of horizontal radar reflectivity σ(Z) dBZ

Differential radar reflectivity between H&V ZDR dB

Texture of differential radar reflectivity σ(ZDR) dB

Cross polar correlation coefficient ρHV –

Texture of cross polar correlation coefficient σ(ρHV) –

Texture of differential phaseshift between H&V σ(9DP)
◦

Height of radar beam centre above sea level H m

amples of typical spurious echoes (and precipitation) were

identified using expert inspection of the polar data, cross-

checked with field observations.

3.1.1 Radial texture parameters

Texture parameters are frequently used in fuzzy logic clas-

sification schemes, particularly for the removal of spurious

echoes. The majority of texture fields derived use a 3× 3

(range gates by azimuth sector) or larger moving window

(Chandrasekar et al., 2013), and compute either the SD or

root mean square difference within this window to obtain

texture. Texture parameters for the present classification are

defined using a radial window of seven range gates length by

one azimuth step width producing a 1 degree by 1 kilometre

moving window. A similar window has been shown to be

successful by Cho et al. (2006), who used the parameter for

1 km classifications. We chose this method of calculating tex-

ture parameters in order to retain the finer resolution of the

radar observations to allow further processing at maximum

polar resolution. The SD for this window then defines the tex-

ture for the central point (Eq. 1). As many other radar error

sources operate along the radials of the collected data (partial

beam blockage for example), the use of this radial window

prevents these effects influencing the surrounding data.

As previously noted by Gourley et al. (2007), texture pa-

rameters exhibit a range-dependent structure as a result of

increasing sample volume due to beam spreading. To allow

the universal application of derived membership functions it

is necessary to correct for this range-dependent behaviour.

Correction has been achieved by inverting a third order poly-

nomial fitted to the range average texture over a period of

12 scans from the 17 August 2013. This date was chosen

as radiosonde soundings place the zero degree isotherm at

4 km elevation, reducing the chances of mixed-phase echoes

biasing the range averaged texture of the lowest elevation

scan. The polynomial is then used as a multiplicative cor-

rection factor beyond a fixed range of 25 km for σ(ZDR) and

σ(9DP) and 45 km for σ(ρHV). Figure 3 shows an example

of range corrected texture of differential reflectivity, includ-

ing the correction polynomial. The texture of both differen-

tial phase shift and cross-correlation coefficient are also cor-
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Figure 3. (a) Multiplicative correction factor used to correct

σ(ZDR). (b) Range variance of σ(ZDR) along the 281◦ azimuth

for the 17 August 2013, 09:11:04 UTC volume scan at 0.5◦ eleva-

tion, Davidstow deployment site. Dashed line is before correction

and solid line is corrected texture as used in the fuzzy logic classi-

fier.

rected using the same approach.

σ(xr)=

√√√√ 1

N − 1

(N−1)/2∑
i=−(N−1)/2

(xr+i − x)2. (1)

3.1.2 Precipitation

Data from 20 operational rain gauges located within 50 km

of the Davidstow site have been used to validate expert iden-

tification of rainfall echoes from 13 scans (1-hour’s data col-

lection) from the 5 August 2013. The 0.5 and 1.5◦ elevations

from these scans were then used to construct unit normalised

kernel density estimates (kdes) for each of the eight classi-

fication parameters. These are summarised, along with the

non-meteorological classes in Fig. 4. As expected these show

the typical dual polarisation signatures of liquid precipita-

tion with ρHV greater than 0.9 and ZDR between 0 and 5 dB.

The texture fields show low variability within precipitation,

which will be useful in providing greater discrimination from
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Figure 4. Class normalised histograms for the dual-polarisation and texture parameters used in this study. Classes are precipitation (solid

line), ground clutter (dashed line) and insects (dash-dot line). The histograms are derived from expert identification of radar echoes using

data from the COPE campaign.

non-meteorological scatterers in the fuzzy membership clas-

sification.

3.1.3 Ground clutter

Normal propagation condition ground clutter is the easiest

spurious echo to identify, especially once a reference pe-

riod of radar data is available. Statistical analysis of multiple

radar scans easily identifies range gates affected by ground

clutter as noted by Harrison et al. (2014). Using the COPE

data set, cross-checked with elevation data and national map-

ping, to build a statistical mask, 26 radar scans from the 18

July 2013 (dry day) and 17 August 2013 (stratiform rain-

fall) were analysed to produce normalised kernel density es-

timates for the classification parameters. Greatest discrimi-

nation between ground clutter and precipitation is found in

the texture fields, particularly σ(ρHV). It is worth noting that

ρHV values extend across a wide range and overlap with pre-

cipitation, although not as much as in previous studies such

as Zrnić et al. (2006). This difference is down to the shorter

wavelength and faster antenna speed used in this study, which

reduces the expected cross correlation of ground clutter re-

turns.

3.1.4 Biological scatterers – insects

The presence of biological scatters within weather radar

echoes is difficult to independently verify, yet research has

indicated a typical echo signature can be observed. Insect

echoes typically have low reflectivity (0–15 dBZ), high ZDR

(> 3 dB) and low ρHV (0.3–0.6) (Chilson et al., 2012; Zrnić

and Ryzhkov, 1998; Mueller and Larkin, 1985). Expert iden-

tification indicates a large concentration of insect returns on

the 18 July 2013, a warm day with morning temperatures

in excess of 24 ◦C, a moderate onshore breeze and rainfall

restricted to isolated locations in the afternoon. Using 13

scans (1-hour’s data collection) unit normalised kdes were

again constructed (Fig. 4, dash-dot lines). The ZDR obser-

vations also show a bimodal distribution above 4 dB, which

has been attributed to the two preferred orientations of insect

flight (Mueller and Larkin, 1985). The ρHV signature from

these observations lies between 0.7 and 1, higher than pre-

viously shown by most other studies. This may be indicative

of a highly uniform insect population, which exhibits little

variation given the short dwell time of the radar scan strat-

egy. A similarly high region of ρHV was detected by Bach-

mann and Zrnić (2007) when distinguishing between insect
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D. R. L. Dufton and C. G. Collier: Dynamic filtering of radar reflectivity 3991

and bird echoes. The observed texture parameters lie between

those of precipitation and ground clutter, with the excep-

tion of σ(Z) which has a very defined signature of less than

3 dBZ.

3.1.5 Clear air echoes and the background noise

signature

Radars often observe echoes from clear air, which can not

be attributed to precipitation or biotic scatterers. These clear

air echoes are attributed to changes in the refractive index

of the atmosphere (Wilson et al., 1994; Lane, 1969), and are

most often observed close to the radar where the absolute

received power is greater. In addition to these echoes, the

atmosphere typically has a background radiation signature.

The X-band radar used in this study uses a passive scan to

set a zero level for environmental noise, repeated at regu-

lar intervals. At times environmental conditions change such

that the noise level increases in this intermittent period and

though very low reflectivities are observed at these times it

is simple to identify these echoes along with clear air echoes

and remove them using a classification set. Histograms for

noise have been omitted from Fig. 4 for clarity but those

computed show noise echoes have very low texture of re-

flectivity (< 1 dBZ) and cross correlation coefficient (< 0.7),

yet a very high texture of 9DP (> 30◦).

3.2 Fuzzy logic membership filtering

Having defined the parameter ranges of the desired filtering

classes, a filtering scheme has been implemented using fuzzy

logic to combine the available parameters to classify the

radar echoes. Firstly we defined membership functions for

each class and parameter. These membership functions were

applied to the available radar moments to generate individ-

ual parameter scores, which were then combined to a single

fractional total. Defuzzification of the fractional totals was

achieved by selecting the class with the maximum fractional

score provided a certainty threshold was crossed. Once iden-

tified, meteorological echoes were then retained by the filter

and despeckled to remove isolated range gates that passed

through the filter. This filter has been applied to the COPE

field data set, examples from which are shown in Sect. 4.

The process can also be run in real time, taking less than 30 s

per radar volume (10 elevation scans), making it suitable for

real-time application in future field deployments.

3.2.1 Variable vertex membership functions

Typical fuzzy logic membership functions are often triangu-

lar and trapezoid in shape or defined by a centrally peaked

decaying function. For this filter a variable vertex member-

ship scheme has been implemented, which allowed variation

of the membership functions’ form for different parameters

and classes. Between vertices linear interpolation was used

to define the membership function. The minimum number
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Figure 5. Example of the multiple vertex membership function ap-

proach, with vertices in the range 0 to n. Grey points represent ver-

tices defining the membership function, with the dashed line indi-

cating the interpolation between those points.

of vertices required for the function to operate is two, defin-

ing the parameters’ limits (x0 and xn) and the membership

score at those limits (y0 and yn). Outside of these limits the

membership score is always zero. An example of this ap-

proach is shown in Fig. 5. The approach allows greater flexi-

bility in the membership functions, and incorporates param-

eter weighting in the individual scores themselves. See Ta-

bles A1-A4 in the Appendix for all the membership vertices

used in this study. During the analysis it was found that using

equally weighted membership functions (maximum score of

1) was no less effective than using variable weighting opti-

mised with a genetic algorithm. Ultimately the most parsi-

monious set of variables was chosen for each class. This was

tested using a validation set of problem cases, where iden-

tification was deemed to be challenging, including rainfall

signals mixed with wind farm ground clutter and convection

embedded within probable insect returns.

3.2.2 Combination and defuzzification

The total fuzzy membership score for each class (F(x)) is

calculated using

F(x)= F(x)K ×F(x)J , (2)

where

F(x)J =
∑
j∈J

M(x)j (3)

and

F(x)K =
∏
k∈K

M(x)k. (4)
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Individual membership scores (M(x)) for each parameter

are calculated using the defined variable vertex membership

functions. Those parameters which form the additive group

(J ) have their totals summed to calculate the additive to-

tal (F(x)J ). Those parameters in the multiplicative thresh-

old switch set (K) conversely have their totals multiplied

together to calculate their total (F(x)K ). These two totals

are then multiplied together to calculate the final class score

(F(x)). The multiplicative threshold parameters are used to

suppress certain classifications based on observational con-

straints, such as ground clutter being suppressed where nor-

mal beam height exceeds 2 km or insects where ZDR is be-

low 0.5 dB. This is in contrast to the post classification de-

cision suppression employed in other classification schemes

(Gourley et al., 2007, for example). The total score(F(x)) is

then converted to a fraction of the maximum possible score

obtainable for that class. Classification is assigned to the

class with the highest fractional score, provided the fractional

score exceeds a predetermined certainty threshold (0.25 in

this case). Threshold exceedance prevents uncertain range

gates from being classified based on very low total class

scores, instead marking these cells as unknown echo type.

Once echo classification is complete, the new classification

field is used for filtering of the radar data. In the following

examples, the filter has been set to pass through only echoes

identified as precipitation, though the inverse is also possible

depending on the final application of the data.

3.2.3 Despeckling using connected component analysis

The final stage of the filtering in this work is to despeckle the

resulting filtered fields. By application of connected compo-

nent analysis (with 8 connectivity) (Dillencourt et al., 1992),

independently connected areas of rainfall are identified, and

those smaller than five range gates in size are removed. This

approach removes regions that are unlikely to be precipitat-

ing rain cells due to their small size (no more than 1.6 km2

at the extreme limit of the radar). This is similar to the near-

est neighbour count approach used in other schemes, but has

the advantages of retaining connectivity on the edge of large

cells and of not reclassifying range gates surrounded by a dif-

ferent classification, which can be a reasonable outcome in

the case of point target clutter for example.

4 Application of the filter

The prescribed filter has been applied retrospectively to all

the data collected during the COPE field campaign, and has

also been applied to subsequent deployments of the radar at

the Burn field site. The following examples show its bene-

fits for both qualitative and quantitative analysis of the radar

data.

Figure 6. Application of fuzzy logic classifier to 0.5◦ elevation

scan, 18 July 2013, 14:15 UTC. (a) shows the uncorrected horizon-

tal reflectivity, (b) the results of applying the fuzzy classifier and

(c) the filtered reflectivity from those echoes identified as rainfall.

Range rings are at 10 km intervals.
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Figure 7. Radar parameters used for the classification of Fig. 6. (a) shows σ(9DP), (b) σ(Z), (c) ZDR, (d) σ(ZDR), (e) ρHV and (f) σ(ρHV).

4.1 Example 1: convection embedded within biological

scatterers

The first example presented here is from 18 July 2013. With

daytime temperatures in excess of 20 ◦C driving an onshore

sea breeze, convective showers eventually developed during

the afternoon, breaking through a stable boundary layer. Rain

gauges observed only two isolated events during the day,

with accumulations of 0.2 mm recorded at two gauges. Fig-

ure 6 shows a snapshot of these isolated convective showers,

two to the north-east and one to the south of the radar, em-

bedded within a strong clear air signal prevalent across the

radar sweep. The application of the fuzzy classifier identifies

the three convective showers, using the parameters shown

in Fig. 7, while also identifying ground clutter signals from

Dartmoor to the east and local topography around the radar.

By passing through only the precipitation echoes identified

by the fuzzy classifier a much clearer picture of the convec-

tive showers is available, as shown in Fig. 6c. From Fig. 7

it is clear that the cells are identifiable in all of the param-

eters shown, with the textures of 9DP and ρHV being par-

ticularly indicative. These convective cells extended up to

10 kilometres in altitude, with reflectivity in excess of 50 dBZ
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and differential reflectivity over 6 dB in the cores, indicating

very large rain drops in places. It should be noted that the

fringes of these cells are generally unclassified by the filter

due to the certainty threshold, which is due to a combina-

tion of elevated linear textures at the margins of strong con-

vective cells and also low reflectivity. Although identifiable,

the non classification of these range gates is negligible for

both data assimilation, where data certainty is critical and for

QPE, where the reflectivity values indicate near-zero rainfall

intensities.

4.2 Example 2: frontal rainfall traversing the radar

A second example is the traversal of light rainfall across the

radar, and more importantly, local ground clutter targets. In

this situation the rainfall dampens the signal from the ground

clutter, but there is still an elevated reflectivity signal due

to its presence. On 17 August 2013 a frontal system moved

across the Cornish peninsula during the day, with widespread

light rainfall (6–13 mm in 12 h) recorded across the region by

the rain gauge network. Figure 8 shows the filter removing

ground clutter within 10 km of the radar, despite the mixed

signals from the rainfall and ground clutter. These mixed sig-

nal echoes are often the most difficult to process, and there

is evidence of some clutter signals passing through the filter

on the fringes of the stronger returns and where the contrast

between clutter and rainfall reflectivity is minimal (such as

over the wind farm located due east of the radar at about

5 km range).

4.3 Example 3: COPE total rainfall accumulations

The long-term benefits of spurious echo removal are illus-

trated by total rainfall accumulations during COPE. Rainfall

intensities for all scans can be calculated, in a first instance,

through use of the Marshall–Palmer relation, taking the stan-

dard coefficients as used in the UK operational radar network

(Harrison et al., 2012):

Z = 200R1.6. (5)

Although more complex algorithms now exist for the cal-

culation of rainfall using dual polarisation weather radar, this

simple approach highlights the quantitative benefits of the

fuzzy logic filtering, prior to any further corrections (such as

for attenuation and beam blockage). Through application of

the filter, excessive estimated rainfall totals resulting from el-

evated reflectivity from ground clutter are removed, reducing

total rainfall accumulations. These reductions better match

those areas unaffected by spurious echoes, with the total ac-

cumulation bias at the St Clether rain gauge, located within

the wind farm to the east of the radar, reducing from 8.72 to

0.33 for the 0.5◦ elevation. This represents a shift from severe

overestimation due to clutter to a conservative accumulation

of rainfall due to the certainty thresholds in the classifier and

Figure 8. Application of fuzzy logic classifier to 0.5◦ elevation

scan, 17 August 2013, 11:57 UTC. (a–c) as for Fig. 6. Range rings

are at 5 km intervals.

the complexity of the wind farm as a dual source (clutter and

rain) target. Nineteen additional rain gauges across the Cor-

nish peninsula were used to provide additional verification

of the filter, and show non-meteorological echoes to be an

insignificant error source for their locations. All of the rain

gauges show a systematic under measurement by the radar
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Figure 9. Range- and radially-averaged total rainfall totals for the COPE project. Grey lines show the original data, while black lines are

after the application of the clutter filter. Both show the 0.5◦ elevation scan results. The average accumulation for rain gauges in the area was

27.21 mm.

Figure 10. Percentage of times each range gate contains a measurable reflectivity echo during the COPE campaign (1132 scans total). Plots

are to 50 km range for the lowest, 0.5◦, elevation scan. (a) shows the raw reflectivity, while (b) shows only those echoes identified as rainfall

by the filter.

due to as yet uncorrected beam blockage, attenuation and

beam overshooting. At these locations the filter reduces the

radar accumulations by less than 2 percent for 13 of the sites

and between 3 and 13 percent for the remaining six sites,

showing that the filter does not systematically remove pre-

cipitating echoes.

The range-averaged rainfall totals shown in Fig. 9 high-

light the impact of the near-field clutter seen in Fig. 8, out to

10 km, and also the impact of Dartmoor at 40 km. After filter-

ing these effects are removed, with the new profile reflecting

the expected range decrease of radar derived accumulation

as the beam widens and overshoots rainfall. In contrast the

azimuthally averaged data seen in Fig. 9 is more interesting.

The sharp spikes in the original data are a result of the local

topography, including Dartmoor at 90–100◦. There is also

strong evidence of partial beam blockage, which becomes

more evident in the filtered data between 160 and 200◦ (due

to Bodmin Moor and Davidstow woods) and at 305◦ (due to

the airfield control tower). The underlying trend indicates an

increase in accumulation inland, towards the higher topogra-

phy to the east.

Accumulated rainfall statistics for the campaign also high-

light the benefit of the filter. Prior to filtering, echoes occur in

over 90 % of low-elevation scans in those range gates asso-

ciated with high topography (Fig. 10), while a zone of above

average number of observed echoes occurs within 20 km of

the radar, closely mirroring the coastline to the north-west of

the radar, which is indicative of a high occurrence of biologi-

cal scatterers. After filtering these features are removed, with

echoes occurring around 40 % of the time, except in regions

of beam blockage and where ground clutter dominates the

radar reflectivity observations.

4.4 Example 4: near field clutter at a new deployment

site

The final example is taken from a second deployment loca-

tion within the UK. The Burn field site is an occasional test-

ing site for the radar. On 6 October 2014 the radar was de-
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Figure 11. Application of fuzzy logic classifier to 0.5◦ elevation

scan, 6 October 2014, 12:01 UTC from Burn field deployment site.

(a–c) as for Fig. 6. Range rings are at 5 km intervals. Local clutter is

a combination of trees, topography and power infrastructure. Three

sets of cooling towers from two power stations are ringed with black

circles.

ployed to observe the passage of a low pressure system across

the UK. The system brought persistent rainfall and strong

winds. The Burn site suffers from severe ground clutter at

low elevations, as shown by the 0.5◦ scans shown in Figs. 2

and 11. Figure 11 indicates the success of the fuzzy filter in

removing these spurious echoes, even those caused by small

features such as power lines and individual clusters of power

station cooling towers, shown by the black rings. The filter

applied is based on the membership functions derived from

prior observations, with no adjustment for the change in field

site, indicating that the filtering methodology is dependent

on the scan parameters used (such as pulse width and range

spacing) rather than the location in which the radar is de-

ployed, at least within a similar climatic region. During long

field deployments it would be advantageous to monitor the

performance of the filter and re-calibrate the membership

functions to be specific to the nuances of the site, such as

the point features identifiable around Burn.

5 Summary and conclusions

The identification and removal of spurious echoes from radar

data has clear benefits for both visualising weather systems

and quantitative analysis of those systems, including further

post-processing of data to correct for other error sources. The

methodology outlined here uses both primary dual polarisa-

tion moments and secondary texture fields, along with beam

height to drive a fuzzy logic classifier to identify ground clut-

ter, insects and background noise. The main advantages of

this approach are:

– Fuzzy logic provides a dynamic classification that ad-

justs to changing atmospheric conditions and can be run

in near-real time.

– The approach only requires a limited sample of training

data to produce successful results, as shown here by the

use of 13–26 scans per echo type.

– The multi-vertex membership functions used are highly

adaptable, allowing differing distributions to be spec-

ified for the range of parameters used in the scheme,

while also allowing easy addition of future variables and

echo types.

This approach successfully identifies, and therefore filters,

the majority of echoes as shown by the four examples pre-

sented here. The variety of examples highlights the adaptabil-

ity of the approach, and from these examples the following

conclusions become evident:

– Static ground clutter is identified successfully, both in

the near field region and at longer ranges (Dartmoor, for

example). This is most evident in the long-term rainfall

accumulation from the COPE field campaign.

– Insect classification is strongly influenced by the dual-

polarimetry moments available, particularly ZDR, ρHV

and σ(ρHV) as the insect signatures differ from those
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of rain and ground echoes. The other texture parameters

provide less value here, but are vital for distinguishing

between rain, ground echoes and background noise.

– The fringes of convective cells are often misclassified

as noise, insects or left unclassified due to the threshold

filter. As these echoes are typically below 10 dBZ the

impact on precipitation estimates is minimal, but the ef-

fect should be noted for process studies of cell evolution

and extent.

– Deployment at a second field site (Burn) shows that

the method is transferable, without recalibration of the

membership functions, provided the scan parameters

are similar and the local climate does not vary greatly.

– The Burn site also indicates the classifier is able to

identify small-scale clutter features such as the evident

power lines seen within 5 km of the radar.

– A longer period of data needs to be analysed to fully

evaluate the scheme, particularly to identify any sys-

tematic biases in classification and assess performance

in winter conditions, where ice phase hydrometeors are

more likely. More data will also allow a comparison

with more data intensive, fully autonomous methodolo-

gies, which could yield interesting insights into their ap-

plicability.

– Beam propagation errors are clear within the data and

should be corrected for before any meaningful rain-

fall comparisons can be computed, these include partial

beam blockage due to the local clutter and also atten-

uation effects, which are clearly visible in the 18 July

example.

The methodology presented here is applicable to not only

X-band but also C- and S-band dual polarisation radars, with

the only requirement being training data with which to de-

velop the membership functions. The use of fuzzy logic pro-

vides the dynamic filtering necessary to deal with transient

spurious echoes such as anomalous propagation ground clut-

ter and biological scatterers, while other phenomena should

be equally detectable given sufficient training data (such as

chaff). The methodology also allows for expansion to include

a more complete hydrometeor classification, which will be

explored in future work. The texture fields presented here

will be of great value in such a classification, alongside the

standard radar moments available. Future analysis of the data

will also focus on the benefits of correcting for beam prop-

agation errors, particularly attenuation, given its impact on

short wavelength radar.
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Appendix A

Table A1. Precipitation membership functions.

Parameter Parameter vertices Membership vertices

σ(ZDR) 0, 1, 5 1, 0.1, 0

ρHV 0.9, 0.94, 0.98, 1.0 0, 0.4, 1, 1

σ(ρHV) 0, 0.05, 0.1 1, 0.1, 0

σ(9DP) 0, 6, 20 1, 0.2, 0

dBuZ −11, −10, 100, 101 0, 1, 1, 0

Table A2. Ground clutter membership functions.

Parameter Parameter vertices Membership vertices

σ(Z) 0, 5, 15, 40, 50 0, 0.6, 1, 1, 0

σ(ZDR) 0, 1, 3, 10 0, 0.1, 1, 1

ρHV 0, 0.4, 0.7, 1 0, 1, 1, 0

σ(ρHV) 0.05, 0.2, 0.4 0, 1, 0

σ(9DP) 0, 20, 50, 100, 120 0, 1, 0.8, 0.8, 1

dBuZ −50, 10, 20, 200 0, 0, 1, 1

H 0, 1000, 2000 1, 1, 0

Tables A1–A4 may be of interest to some readers, and

outline the membership functions used to identify each of

the four classes within the fuzzy classifier. Those parameters

given separately at the end of each table form the multiplica-

tive set, while the remainder form the additive set.

Table A3. Noise membership functions.

Parameter Parameter vertices Membership vertices

σ(Z) 0, 0.5, 1, 2 1, 0.8, 0.1, 0

ρHV 0, 0.6, 0.7, 1 1, 0.75, 0, 0

σ(9DP) 0, 15, 30, 100 0, 0.1, 1, 1

dBuZ −30, 5, 10, 200 1, 1, 0, 0

Table A4. Insect membership functions.

Parameter Parameter vertices Membership vertices

σ(Z) 0, 1, 2, 5 0.4, 1, 0.2, 0

σ(ZDR) 0, 1, 2 0, 1, 0

ρHV 0.6, 0.8, 0.89, 1 0, 0.5, 1, 0

σ(ρHV) 0, 0.05, 0.1 0, 1, 0

σ(9DP) 0, 8, 20 0, 1, 0

dBuZ −11, −10, 20, 21 0, 1, 1, 0

ZDR 0, 2, 4, 20 0, 0, 1, 1
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