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Anne-Brit Kolstø1*
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3 Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia, 4 School of
BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK

Phylogenetic classification divides the major facilitator superfamily (MFS) into 82 families,
including 25 families that are comprised of transporters with no characterized functions.
This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a
member of the “unknown major facilitator family-2” (UMF-2). BC3310 was shown to
be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver
nitrate when heterologously expressed in Escherichia coli DH5α �acrAB. A conserved
aspartate residue (D105) in putative transmembrane helix 4 was identified, which was
essential for the energy dependent ethidium bromide efflux by BC3310. Transport
proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF-
2 proteins revealed that they carry a variant of the MFS motif A, which may be used
as a marker to distinguish easily between this family and other MFS proteins. Genes
orthologous to bc3310 are highly conserved within the B. cereus group of organisms
and thus belong to the core genome, suggesting an important conserved functional role
in the normal physiology of these bacteria.

Keywords: MFS, drug resistance, efflux protein, Bacillus cereus, UMF-2

Introduction

Bacillus Q3cereus sensu stricto (B. cereus) is a Gram-positive, endospore forming organism known to
cause foodborne illness in humans. It is a member of the B. cereus group of bacteria (Bacillus cereus
sensu lato) that, in addition to B. cereus encompasses the species B. anthracis, B. thuringiensis,
B. mycoides, B. pseudomycoides, B. weihenstephanensis, and B. cytotoxicus (Kolsto et al., 2009;
Guinebretiere et al., 2013). The B. cereus group members are genetically closely related with
high level of syntheny (conserved gene order). The high similarity results in an intertwinement
of the B. cereus, B. thuringiensis, and B. weihenstephanensis branches in the phylogenetic tree
(Ash et al., 1991). However, the B. cereus group organisms exhibit different phenotypes, inhabit
diverse ecological niches and are pathogenic against different hosts. The three species B. mycoides,
B. pseudomycoides, and B. weihenstephanansis are regarded as non-pathogenic. B. anthracis is the
causative agent of anthrax in humans and animals (Mock and Fouet, 2001). B. thuringiensis is

Frontiers in Microbiology | www.frontiersin.org 1 September 2015 | Volume 6 | Article 1063

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.01063
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2015.01063
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2015.01063&domain=pdf&date_stamp=2015-09-xx
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01063/abstract
http://loop.frontiersin.org/people/210430/overview
http://loop.frontiersin.org/people/266006/overview
http://loop.frontiersin.org/people/227632/overview
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Kroeger et al. Bacillus cereus efflux protein BC3310

an insect pathogen that is commercially used as a biopesticide
(Melo et al., 2014). B. cytotoxicus causes enteritis in humans
and is thermotolerant and highly cytotoxic (Guinebretiere et al.,
2013). In the natural environment B. cereus is found as a
saprophyte in soil, associated with the rizosphere of plants and
in the gut of invertebrates (Jensen et al., 2003; Berg et al., 2005).
Even though B. cereus is most frequently associated with food-
borne enteric infections in humans, it is able to cause other
local or systemic infections such as endophthalmitis, cutaneous
infections, endocarditis, central nervous system infection, or
bacteremia (Steen et al., 1992; Callegan et al., 1999; Centers
for Disease Control and Prevention, 2005; Callegan et al.,
2006; Martinez et al., 2007; Kim et al., 2010; Sasahara et al.,
2011; Stevens et al., 2012). Clinically serious infections of
B. cereus are treated with antibiotics such as carbapenems,
clindamycin, ciprofloxacin, and vancomycin (Kervick et al.,
1990; Bottone, 2010; Uchino et al., 2012; Matsuda et al., 2014).
However, resistance against carbapenem and clindamycin has
been reported, which eventually led to failed treatments including
cases with fatal outcomes (Kervick et al., 1990; Kiyomizu et al.,
2008; Savini et al., 2009; Uchino et al., 2012).

According to the transportdb database, the B. cereus group
strains constitute between 390 and 455 transporters per strain
(Ren et al., 2007; Ren and Paulsen, 2007). The unusually high
number of transporters per B. cereus group strain may reflect
the different lifestyles of these bacteria. Importantly, each group
member contains approximately 100 transporters, predicted to
efflux drugs.

Drug efflux systems are part of the resistance machinery to
counteract antibiotics (Sun et al., 2014). They are divided into
six different transporter superfamilies: (i) MFS (major facilitator
superfamily); (ii) ABC (ATP binding cassette) transporter
superfamily; (iii) MATE (multidrug and toxic compound
extrusion) family; (iv) RND (resistance nodulation division)
family; (v) DMT (drug/metabolite transporter) superfamily,
and (vi) PACE (proteobacterial antimicrobial compound efflux)
(Poole, 2007; Hassan et al., 2015). Of these, MFS pumps
constitute the majority of efflux transporters encoded in B. cereus
group strains, typically more than 50 per strain. The MFS
comprises secondary transporters that use the electrochemical
gradient of protons or sodium ions across the cell membrane
to energize substrate transport, including drug efflux (Pao et al.,
1998; Saier et al., 1999; Reddy et al., 2012). The ‘transporter
classification system’ (see http://www.tcdb.org/) classifies the
MFS into 82 families. With respect to drug efflux pumps, the
drug:H+ antiporter families (DHA)1 to 3 are the largest and
best investigated drug exporter families in the MFS (Saier et al.,
2014).

In this study, we characterize the phylogenetic and some
functional properties of the putative multidrug transporter
BC3310 from B. cereus ATCC 14579. BC3310 was classified by
in silico analysis as a member of the major facilitator superfamily
and the phylogenetic relationship within this group was
determined. A deletion mutant of bc3310 was constructed and
overexpression of BC3310 allowed for functional characterization
in a heterogenous host as well as purification and partial
biochemical characterization in vitro.

Materials and Methods

Bioinformatics Analyses
Bacterial sequence information was collected using the IMG
homepage from the Joint Genome Institute (Markowitz et al.,
2012). Sequence alignments were performed using MEGA
MUSCLE alignment with default settings (Tamura et al., 2013)
and the phylogenetic tree was constructed using MrBayes
(Ronquist et al., 2012). Prediction of the transmembrane helices
was done by submitting the primary protein sequence of
BC3310 (UniProt Q81B77) to HMMTOP (Tusnady and Simon,
2001).

Construction of B. cereus bc3310 Deletion
Mutant
A markerless mutant of bc3310 was constructed as described
(Simm et al., 2012) in the B. cereus ATCC 14579 wild type
according to the method of Janes and Stibitz (2006) and using
the primers listed in Table 1. The B. cereus plasmid pBClin15
was lost during the process of making the markerless mutant
and therefore a plasmid cured strain was used for phenotypic
comparison as in previous investigations (Voros et al., 2013).
The presence of the deletion was confirmed by sequencing.
B. cereus was grown in LB medium at 30◦C, unless otherwise
stated.

Escherichia coli BC3310 Expression
Constructs
The expression levels of genes cloned into pTTQ18-based
plasmids are inducible by isopropyl β-D-thiogalactopyranoside
(IPTG). Furthermore, the genes are fused with a sequence
coding for a C-terminal (His)6 tag for identification and

TABLE 1 | Primers Q4used in this study.

Primer for Sequence (5′→3′ )

Overexpression in pTTQ18

pTTQ18-bc3310F CATGGATCCATGCGTTTTACTTTTTGGATTATGG

pTTQ18-bc3310R CCGCCTGCAGCGGTTGTTTTGTCATGCCC

D105 mutants

bc3310_D105N_f GATTTCTAGTTGGAGTTGGAAATCATATGCTTCATGTC
GGAAC

bc3310_D105N_r GTTCCGACATGAAGCATATGATTTCCAACTCCAACTAG
AAATC

bc3310_D105A_f GATTTCTAGTTGGAGTTGGAGCTCATATGCTTCATGTC
GGAAC

bc3310_D105A_r GTTCCGACATGAAGCATATGAGCTCCAACTCCAACTAG
AAATC

bc3310_D105E_f GATTTCTAGTTGGAGTTGGAGAACATATGCTTCATGTC
GGAAC

bc3310_D105E_r GTTCCGACATGAAGCATATGTTCTCCAACTCCAACTAG
AAATC

Deletion mutant

dbc3310_5′ _f CGCGGATCCATGAACAAACTATATTAC

dbc3310_5′ _r CAATTTCCCTTCCCAAAAAGTAAAACGCAT

dbc3310_3′ _f GTTTTACTTTTTGGGAAGGGAAATTGAAGTAA

dbc3310_3′ _r ACGCGTCGACTAGTTTGATATACCTGTTC
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purification of the expressed protein. The plasmid construct
pTTQ18-bc3310 (pbc3310) was made by general molecular
biology techniques according to Sambrook and Russell (2001)
by amplifying the gene bc3310 from genomic DNA of B. cereus
ATCC 14579 using the primers listed in Table 1. The
plasmids for expressing BC3310 D105 mutants pbc3310D105A,
pbc3310D105N, and pbc3310D105E were made using sequence
and ligation-independent cloning (Li and Elledge, 2007). The
presence of each mutation was confirmed by sequencing. The
E. coli strain DH5α �acrAB (Simm et al., 2012) carrying
pTTQ18 empty vector or the overexpression plasmids was
made for minimal inhibition concentration (MIC) testing. For
protein purification the E. coli strain BL21 was transformed with
pbc3310.

Escherichia coli strains harboring plasmids were grown in 50
or 250 ml LBmedium with ampicillin (100 μg ml−1) at 37◦C and
180 rpm in 250 ml or 1 l baffled flasks or on LB agar plates at
37◦C, unless otherwise stated.

MIC Tests
Overnight cultures of B. cereus ATCC 14579 (without pBClin)
and B. cereus �3310 or E. coli DH5α �acrAB (Simm et al.,
2012) with relevant plasmid were inoculated 1:100 and grown
to an OD600 between 0.8 and 1.0 at 37◦C and 180 rpm.
These pre-cultures were diluted to a final OD600 of 0.02.
The test was performed at least three times in duplicate
in microtiter plates and antibiotics were added in a 2-fold
serial dilution. For susceptibility assay using E. coli strains
100 μg ml−1 ampicillin and 0.01 mM IPTG were added to
all cultures. The cultures were incubated at 37◦C for 20–24 h
and visually inspected for growth. The lowest concentration,
at which no growth was observed, was determined as the
MIC.

Ethidium Bromide Accumulation Assay
Escherichia coli strains DH5α �acrABwith the plasmids pTTQ18
and pbc3310 were grown on LB agar plates supplemented with
100 μg ml−1 ampicillin and 0.01 mM IPTG at 37◦C over
night. Cells were collected with a loop and resuspended
in PBS supplemented with 0.4% glucose (pH 7-7.4) to an
OD600 of 1.000 (±0.005). These cells were applied on a
microtiter plate and, where appropriate, carbonyl cyanide
m-chlorophenylhydrazone (CCCP) was added to achieve
an end concentration of 200 μM. Thereafter, ethidium
bromide was added to an end concentration of 25 μM and
the fluorescence change was measured over 60 min in a
Safire spectrophotometer (Tecan, Crailsheim, Germany) with
excitation and emission wavelength of 518 and 605 nm,
respectively. Duplicate measurements were recorded on at least
two cultures.

Heterologous Expression of BC3310 and Its
Mutants with (His)6-tag and Western Blot
Overnight cultures of E. coli DH5α �acrAB carrying pbc3310,
the empty vector (pTTQ18) or plasmids encoding the bc3310
mutants (pbc3310D105A, pbc3310D105N, or pbc3310D105E)
were transferred to fresh LB (amp) medium and grown to

an OD680 between 0.4 and 0.6. Expression was induced with
0.75 mM IPTG and the cultures were grown for another
3 h. For quantification of expression, Western blot assays
were performed. One milliliter of the overexpression cultures
was harvested by centrifugation at 15000 g, 4◦C for 5 min.
The pellet was washed (20 mM Tris-HCl pH 7.6, 100 mM
NaCl, 5% glycerol, 1 mM phenylmethanesulfonylfluoride
(PMSF)) and resuspended depending on cell mass in ice-
cold lysis buffer (50 mM Tris-HCl pH 7.6, 100 mM NaCl,
5% glycerol, 5 mM β-mercaptoethanol, 1 mM PMSF, 1 μg
ml−1 DNase). Cells were lysed by continuous sonication for
25 min in a cold water bath. SDS-PAGE and Western blots
were performed as described in Sambrook and Russell (2001).
(His)6-tag detection was done using a mouse anti-(His)6
antibody (Qiagen, Hilden, Germany) and a horse anti-mouse
horseradish peroxidase-labeled secondary antibody (New
England Biolabs. ECL advanced chemiluminescence detection
reagent (Amersham Pharmacia Biotech, Pittsburgh, PA, USA)
was used and chemiluminescence was measured by using the
Analyzer Universal hood (Bio Rad, München) and the Quantity
one 4.6.6 Software. Quantification was performed by pixel
counting of five biological replicates on five different Western
blots.

Purification of the BC3310 Protein by Affinity
Chromatography
For protein expression and purification, the method described by
Ward et al. (2000) was used. In short, E. coli strain BL21 pbc3310
was grown in 2TYmedium (1.6% tryptone, 1% yeast extract, 0.5%
sodium chloride, pH 7) and expression was induced at an OD680
between 0.4 and 0.6 with 0.75 mM IPTG. The culture was grown
for another 3 h and cells were harvested. For inner membrane
preparation, E. coli cells were resuspended in 20 mM Tris-HCl
(pH 8.0), 0.5 mMEDTA and kept frozen at –80◦C. After thawing,
cells were disrupted with a Continuous Flow Disruptor (Constant
Systems, UK) and inner membranes isolated by sucrose gradient
centrifugation. Samples were kept at –80◦C in Tris-HCl (pH 7.5)
and EDTA.

Inner membranes were solubilized in 20 mM CAPSO (pH
10.0), 300 mM sodium chloride, 20% glycerol, 1% n-dodecyl β-
D-maltoside (DDM), 20 mM imidazole (pH10.0). Immobilized
metal affinity chromatography (IMAC) was performed using
20 mM CAPSO (pH 10.0), 10% glycerol, 0.05% DDM, 20 mM
imidazole (pH 10.0) as wash buffer and 20 mM CAPSO (pH
10.0), 200mM imidazole, 5% glycerol, and 0.05%DDM as elution
buffer.

Circular Dichroism Measurement
Purified protein was washed using a spin concentrator with
20 mM CAPSO (pH 10.0), 5% glycerol and 0.05% DDM until
imidazole-free. CD spectral analysis was performed from 270 to
195 nm in a 1 nm step resolution using a spectropolarimeter
(Jasco J-715) with constant nitrogen flushing and a scan rate of
10 nm min−1. Response time was set at 1 s with a sensitivity
of 100 mdeg and 10 nm bandwidth. The data comprised an
accumulation of 20 scans, from which the buffer contribution was
subtracted.
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FIGURE 1 | DendrogramQ5 comparing BC3310 from Bacillus cereus ATCC 14579 with orthologous proteins and other multidrug transporters from the
DHA1 and DHA3 families. BC3310 from B. cereus ATCC 14579 (UniProt accession number: Q81B77; bold font) and orthologous proteins from B. cereus ATCC
10987 (Q734U9), B. cereus ATCC 10876 (C2N377), B. anthracis str. Ames (Q81N75), B. cereus ssp. cytotoxis (A7GQF7), B. weihenstephanensis (A9VLS6),
B. mycoides (C3AET4), B. pseudomycoides (C3BM93), Geobacillus sp. Y4.1MC1 (E3IFM2), Halobacillus halophilus (I0JJA0), B. subtilis (O34929), Listeria innocua
(Q92AX8), Listeria monocytogenes (S5JWD1), Geobacillus kaustophilus (Q5L2X3), Lysinibacillus sphaericus (B1HUQ2), Exiguobacterium sibiricum (B1YK36),
Anoxybacillus flavithermus (B7GFW5), M. caseolyticus (B9E839), Brevibacillus brevis (C0ZL32), Escherichia coli (P21503), and DHA1 proteins from Lactococcus
lactis (Q48658), B. subtilis (Q797E3, O34546, P39843, P33449), Pseudomonas aeruginosa (P32482) and DHA3 proteins from Streptococcus pyrogenes (P95827),
B. subtilis (P39642, O31600, P42112), B. clausii (Q5WAS7), Pseudomonas syringae (Q887F7), Clostridium perfringens (Q46305) and the sugar transporter AraE
from B. subtilis (P96710) as an outgroup were used to build the tree. Posterior probability values are shown at each node and the bar represents the expected
number of amino acid substitutions per site. The seven protein sequences marked with ∗ were aligned in Figure 5.
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Results

BC3310 is Conserved in the B. cereus Group
To date, 228 strains of the B. cereus group of bacteria have
been sequenced (Markowitz et al., 2012). A BLASTP search
showed that the protein BC3310 is highly conserved within
this group. In 225 strains BC3310 orthologs with >91%
amino acid identity were identified. The predicted ortholog
from the reduced genome sized B. cereus cytotoxis NVH
391-98 displayed 88% identity. The two strains (B. anthracis
3154 and B. anthracis A2012) in which no BC3310 ortholog
was found are draft genomes which display a gap at the
relevant genomic position (data not shown). Orthologs of the
BC3310 protein are also found in other bacteria of the order
Bacillales including B. subtilis (51% amino acid identity), Listeria
innocua (47% amino acid identity), Geobacillus kaustophilus
(47% amino acid identity), Lysinibacillus sphaericus (50% amino
acid identity), Exiguobacterium sibiricum (39% amino acid
identity), Anoxybacillus flavithermus (49% amino acid identity),
Macrococcus caseolyticus (42% amino acid identity), Brevibacillus
brevis (41% amino acid identity). The phylogenetic relationship
of BC3310 to a selection of orthologs is depicted in a dendrogram
(Figure 1). BC3310 clusters very closely with orthologous
proteins from other B. cereus group members, thus forming a
distinct cluster separate from the orthologs of other Bacillales
species.

B. cereus �bc3310 is More Susceptible to
Ethidium Bromide Compared to the Wild Type
To examine the role of BC3310 in conferring drug tolerance in
B. cereus ATCC 14579 a microbroth dilution test was conducted
comparing the B. cereus wild type to its isogenic markerless
knock-out mutant. Growth of the strains in twofold serial
dilutions of ten compounds, including antibiotics from different

classes, was tested. The susceptibility of the �bc3310 mutant
only differed from the susceptibility of the wild type strain
for one of the 10 tested compounds. B. cereus �bc3310 was
two times more susceptible to ethidium bromide compared to
the wild type (Table 2). It is possible that redundancy among
efflux transporters masks the substrate range of the BC3310
transporter or that the transporter is not expressed under the
conditions studied. Hence, a heterologous E. coli expression
system with a hypersensitive E. coli strain and IPTG-inducible
BC3310 expression was used to further investigate possible
substrates.

Expression of BC3310 Protein in E. coli
The ability of E. coli to heterologously express intact BC3310
protein was investigated. The bc3310 gene was cloned into
the expression vector pTTQ18 as described (Saidijam et al.,
2006, 2011; Szakonyi et al., 2007). BC3310 was expressed with a
C-terminal RGSHis6 tag and detected by Western blotting
using an antibody against the RGSHis6 tag (Figure 2).
The protein was solubilized from the inner membrane
fraction with DDMand purified by affinity chromatography
(Figure 2). The major band on the Coomassie stained gel
was subjected to Edman degradation and confirmed to
contain the first eight predicted amino acids of BC3310.
Topology analysis with HMMTOP predicted 12 transmembrane
helices in the BC3310 transport protein. Circular dichroism
measurements of the purified protein resulted in a spectrum
with nodes at 210 and 222 nm (Figure 3), indicating a
prevailing α-helical structure (Wallace et al., 2003) and thus
confirming the integrity of the heterologously produced
protein.

Thereafter the substrate range of heterologously expressed
BC3310 was determined. A susceptibility assay was performed
using E. coli DH5α �acrAB in which the major multidrug efflux

TABLE 2 | Minimal inhibition concentration (MIC) of E. coli DH5α �acrAB expressing BC3310 (pbc3310) compared to empty vector control (pTTQ18) and
Bacillus cereus ATCC 14579 �bc3310 (�bc3310) compared to B. cereus ATCC 14579 (wild type).

MIC [μg ml−1]

E. coli DH5α �acrAB B. cereus ATCC 14579

Compound Empty vector pbc3310 § Wild type �bc3310 §

Apramycin n.d.∗ n.d. 12.5 12.5 1

Chloramphenicol 1.25 1.25 1 3.13 3.13 1

Erythromycin 12.5 12.5 1 0.25 0.25 1

Kanamycin 2.5 2.5 1 12.5 12.5 1

Lincomycin 400 400 1 n.d. n.d.

Nalidixic acid n.d. n.d. 5 5 1

Novobiocin 1.25 1.25 1 n.d. n.d.

Phleomycin n.d. n.d. 50 50 1

Tetracycline 1.25 1.25 1 1.25 1.25 1

Ethidium bromide 3.13 12.5 4 50 25 0.5

SDS 100 400 4 100 100 1

Silver nitrate 1.3 2.7 2 0.43 0.43 1

§represents fold difference between E. coli or B. cereus strains, experiments were conducted at least three times in duplicate.
∗ denotes not determined.
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FIGURE 2 | Purification of BC3310-RGSHis6 . BC3310 was expressed with
RGS(His)6-tag in E. coli and inner and outer membranes were separated.
BC3310-RGSHis6 was solubilized with DDM and purified by immobilized
metal affinity chromatography (IMAC). The SDS-PAGE was loaded as follows
and stained with Coomassie Blue: (1) molecular weight marker; (2) inner
membrane fraction; (3) solubilized protein; (4) unsolubilized protein; (5)
flow-through after IMAC binding; (6) eluted protein. (7) Western blot detection
of eluted BC3310 protein after affinity chromatography using an antibody to
the RGSHis6 epitope.

complex was disrupted. TheMICs of different compounds for the
strain expressing BC3310 from pTTQ18 were compared to the
MICs for the empty vector control. The E. coli strain expressing
BC3310 showed a fourfold higher MIC for ethidium bromide and
SDS and a twofold higher MIC for silver nitrate (Table 2).

FIGURE 3 | Circular dichroism analysis of purified BC3310-RGSHis6

protein. The analysis was performed at 1 nm intervals over 270–190 nm with
a scan rate of 10 nm min−1. The spectrum represents an averaged
accumulation of 20 scans, from which the buffer contribution was subtracted.

FIGURE 4 | Uncoupler-sensitive efflux of ethidium associated with
expression of BC3310. Accumulation of ethidium bromide after 30 min was
measured in IPTG-induced E. coli DH5α �acrAB host cells either expressing
bc3310 (pBC3310, dark gray) or not using an empty vector control (pTTQ18,
light gray) without (-CCCP) and with addition of CCCP (+ CCCP). Values are
means of four independent experiments and error bars indicate standard
deviations, ∗p < 0.01, unpaired Student’s t-test.

Ethidium Bromide Efflux of BC3310 is
Disrupted by CCCP
Major facilitator superfamily efflux proteins are secondary active
transporters that utilize the electrochemical gradient across the
cell membrane to extrude compounds. The BC3310 protein
sequence displays motifs characteristic of an MFS transporter
(see below) and so the ability of BC3310 to confer resistance
to ethidium bromide by means of drug efflux was investigated
further. A whole cell ethidium bromide accumulation assay
with the E. coli DH5α �acrAB strain expressing BC3310
was performed. Ethidium bromide fluoresces upon binding to
double-stranded DNA, and the fluorescence intensity correlates
with the accumulation of ethidium bromide. The E. coli
strain expressing bc3310 (pbc3310) showed less fluorescence
compared to the empty vector control (pTTQ18), thereby
implying that BC3310 exports ethidium bromide (Figure 4).
Addition of the protonophore CCCP led to an increase
in fluorescence intensity in the strain expressing bc3310 to
approximately the control level (pTTQ18) (Figure 4, dark gray
bars). This increase indicates the inability of BC3310 to export
ethidium bromide due to the disruption of the electrochemical
gradient.

Mutation of the Conserved Aspartic Acid
Residue (D105) Abolishes Ethidium Bromide
Efflux
Proton or substrate translocations by transport proteins often
require acidic residues within transmembrane helices (Paulsen
et al., 1996a; Edgar and Bibi, 1997; Sanderson et al., 1998;
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FIGURE 5 | Multiple sequence alignment of BC3310 and its homologs. BC3310 from B. cereus ATCC 14579 (UniProt accession number: Q81B77) was
aligned using MUSCLE with orthologs from Brevibacillus brevis (C0ZL32), Exiguobacterium sibiricum (B1YK36), Listeria innocua (Q92AX8), B. subtilis (O34929),
Geobacillus kaustophilus (Q5L2X3) and Halobacillus halophilus (I0JJA0). Shading corresponds to >80% (dark blue), >60% (blue), >40% (light blue), and ≤40%
(white) amino acid identity, respectively. The conserved acidic residue in transmembrane region 4 is displayed in red. Transmembrane regions have gray bars under
and conserved MFS motifs are depicted above the sequence.

Dang et al., 2010). Sequence alignment of BC3310 with
orthologous proteins revealed a conserved acidic residue in
putative TMS 4 (Figure 5). In order to investigate the
importance of this conserved aspartate residue (D105) for efflux
activity, mutational analyses were conducted. Three constructs
were made in which the aspartate residue was mutated to
glutamate (D105E), asparagine (D105N), or alanine (D105A).
The expression of the mutant proteins was detected and
quantified by Western blot (Figure 6). This showed that the
expression of all mutant proteins was three to four times
higher compared to the expression of wild type protein.
MIC determination of ethidium bromide and silver nitrate
was performed to investigate the functionality of the mutant
BC3310 proteins (Table 3). Even though more mutant protein
was expressed, the susceptibility of strains expressing mutant
BC3310 was reduced to levels approximating those of the
empty vector control-strain. Thus, mutational change of the

aspartate residue to another acidic or a structurally similar
residue abolished the efflux ability of BC3310 for ethidium
bromide and silver nitrate, indicating that both the size and
charge of the side chain at position 105 are important for protein
function.

BC3310 Belongs to the UMF-2 Family of the
MFS
BC3310 showed prevailing α-helical structure in our CD
analysis and is predicted to be a 12-TMS multidrug transporter
belonging to the MFS. Most of the 12 TMS-containing
MFS proteins that efflux several drugs are members of the
drug:H+ antiporter families DHA1 and DHA3. To determine
if BC3310 belongs to one of these families within the MFS, a
multiple alignment of sequences orthologous to BC3310 and
sequences from the well described DHA1 and DHA3 families
was performed. From this alignment a dendrogram was built
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FIGURE 6 | Western blot detection of the BC3310 protein and its
mutants in Escherichia coli. E. coli DH5α �acrAB was transformed with
empty pTTQ18 vector plasmid or pTTQ18 with the indicated insert; wild type
BC3310 with his-tag and mutants D105N, D105A, and D105E under an IPTG
inducible promoter. The cells were grown and prepared for SDS-PAGE as
described in Section “Materials and Methods”. Numbers indicate: (1) empty
pTTQ18 vector; (2) BC3310 wild type; (3) D105N mutant; (4) D105A mutant;
(5) molecular weight marker; (6) D105E mutant. BC3310 and its mutants
migrate at ∼30 kDa.

which showed clustering of BC3310 and orthologs in a distinct
clade separate from the DHA1 and DHA3 family proteins
included in the analysis (Figure 1). This analysis supported
the transporter classification database (TCDB) division of YfkF,
the BC3310 ortholog in B. subtilis, into a separate family,

TABLE 3 | Relative expression rate and relative MIC of E. coli strains
producing no BC3310, BC3310 wild type, D105N, D105A, or D105E mutant
protein.

E. coli DH5α �acrAB
producing

Relative
expressionb [%]

Relative resistance to [%]a

Ethidium
bromide

Silver
nitrate

BC3310 wild-type 100 100 100

No BC3310 NAc 20 60

D105N 440 20 50

D105A 330 25 50

D105E 380 30 60

aMICs were determined in E. coli DH5α �acrAB pTTQ18 expressing bc3310 in LB
media or LB media without NaCl (for silver nitrate) supplemented with 0,04 mM
IPTG and 75 μg ml-1 carbenicillin.
baverage of five different Western blots of five different cultures.
cNA, not applicable.

the unknown major facilitator family-2 (UMF-2) (Saier et al.,
2014).

Transport Proteins within the UMF-2 Family
Contain a Variant of the MFS Signature Motif A
Sequence alignment revealed that amino acid sequence motifs
characteristic for MFS transporters, namely motif A, B, C,
and G were conserved in BC3310 and orthologous proteins
(Figure 5) (Henderson and Maiden, 1987; Griffith et al.,
1992; Paulsen et al., 1996b). Motif A is conserved in the
loop region between transmembrane segments (TMS) 2 and
3, and has been called the MFS signature motif due to
its conservation across the superfamily. In the majority of
MFS transporters, including the DHA1 family proteins, the
motif A consensus sequence is G-x-L-a-D-r/k-x-G-r/k-r/k-x-
x-I (x indicating any amino acid; capital and lower case
letters representing amino acid frequency of >70% and 40–
70%, respectively; Henderson and Maiden, 1987; Griffith et al.,
1992; Paulsen et al., 1996b). However, a functional variant of
this motif has been described in the Clostridium perfringens
DHA3 family tetracycline efflux protein TetA(P): E-x-P-x-x-x-
x-x-D-x-x-x-R-K (bold Q6letters overlap with D, r/k,r/k of the
canonical motif A) (Bannam et al., 2004). In BC3310 and its
orthologs a modified motif A (motif A′) was identified, which
represents a hybrid of the canonical motif A and the TetA(P)
motif A (Table 4) (Paulsen et al., 1996b; Bannam et al., 2004).
The N-terminal sequence of motif A′ in BC3310 orthologs
resembles the TetA(P) (DHA3) motif A, with E and P conserved
in both motifs, whereas the C-terminal sequence corresponds
to the DHA1 motif A. This results in the BC3310 modified
motif A′ sequence E-r/k-P-L-x-r/k-x-G-x-r/k-P-x-I (bold letters
correspond to sequences of the previously described motif A
sequences).

As in other MFS transporters, a second motif A-like
sequence is present between TMS 8 and TMS 9 in BC3310
(consensus sequence: G-x-L-S-D-r/k-x-G-R-r/k-x-x-i/l). This
sequence coincides more with the signature motif A compared
to the motif A′ sequence between TMS 2 and TMS 3 (Henderson
and Maiden, 1987; Griffith et al., 1992).

Discussion

Heterologous expression of BC3310 in a drug hypersusceptible
E. coli strain increased the tolerance of the bacteria to AgNO3,
SDS, and ethidium bromide, indicating that it has a role in
resistance to multiple drugs. Whole cell accumulation assays of
ethidium bromide in E. coli expressing bc3310 demonstrated
CCCP-sensitive efflux of ethidium in the drug hypersusceptible
E. coli strain confirming a function as a drug efflux protein.
Hence, BC3310 is an energy-dependent multidrug efflux pump.
Inactivation of bc3310 in B. cereus ATCC 14579, also resulted
in increased susceptibility to ethidium bromide, but not to
SDS or AgNO3, suggesting, low basal expression of bc3310
under the conditions used in our experiments. It has, however,
previously been reported that addition of 1 mM AgNO3
to exponentially growing cultures of B. cereus ATCC 14579
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TABLE 4 | Consensus sequences of motif A variants found in MFS drug export families.

MFS family Consensus sequence of motif A variants

DHA1 G x L a D r/k x G r/k r/k x x I

TetA(P) (DHA3) E x P x x x x x D x x x R K

BC3310 (UMF-2) E r/k P – – – – L x r/k x G x r/k P x I

x indicates any amino acid; capital, and lower case letters represent an amino acid frequency occurrence of >70 and 40–70%, respectively; bold letters indicate an
overlap with conserved amino acids of the DHA1 or DHA3 family.

induced expression of bc3310 (Babu et al., 2011) and we
detected AgNO3-induced temporal expression of bc3310 by
qRT-PCR under our experimental settings (data not shown).
Therefore, although BC3310 seems to have a role in transport
of Ag+ and/or NO−

3 it is not essential in conferring AgNO3
resistance under the conditions tested, but may be important
under specific circumstances. B. cereus ATCC 14579 contains
93 genes annotated as drug transporter which corresponds to
1.7% of the protein coding genes in the genome (Saidijam
et al., 2006, 2011; Ren et al., 2007). In comparison, B. subtilis
and E. coli display 32 and 37 genes encoding drug transport
proteins, respectively, which correspond to 0.8 and 0.9% of
the protein coding genes (Nishino and Yamaguchi, 2001; Ren
et al., 2004). Considering the high number of annotated
drug transporter genes in the genome of B. cereus, it is
possible that one or more transporters compensate for the
loss of BC3310, thereby concealing a potential effect of a gene
disruption.

The efflux of ethidium bromide by BC3310 is dependent
on a conserved aspartate residue, which could not be replaced
by another acidic or hydrophobic amino acid. This indicates
an important role of the aspartate residue at position 105
(D105) in the putative TMS 4. This residue is also conserved
in BC3310 orthologs. Even though this aspartate residue is
not reported to be one of the conserved residues, it falls
into the boundaries of motif B. The motif B sequence of
BC3310 and orthologs is W-x-x-L-R-x-x-x-G-x-G-D-x which
overlaps to a large degree with canonical motif B L-x-x-
x-R-x-x-q-G-x-g-a-a (bold letters indicate matching amino
acids, underlined letter is D105 in BC3310). Motif B contains
an absolutely conserved basic amino acid residue which is
proposed to play a role in proton transfer (Paulsen and
Skurray, 1993). This residue is also conserved in BC3310
(R98).

Sequence analyses classified BC3310 into the UMF-2 family
of the MFS which is distinct from the well characterized drug
efflux families DHA1 and DHA3 and consists of previously
uncharacterized proteins. We have thus described the first
functional data for a member of the UMF-2 family and
showed that it includes multidrug efflux proteins. Previously
transporters belonging to (at least) five of the 82 different
families have been implicated in multidrug efflux. Besides the
mentioned DHA1 and DHA3 families with 12 TMS-containing
transporters, multidrug efflux proteins have been described for
the Organic Cation Transporter family (2.A.1.19) (Koepsell,
2013). In addition, the DHA2 family is known to contain
multidrug efflux proteins with 14 TMS (Paulsen et al., 1996b)

and the gene encoding MdrA in Streptomyces coelicolor, classified
into the Acriflavin Sensitivity family (2.A.1.36), is regulated by
a TetR repressor that recognizes multiple drugs (Hayashi et al.,
2013).

Interestingly, BC3310 and its orthologs contain an alternative
motif A′ consensus sequence E-r/k-P-L-x-r/k-x-G-x-r/k-P-x-I
between putative TMS 2 and 3. We propose that this consensus
sequence can be used as a marker to distinguish the UMF-
2 family from other MFS families. The presence of a second
motif A in BC3310 is likely due to the duplication of 6
TMS during the evolution of the 12-TMS MFS transporters
(Paulsen and Skurray, 1993). Similarly, motif G relates to a
duplication of motif C (antiporter motif) (Paulsen et al., 1996b).
Motif C is only conserved in exporters and not in importers
(Paulsen and Skurray, 1993). This motif is also found with
a high similarity (including the functionally important GP
dipeptide; De Jesus et al., 2005) in BC3310 and orthologs
which is in line with the efflux function of BC3310. Little
similarity to MFS motif D2 is observed in the sequence
alignment of BC3310 orthologs. As reported previously, motif
D2 does not appear to be highly conserved in recently
investigated 12-TMS MFS transporters and a function has
not yet been assigned (Paulsen et al., 1996b; Kapoor et al.,
2009).

The gene encoding the BC3310 transporter is highly
conserved in the genomes of the B. cereus group members
indicating that bc3310 belongs to the core genome of the
B. cereus group. Comparison of the bc3310 genomic region
of B. cereus ATCC 14579 with the equivalent regions of
selected B. cereus group members, B. cereus ATCC 10987,
B. cereus ATCC 10876, B. anthracis Ames Ancestor A2084,
B. thuringiensis sv. kurstaki YBT-1520, and B. mycoides ATCC
6462 showed the same gene organization. The different species
of the B. cereus group inhabit many different niches and
display a high number of efflux transporter genes in the
genome compared to other bacteria which could account
for the different lifestyles (Saidijam et al., 2006, 2011). Thus,
genes conserved in the genomes of the B. cereus group might
play a role in the fundamental maintenance of physiological
functions. Preliminary phenotypic microarray data using
BIOLOG, however, did not reveal significant differences
between B. cereus ATCC 14579 wild type and �bc3310
mutant. Condition-dependent transcriptome analyses of
the bc3310 ortholog, yfkF, in B. subtilis revealed relatively
constant transcriptional activity across the conditions
investigated (Nicolas et al., 2012). The highest level of gene
expression was observed in cells within stationary (OD600 ∼2)
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or transition (OD600 ∼1.4) growth phases in LB medium or
LB medium supplemented with glucose as well as on LB agar.
Ethanol stress conditions revealed the lowest expression of this
gene. Furthermore yfkF is predicted to be under the control
of the housekeeping sigma factor SigA (Nicolas et al., 2012).
Transcription of genes encoding multidrug transporters with a
major role in protecting the cell against toxic compounds is
generally activated by transcription factors that recognize toxic
compounds or stress signals, such as AcrR, SoxS, MarR, and Rob
in the case of AcrAB of E. coli (Ma et al., 1996; Sulavik et al., 2001;
Randall and Woodward, 2002; Rosenberg et al., 2003). This fact
and the minor intrinsic susceptibility against toxic compounds in
the B. cereus �bc3310 deletion mutant indicate that BC3310 is
not a potent multidrug transporter with a main role in protecting
the cell against toxic xenobiotics. It rather hints to an ancient and
maybe general function in the normal physiology of the B. cereus
group of bacteria. To further elucidate the role of this transporter
the inactivation of other efflux proteins might be required.

Taken together, we have performed the first phylogenetic and
functional characterization of a member of the UMF-2. The
amino acid sequence of BC3310 comprises known motifs of the
12-TMS MFS transporters with a modified motif A′ between
TMS 2 and TMS 3. BC3310 is a multidrug transporter with
confirmed predominant α-helical structure. It confers resistance
to ethidium bromide, SDS, and silver nitrate when expressed in
E. coli. The export of ethidium bromide is energy dependent
and requires a conserved aspartate residue in TMS 4. The

deletion of bc3310 in B. cereus resulted in increased susceptibility
to ethidium bromide under the conditions tested. The high
conservation of bc3310 within the B. cereus group genomes
indicates that it is part of the core genome. We hypothesize
that the intrinsic role of BC3310 is not as a typical multidrug
transporter, but rather as an important component in the normal
physiology of the bacteria, under conditions that still remain to
be identified.
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