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Design and optimization of gear transmissions have been intensively studied, but surprisingly
the robustness of the resulting optimal design to uncertain loads has never been considered.
Active Robust (AR) optimization is a methodology to design products that attain robustness
to uncertain or changing environmental conditions through adaptation. In this study the AR
methodology is utilized to optimize the number of transmissions, as well as their gearing
ratios, for an uncertain load demand. The problem is formulated as a bi-objective optimization
problem where the objectives are to satisfy the load demand in the most energy efficient
manner and to minimize production cost. The results show that this approach can find a set
of robust designs, revealing a trade-off between energy efficiency and production cost. This
can serve as a useful decision-making tool for the gearbox design process, as well as for other
applications.

Keywords: Gearbox design; adaptive design; multi-objective optimization; robust
optimization; active robustness.

1. Introduction

One of today’s engineers greatest challenge is the development of energy efficient products
to cope with limited resources. In systems that include a gearbox, careful design of this
component can enhance the efficiency of the system. A gearbox is an assembly of gears
with different ratios that provides speed and torque conversions from a motor to another
device. With the use of a gearbox, a single motor can meet a span of load demands,
which are combinations of required speed and torque. There is a unique gearing ratio
for every given motor that will result in the least energy consumption for a specific load
demand. Usually a geared system operates under a range of possible loads. If optimality
with respect to energy consumption is targeted, the gearbox should include an infinite
number of gears in order to accommodate all loads within this range. Naturally it is not
possible to produce such a gearbox, and anyway, a gearbox with too many gears has
more drawbacks than advantages (e.g. dimensions, weight, costs). Therefore gearboxes
used in real applications are made of a finite number of gears (typically up to six in the
auto industry), where each gear covers a different range of the load demands (e.g. high
reduction for high torque and low speed, and vice versa). The gearbox’s gearing ratios
should allow for the satisfaction of each possible load by one of the gears in a reasonably
efficient manner. Therefore, the choice of the gears determine the overall performance of
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the gearbox. This choice can be supported by an optimization procedure for minimum
energy consumption.
Some previous studies on gearbox optimization can be found in the literature. Guzzella

and Amstutz (1999) presented a computer aided engineering tool for modelling and op-
timization of a hybrid vehicle. They showed an example of optimizing the transmission
ratios for minimum fuel consumption. The model is deterministic, and the ratios are opti-
mized for a single, arbitrarily chosen, load cycle. Roos, Johansson, and Wikander (2006)
suggested an optimization procedure for selecting a motor and gearhead for mechatronic
applications aiming at either peak power, motor torque or energy efficiency. This ap-
proach is suitable for a single gear system and not for a gearbox with several gears. The
choice of the gearhead was conducted according to the worst case of the expected load
scenarios. Swantner and Campbell (2012) developed a framework for gearbox optimiza-
tion that searches among different types of gears (helical, conic, worm, etc.), topologies,
materials and sizing parameters. The gearbox was optimized for minimum dimensions,
considering a set of functional constraints. Other problem setting of single objective
gearbox optimization include minimum variation from a given set of transmission ratios
(Mogalapalli, Magrab, and Tsai 1992), minimum volume or weight (Yokota, Taguchi, and
Gen 1998; Savsani, Rao, and Vakharia 2010), minimum vibration (Inoue, Townsend, and
Coy 1992) or minimum center distance between input and output shafts (Li, Symmons,
and Cockerham 1996).
Some multi-objective gearbox optimization studies can also be found in the litera-

ture. Osyczka (1978) formulated a problem to minimize simultaneously four objective
functions: volume of elements, peripheral velocity between gears, width of gearbox, and
center distance. Wang (1994) considered center distance, weight, tooth deflection, and
gear life as objective functions. Thompson, Gupta, and Shukla (2000) optimized for min-
imum volume and surface fatigue life. Kurapati and Azarm (2000) optimized a gearbox
for minimum volume and minimum stress in the output shaft. Deb, Pratap, and Moitra
(2000) designed a compound gear train to achieve a specific gear ratio. The objectives
of the gear train design were minimum error between the obtained gear ratio and the
required gear ratio and maximum size of any of the gears. Deb and Jain (2003) have
optimized an 18-speed, 5-shafts gearbox for two, three and four objectives. Among the
objectives were power, volume, center distance and variation from desired output speed.
The same optimization problem was used by Deb (2003) to demonstrate how design
principles can be extracted by investigating the relations between design variables of the
Pareto optimal solutions in the design space. Li et al. (2008) optimized a two-stage gear
reducer for minimum dimensions, minimum contact stress and minimum transmission
precision errors.
The optimization involved within all studies above was conducted for given reduction

ratios, or at least for a given speed-torque scenario or cycle. However, most applications
that include a gearbox (such as vehicles) are subjected to a large span of uncertain load
requirements, as a result of a variety of possible environmental conditions. The stochas-
tic nature of the required torque and speed must be considered during the design phase.
In order to optimize a gearbox for uncertain load requirements, a robust optimization
(RO) procedure should be considered. A robust solution is a solution that can maintain
good performance over the various scenarios associated with the involved uncertainties.
Robustness is usually attained at the price of not achieving peak performance in any spe-
cific scenario, and the success of a solution to a robust optimization problem is measured
according to a certain criterion such as its mean or worst performance (Paenke, Branke,
and Jin 2006). In this study, a gearbox is optimized for minimum energy consumption
where the load demand is uncertain. A robust set of transmission ratios is searched for
to maximize the system’s efficiency considering the uncertain load domain.
In many RO problems, in order to ensure robustness, a solution may include some
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properties that reduce the possible negative influences caused by uncontrolled parame-
ters’ variations (e.g. thick insulation may reduce fluctuations of an oven internal temper-
ature, caused by changes in the ambient temperature). When this is the case, robustness
is passively attained without any action required from the user. A gearbox, however, can-
not be optimized for robustness with this approach, since its performance does not solely
depend on its preliminary design. The performance is also influenced by the manner in
which the gearbox is being operated. A gearbox with a good selection of gearing ratios
for a span of load scenarios can be very inefficient if it is not being used properly. For
best performance, the proper gear in the set has to be selected for each realization of the
uncertain load demand. When cruising on the highway, the best efficiency is achieved
with the highest gear (say sixth). A driver that uses the fifth gear for this scenario does
not operate the gearbox in an optimal manner. Hence, robustness to the uncertain load
demand is actively attained by selecting the proper gear for each load scenario. The
selection of the optimal gear for each scenario can be made either manually by a skilled
user, or with the use of a controller in the case of an automatic transmission.
The active robustnessmethodology (AR), recently introduced by Salomon et al. (2014),

provides the required tools to conduct a robust optimization for a gearbox. AR aims at
products that attain robustness to a changing or uncertain environment through adap-
tation. Such products are termed as adaptive products. The AR methodology assumes
that an adaptive product possess some properties that can be modified by its user. These
properties allow the product to adapt to environmental changes in order to enhance op-
timality. The adaptability of a geared system is provided by the user’s ability to change
the gear ratios by altering the engaging wheels. This adaptability is taken into account
at the evaluation of a candidate solution; it is evaluated according to its best possible
performance for each scenario of the uncertain parameters. For the example above, it
is assumed that the driver uses the sixth gear while cruising on the highway and sec-
ond gear when carrying a heavy load up the hill. Since enhanced adaptability usually
comes with a price (e.g., a gearbox with more gears would be more expensive), the objec-
tives of an Active Robust Optimization Problem (AROP) are the solution’s best possible
performance, evaluated at different scenarios of the uncertainties involved, and its cost.
The problem formulated in this paper is the optimization of a gearbox for a random

variate of torque and speed requirements. Both the number of gears and their charac-
teristics are optimized in order to minimize the overall energy consumption and gearbox
cost. The solution to the problem is a set of gearboxes with a trade-off between energy
efficiency and low cost. The AR optimization approach is demonstrated with a power
system of a DC motor and a simple two stage reduction gearbox. The approach can be
adopted to other geared systems such as vehicles, motorcycles, wind turbines, industrial
and agricultural machinery.
The reminder of the paper is organised as follows: In Section 2 the required background

on Robust Optimization and Active Robust Optimization is provided. In Section 3 an
example system of a DC motor and a two-stage reduction gearbox is presented, and its
model is described. The AROP for optimizing this gearbox is formulated in Section 4,
and its solution is presented and analysed in Section 5. Finally, a discussion is given
in Section 6 covering the advantages of the presented approach, and how the methods
could be further extended to provide efficient support for adaptive complex engineering
solutions.
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2. Background

2.1 Multi-Objective Optimization

Multi-objective optimization problems (MOPs) arise in many real-world applications,
where multiple conflicting objectives should be simultaneously optimized. In the absence
of prior subjective preference, the solution to such problems is a set of optimal “trade
off” solutions rather than a single solution. This set is also called “Pareto optimal set”
or “non-dominated set”. A non-dominated solution is a solution where none of the other
solutions is better than it with respect to all of the objective functions.
Mathematically, a MOP can be defined as:

min
x∈X

ζ(x,p) = [f1(x,p), . . . , fm(x,p)] , (1)

where x is an nx-dimensional vector of decision variables in some feasible region X ⊂ Rnx ,
p is an np-dimensional vector of environmental parameters that are independent of the
design variables x and ζ is an m-dimensional performance vector.
The following define the Pareto optimal set, which is the solution to a MOP:

• A vector a = [a1, . . . , an] is said to dominate another vector b = [b1, . . . , bn] (denoted
as a ≺ b) if and only if ∀i ∈ 1, . . . , n : ai ≤ bi and ∃i ∈ 1, . . . , n : ai < bi.

• A solution x ∈ X is said to be Pareto optimal in X if and only if ¬∃x̂ ∈ X : ζ(x̂,p) ≺
ζ(x,p).

• The Pareto optimal set (PS) is the set of all Pareto optimal solutions, i.e.,
PS = {x ∈ X | ¬∃x̂ ∈ X : ζ(x̂,p) ≺ ζ(x,p)}.

• The Pareto optimal front (PF) is the set of objective vectors corresponding to the
solutions in the PS, i.e., PF = {ζ(x,p) | x ∈ PS}.

2.2 Robust Optimization

Robust performance design tries to ensure that performance requirements are met and
constraints are not violated due to system uncertainties and variations. The uncertainties
may be epistemic, resulting from missing information about the system, or aleatory, where
the system’s variables inherently change within a range of possible values. Fundamentally,
robust optimization is concerned with minimizing the effect of such variations without
eliminating the source of the uncertainty or variation (Phadke 1989).
The performance vector ζ in Equation (1) might possess uncertain values due to several

sources of uncertainties, which can be categorised according to Beyer and Sendhoff (2007)
as follows:

(1) Changing environmental and operating conditions. In this case, the values of some
uncontrollable parameters p are uncertain. The reasons for uncertainty might be in-
complete knowledge concerning these parameters, or expected changes in parameter
values during system operation.

(2) Production tolerances and deterioration. These uncertainties occur when the actual
values of design variables differ from their nominal values. The deviation might occur
during production (manufacturing tolerances) or during operation (deterioration).
Here, the x variables in Equation (1) are the source of uncertainty.

(3) Uncertainties in the system output. The actual value of the performance vector ζ

might differ from its measured or simulated value, due to measurement noise or
model inaccuracies, respectively.

When uncertainties are involved within an optimization task, the objective and con-
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straint functions, which define optimality and feasibility, become uncertain too. To assess
the uncertain functions, robustness and reliability are considered (Schuëller and Jensen
2008). Robustness can be seen as having good performance (i.e. objective function val-
ues) regardless of the realisation of the uncertain conditions. Reliability is concerned with
remaining feasible despite the uncertainties involved.
This study aims at a robust design for changing operating conditions. The related

robust optimization problem can be formulated as:

min
x∈X

F (x,P), (2)

where x is an nx-dimensional vector of decision variables in some feasible region X ⊂ Rnx ,
P is an np-dimensional vector random variate, of uncertain environmental parameters
that are independent of the design variables x, and F (x,P) is a distribution of objective
function values that correspond to the variate of the uncertain parameters P.
In a robust optimization scheme, the random objective function is evaluated according

to a robustness criterion, denoted by an indicator φ [F ]. Three classes of criteria are
presented in the following.
Worst-case optimization, also known as robust optimization in the operational research

literature (Bertsimas, Brown, and Caramanis 2011) or minmax optimization (Alicino and
Vasile 2014), considers the worst performance of a candidate solution over the entire range
of uncertainties. The worst-case indicator for a minimzation problem can be written as:

φw [F (x,P)] := max
p∈P

F (x,P). (3)

The robust optimisation problem in Equation (2) then reads:

min
x∈X

max
p∈P

F (x,P). (4)

To address the tendency of this approach to produce over-conservative solutions, Jiang,
Wang, and Guan (2012) suggested a method for controlling the conservatism of the search
by reducing the size of the uncertainty interval with a tuneable parameter. Branke and
Rosenbusch (2008) suggested an evolutionary algorithm for worst-case optimization that
simultaneously searches for the robust solution and the worst-case scenario by co-evolving
the population of scenarios alongside the candidate solutions.
Aggregation methods use an integral measure that amalgamates the possible values

of the uncertain objective function. The most common aggregated indicators are the
expected value of the objective function or its variance – see the review by Beyer and
Sendhoff (2007). When the distribution of the uncertain parameters can be described by
the probability density function ρ(p), the mean value criterion can be computed by:

φm [F (x,P)] :=

∫

p∈P

f(x,p)ρ(p)dp, (5)

where f(x,p) is a deterministic model for the objective function. Commonly in real
world problems, Equation (5) cannot be analytically derived for the following reasons: i)
the distribution of the uncertain parameters is not known and needs to be derived from
empirical data, and/or ii) it is not feasible to analytically propagate the uncertainties to
form the uncertain objective function. Monte-Carlo sampling can then be used for these
cases to represent the random variate P as a sampled set P of size k. The mean value
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then becomes:

φm

[

F
(

x,P
)]

:=
1

k

k
∑

1=1

f(x,pi), (6)

where pi is the i
th sample in P. Kang, Lee, and Lee (2012) have considered the expected

value with a partial mean of costs to solve a process design robust optimization problem.
Kumar et al. (2008) have used Bayesian Monte-Carlo sampling to construct a sampled
representation for the performance of candidate compressor blades. They considered both
the mean value and the variance as a multi-objective optimization problem, and used
a multi-objective evolutionary algorithm to search for robust solutions. An alternative
formulation is to aggregate the mean and variance into a single objective function (e.g.
Lee and Park 2001).
Beyer and Sendhoff (2007) suggested a criterion that uses the probability distribution

of the objective function directly as a robustness measure. This is done by setting a
performance goal, and maximising the probability for achieving this goal, i.e. for the
function value to be better than a desired threshold. Considering a performance threshold
q, a threshold probability indicator can be defined as:

φtp [F (x,p)] := Pr
(

F (x,p) < q
)

. (7)

Reliability-based design aims at minimizing the risk of failure during the product ex-
pected lifecycle (Schuëller and Jensen 2008). In the context of design optimization, it
can be seen as minimizing the risk of violating the problem’s constraints. The criteria
mentioned above for robustness can also be used to assess reliability by applying them
to the constraint functions. A conservative worst-case approach was used by several au-
thors (e.g. Avigad and Coello 2010; Albert et al. 2011). The “six-sigma” methodology
(see Brady and Allen 2006) suggests a goal of 3.4 defects per million products, which
sets a threshold probability for reliability.

2.3 Active Robustness Optimization Methodology

The AR methodology (Salomon et al. 2014), is a special case of robust optimization,
where the product has some adjustable properties that can be modified by the user after
the optimized design has been realized. These adjustable variables allow the product to
adapt to variations in the uncontrolled parameters, so it can actively suppress their nega-
tive effect. The methodology makes a distinction between three types of variables: design
variables, denoted as x, adjustable variables, denoted as y and uncontrollable stochastic
parameters P. A single realized vector of uncertain parameters from the random variate
P is denoted as p.
In a conventional robust optimization problem, each realization p is associated with

a corresponding objective function value f(x,p), and a solution x is associated with a
distribution of objective function values that correspond to the variate of the uncertain
parameters P. This distribution is denoted as F (x,P). In active robust optimization,
for every realization of the uncertain environment, the performance also depends on the
value of the adjustable variables y, i.e., f ≡ f(x,y,p). Since the adjustable variables’
values can be selected after p is realized, the solution can improve its performance by
adapting its adjustable variables to the new conditions. In order to evaluate the solution’s
performance according to the robust optimization methodology, it is conceivable that the
y vector that yields the best performance for each realization of the uncertainties will be

6
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selected. This can be expressed as the optimal configuration y⋆:

y⋆ = argmin
y∈Y(x)

f(x,y,p), (8)

where Y(x) is the solution’s domain of adjustable variables, also termed as the solution’s
adaptability.
Considering the entire environmental uncertainty, a one-to-one mapping between the

scenarios in P and the optimal configurations in Y(x) can be defined as:

Y⋆ = argmin
y∈Y(x)

F (x,y,P). (9)

Assuming a solution will always adapt to its optimal configuration, its performance can
be described by the following variate:

F (x,P) ≡ F (x,Y⋆,P). (10)

An Active Robust Opimization Problem (AROP) comes to minimize the performance
indicator φ for the variate F (x,Y⋆,P). It is denoted as φ(x,Y⋆,P). Since enhanced
performance usually increases the costs of the product, the aim of an AROP is to find
solutions that are both robust and inexpensive. Therefore the AROP is a multi-objective
problem that simultaneously optimizes the performance indicator φ and the solution’s
cost.
The cost function for the gearbox that is used in this study only depends on the

gearbox’s preliminary design, i.e., the number of gears and their specifications. Therefore
it is not affected by the uncertain load demand and has a deterministic value. The general
definition of an AROP considers a stochastic distribution of the cost function, but in this
case it is denoted as c(x).
Following the above, the Active Robust Opimization Problem is formulated:

min
x∈X

ζ(x,P) = [φ(x,Y⋆,P), c(x)] , (11)

where Y⋆ =argmin
y∈Y(x)

F (x,y,P). (12)

It is a multi-stage problem. In order to compute the objective function φ in Equa-
tion (11), the problem in Equation (12) has to be solved for every solution x with the
entire environment universe P. In a typical implementation the environmental uncer-
tainty P is sampled using Monte Carlo methods. This sample, P, leads to sample-based
representations of Y⋆ and F – denoted Y⋆ and F respectively. This leads to an estimated
performance vector ζ.

3. Motor and Gear System

The problem at hand is the optimization of a gearbox for a span of torque-speed scenarios.
A DC motor of type Maxon A-max 32 is to convey a torque τL at speed ωL. In order to do
so, it is coupled with a gearbox as shown in Figure 1. The motor’s output shaft (white)
rotates at speed ωm and transmits a torque τm. It is firmly connected to a cogwheel
(black) that is constantly coupled to the layshaft. The layshaft consists of a shaft and
N gears (gray), rotating together as a single piece. N gears (white) are also attached
to the load shaft (black) with bearings, so they are free to rotate around it. The gears

7
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Figure 1. A gearbox with N gears. All gears are rotating while at any given moment the power is transmitted
through one of them.

are constantly coupled to the layshaft and rotate at different speeds, depending on the
gearing ratio. A collar (not shown in the figure) is connected, through splines, to the
load shaft and spins with it. It can slide along the shaft to engage either of the gears, by
fitting teeth called “dog teeth” into holes on the sides of the gears. In that manner the
power is transferred to the load through a certain gear, with the desired reduction ratio.
The aim of this study is to optimize the gearbox to achieve good performance over a

variety of possible load scenarios. Several objectives might be considered: monetary costs,
energy efficiency for different loads and the transient behaviour of the gearbox (e.g. energy
consumption during speed transitions and time required to change the system’s speed). A
problem formulation that considers all of the aforementioned objectives is very complex
and challenging. However, in order to demonstrate the features and concerns of the active
robustness approach, at this stage it is sufficient to focus on a more restricted formulation
of the gearbox optimization problem. Therefore, only the steady-state behaviour of the
gearbox is addressed in this study.
The number of gears in the gearbox, N , and the number of teeth in each ith gear, zi,

are to be optimized. The objectives considered are minimum energy consumption and
minimum manufacturing cost of the gearbox. The system is evaluated at steady-state,
i.e., operating at the torque-speed scenarios. The power required for each scenario is
considered, while the objective is to find the set of gears that will require the minimum
average invested power over all scenarios. For every scenario, the gearbox is evaluated
by the the smallest possible value of input power. This value is achieved by transmitting
the power through the most suitable gear in the box.

3.1 Model Formulation

In this section, the model for the motor and gearbox system is presented according to
Krishnan (2001), and the required performance measures are derived.
The motor armature current can be described by applying Kirchoff’s voltage law over

the armature circuit:

V = Lİ + rI + kvωm, (13)

where V is the input voltage, L is the coil inductance, I is the armature current, r is the
armature resistance and kv is the velocity constant. The ordinary differential equation
describing the motor’s angular velocity as related to the torques acting on the motor’s
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output shaft is:

Jmω̇m = ktI − bmωm − τm, (14)

where Jm is the rotor’s inertia, kt is the torque constant and bm is the motor’s damping
coefficient associated with the mechanical rotation. Since this study only deals with the
gearbox’s performance at steady-state, the derivatives of I and ωm are considered as
zero.
There are two speed reductions between the motor and the load. The first is from the

motor shaft to the layshaft. This reduction ratio, denoted as n1, is zl/zm, where zm is
the number of teeth in the motor shaft cogwheel and zl is the number of teeth in the
layshaft cogwheel. The second reduction, denoted as n2, is from the layshaft to the load
shaft. Each gear on the load shaft rotates at a different speed according to its gearing
ratio n2,i = zg,i/zl,i, where zg,i is the number of teeth of the ith gear’s load shaft cogwheel
and zl,i is the number of teeth of its matching layshaft wheel. n2 depends on the selected
gear, and it can be one of the values {n2,1, . . . , n2,N}. The total reduction ratio from the
motor to the load is n = n1 ∗ n2, and the load speed ω = ωm/n. The motor and load
shafts are coaxial, and the modules for all cogwheels are identical. Therefore, the total
number of teeth Nt for each gearing couple is identical:

Nt = zl + zm = zg,i + zl,i , ∀i ∈ 1, . . . , N. (15)

At steady-state, Equation (14) can be reflected to the load shaft as follows:

0 = nktI −
(

bg + n2bm
)

ω − τ, (16)

where τ is the load’s torque and bg is the gear’s damping coefficient with respect to the
load’s speed.
If ω from Equation (16) is known, the armature current can be derived:

I =

(

bg + n2bm
)

ω + τ

nkt
. (17)

Once the current is known, and after neglecting İ, the required voltage can be derived
from Equation (13):

V = rI + nkvω. (18)

The invested electrical power is:

s = V I. (19)

It is conceivable that manufacturing costs depend on the number of wheels in the
gearbox, their size, and overheads. A function of this type is suggested for this generic
problem to demonstrate how the various costs can be quantified:

c = αNβ + γ

N
∑

i=1

(

z2l,i + z2g,i
)

+ δ, (20)

where α, β, γ and δ are constants. The first term considers the number of gears. It takes
into account their influence on the costs of components such as the housing and shafts.

9
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The second term relates to the cogwheels material costs, which are proportional to the
square of the number of teeth in each wheel. The third represents the overheads. In
practice, other cost functions could be used.

4. Problem Definition

The gearbox optimization problem, formulated as an AROP, is the search for the number
of gears N and the number of teeth in each gear zg,i that minimize the production cost c
and the power input s. According to the AR methodology, introduced in Section 2, the
variables are sorted into three vectors:

• x is a vector with the variables that define the gearbox, namely the number of gears and
their teeth number. These variables can be selected before the gearbox is produced,
but cannot be altered by the user during its life cycle. The variables in x are the
problem’s design variables.

• y is a vector with the adjustable variables. It includes the variables that can be adjusted
by the gearbox’s user: the selected gear i and the supplied voltage V . The decisions
how to adjust these variables are made according to the load’s demand, and can be
supported by an optimization procedure. For example, a high reduction ratio will be
chosen for low speed, and a low ratio for high speeds, while the voltage is adjusted to
maintain the desired velocity for the given torque.

• p is a vector with all the environmental parameters that affect performance and are
independent of the design variables. Some of the parameters in this problem are con-
sidered as deterministic, but some possess uncertain values. The uncertainty for ω and
τ is aleatory, since they inherently vary within a range of possible load scenarios. The
random variates of ω and τ are denoted as Ω and T , respectively. Some values of the
motor parameters are given tolerances by the supplier. The terminal resistance r has
a tolerance of 5% and the motor resistance bm has a tolerance of 10%. Additionally,
the gearbox damping bg can be only estimated, and therefore it is treated as an epis-
temic uncertainty. The random variates of r, bm and bg are denoted as R, Bm and Bg,
respectively. The resulting variate of p is denoted as P.

A certain load scenario might have more than one feasible y configuration. When the
gearbox (represented by x) is evaluated for each scenario, the optimal configuration (the
one that requires the least input power) is considered. This configuration is denoted as y⋆,
and it consists of the optimal transmission i and input voltage V for the given scenario.
The variate of optimal configurations that correspond to the variate P is termed as Y⋆.
Since the input power varies according to the uncertain parameters (this can be denoted
as S(x,Y⋆,P)), a robust optimization criterion is used in order to assess its value. The
mean value is a reasonable candidate for this purpose, as it captures the efficiency of the
gearbox when it operates over the entire range of expected load scenarios. It is denoted
as π(x,Y⋆,P).
Following the above, the AROP is formulated:
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min
x∈X

ζ(x,P) = {π(x,Y⋆,P), c(x)} ,

Y⋆ = argmin
y∈Y(x)

S(y,P),

subject to : I ≤ Inom,

zg,i + zl,i = Nt , ∀i = 1, . . . , N,

where : x = [N, zg,1, . . . , zg,i, . . . , zg,N ] ,

y = [i, V ] ,

P = [Ω, T , R,Bm, Bg, kv, kt, Inom, n1, Nt,

α, β, γ, δ].

(21)

The constraints are evaluated according to Equations (17) and (18), and the objectives
according to Equations (19) and (20). Inom, the nominal current, is the highest continuous
current that does not damage the motor. It is significantly smaller than the motor’s stall
current.
By operating with maximum input power (i.e. with maximum voltage and current),

for each velocity ω there is a single transmission ratio n that would allow the maximum
torque, denoted as τmax(ω). This torque can be derived from Equations (16) and (18) by
replacing I with Inom and V with Vmax.

τmax(ω) = max
n∈Y

nktInom −
(

bg + n2bm
)

ω,

subject to : rInom + nkvω = Vmax,
(22)

where Y ⊂ R is the range of possible reduction ratios for this problem. Since a gearbox
in the above AROP consists of a finite number of gears, it cannot operate at τmax for
most of the velocities. In order to obtain feasible solutions with five gears or less, the
domain of possible scenarios in this example is assumed to be in the range of 0 ≤ τ(ω) ≤
0.55τmax(ω). The effects of this assumption on the obtained solutions’ robustness are
further discussed in Section 5.2.
Some information on the probability of load scenarios is usually known in a typical

gearbox design (e.g. drive cycle information in vehicle design). In this generic example this
kind of information is not available, and therefore a uniform distribution is assumed. The
other uncertainties are treated in a similar manner: A uniform distribution is assumed for
R and Bm, since the tolerance information provided by the manufacturer only specifies
the boundaries for the actual property values, but does not specify their distribution.
The epistemic uncertainty regarding bg also results in a uniform distribution of Bg within
an estimated interval.
Monte-Carlo sampling is used to represent the uncertain parameter domain P. A set

P of size k, is constructed by a random sampling of P with an even probability. In
this example, P consists of k = 1, 000 scenarios. The choice of sample size is further
investigated in Section 5.2. Figure 2 depicts the domain of load scenarios Ω and T ,
together with their samples in P and the curve τmax(ω).
The parameter values and the limits of search variables and uncertainties are presented

in Table 1. The values and tolerances for the motor parameters were taken from the online
catalog of Maxon (2014). Note that the upper limit of the selected gear i is N , meaning
that different gearboxes possess different domains of adjustable variables. This notion is
manifested in the problem definition as y ∈ Y(x).

11
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Figure 2. The possible domain of torque-speed scenarios, and a representative set randomly sampled with an
even probability.

Table 1. Variables and parameters for the AROP in (21)

Type Symbol Units Lower Upper
limit limit

x N 2 5
zg 19 61

y i 1 N
V V 0 12

p ω s−1 16 295
τ Nm·10−3 0 0.55 · τmax(ω)
r Ω 2.1 2.4
bm Nm·s·10−6 2.8 3.5
bg Nm·s·10−6 25 35
kv V·s·10−3 24.3
kt Nm·A−1 · 10−3 24.3

Inom A 1.8
n1 61/19
Nt 80
α $ 5
β 0.8
γ $ 0.01
δ $ 50

5. Simulation Results

The discrete search space consists of 1,099,252 different combinations of gears (2–5 gears,
43 possibilities for the number of teeth in each gear: C43

2 + C43
3 + C43

4 + C43
5 ). The

constraints and objective functions depend on the number of teeth z, so they only have
to be evaluated 43 times for each of the 1000 sampled scenarios. As a result, it is feasible
to find the true Pareto optimal solutions to the above problem by evaluating all of
the solutions. The entire simulation took less than one minute, using standard desktop
computing equipment.

12



March 14, 2015 Engineering Optimization gearbox˙gENO-final

Figure 3. The objectives values of all feasible solutions to the problem in Equation (21) and Pareto front.

A feasible solution is a gearbox that has at least one gear that does not violate the
constraints for each of the scenarios (i.e., I ≤ Inom and V ≤ Vmax). Figure 3 depicts
the objective space of the AROP. There are 194,861 feasible solutions (marked with gray
dots), and the 103 non-dominated solutions are marked with black dots. It is noticed
that the solutions are grouped into three clusters with a different price range for each
number of gears. The three clusters correspond to N ∈ {3, 4, 5}, where fewer gears are
related with a lower cost. None of the solutions with N = 2 is feasible.

5.1 A Comparison Between an Optimal Solution and a Non-Optimal

Solution

For a better understanding of the results obtained by the AR approach, two candi-
date solutions are examined: one that belongs to the Pareto optimal front, and another
that does not. Consider a scenario where lowest energy consumption is desired for a
given budget limitation. For the sake of this example, a budget limit of $243 per unit is
arbitrarily chosen. The gearbox with the best performance for that cost is marked in Fig-
ure 3 as Solution A. This solution consists of five gears with z2,A = {59, 49, 41, 34, 24}
and corresponding transmission ratios nA = {9.02, 5.07, 3.38, 2.37, 1.38}. Another so-
lution with the same cost is marked in Figure 3 as Solution B. The gears of this
solution are z2,B = {57, 40, 34, 33, 21}, and its corresponding transmission ratios are
nB = {7.96, 3.21, 2.37, 2.25, 1.14}.
Figure 4 depicts the set of optimal transmission ratio at every sampled scenario for

both solutions. Each transmission is marked in the figure with a different marker. This
set is in fact the set Y⋆ from Equation (21), that correspond to the sampled set of load
scenarios P, in Figure 2. It is observed that the reduction ratios of Solution A almost
form a geometrical series, where each consecutive ratio is divided by 1.6 approximately.
The resulting Y⋆(xA) is such that all gears are optimal for a similar number of load
scenarios. Solution B on the other hand has two gears with very similar ratios. It can
be seen in Figure 4(b) that the third and the fourth gears are barely used. These gears
do not contribute much to the gearbox’s efficiency, but significantly increase its cost. As
can be seen in Figure 3, there are gearboxes with four gears that achieve the same or
better efficiency as Solution B.
Figure 5 depicts the lowest power consumption for every sampled scenario, s

(

x,Y⋆,P
)

.
This consumption is achieved by using the optimal gear for each load scenario (those
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Figure 4. Optimal transmission ratio for every sampled scenario. See online version for color display.
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Figure 5. Lowest power consumption for every sampled scenario. See online version for color display.

in Figure 4). It can be seen that Solution A uses less energy at many load scenarios
compared to Solution B. This is depicted by the darker shades of many of the scenarios
in Figure 5(b). In order to assess the robustness, the mean input power π

(

x,Y⋆,P
)

is
used as the robustness criterion for this AROP. It is calculated by averaging the values of
all points in Figure 5. The results are π

(

xA,Y⋆,P
)

= 5.23W and π
(

xB,Y⋆,P
)

= 5.47W.
Considering both solutions cost the same, this confirms Solution A’s superiority over
Solution B. Given a budget limitation of $243, Solution A should be preferred by the
decision maker.

5.2 Robustness of the Obtained Solutions

In this section the sensitivity of the AROP’s solution to several factors of the problem
formulation is examined. Two aspects are considered with respect to different robustness
metrics and parameter settings: i) the optimality of a specific solution, and ii) the differ-
ence between two alternative solutions. For this purpose, three tests are performed. The
first relates to the robustness of the solutions to epistemic uncertainty, namely the un-
known range of load scenarios. The second test relates to the robustness of the solutions
to a different robustness metric. The third test examines the sensitivity to the sampling
size.

Sensitivity to Epistemic Uncertainty

The domain of load scenarios is bounded between 0 ≤ τ ≤ 0.55 · τmax(ω). The choice of
55% is arbitrary, and it reflects an assumption made to quantify an epistemic uncertainty
about the load. Similarly, the upper bound for T could be a function a · τmax(ω) with a
different value of a. The Pareto frontiers for several values of a can be seen in Figure 6.
For a = 40%, the Pareto set consists of solutions with two, three, four and five gears,
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Figure 6. Pareto frontiers for different upper bounds of the uncertain load domain a · τmax(ω). See online version
for color display.

whereas for a = 70% the only feasible solutions are those with five gears. For percentiles
larger than 70% there are no feasible solutions within the search domain.
To examine the effect of the choice of maximum torque percentile on the problem’s

solution, the three solutions from Figure 3 are plotted for every percentile in Figure 6.
Solutions A and C, who belong to the Pareto set for a = 55%, are also Pareto optimal for
all other values of a smaller than 65%. Solution B remains dominated by both Solutions A
and C. When very high performance is required (i.e. maximum torque percentiles of 65%
or higher), both Solution A and Solution C become infeasible.
It can be concluded that the mean value, as a robustness metric, is not sensitive to the

maximum torque percentile. On the other hand, the reliability of the solutions, i.e. their
probability to remain feasible, is sensitive to the presence of extreme loading scenarios.

Sensitivity to Preferences

The threshold probability metric is used to examine the sensitivity of the solutions to
different performance goals. It is defined for the above AROP as the probability for a
solution to consume less energy than a predefined threshold:

φtp = Pr(S < q), (23)

where q is the performance goal. The aim is to maximize φtp.
Figure 7 depicts the results of the AROP described in Section 4, when φtp is considered

as the robustness metric, and the goal performance is set to q = 5W. The same three
solutions from Figure 3 are also shown here. Solution A, whose mean power consumption
is the best for its price, is not optimal any more when the probability of especially
poor performance is considered. Solution A manages to satisfy the goal for 98.6% of
the sampled scenarios, while another solution with the same price satisfies 99% of the
scenarios. It is up to the decision maker to determine whether the difference between
98.6% and 99% is significant or not.
Solutions B and C are consistent with the other robustness metric. Solution B is far

from optimal, and Solution C is still Pareto optimal. This consistency is maintained for
different values of the threshold q, as can be seen in Figure 8. Figure 8 also demonstrates
that setting an over ambitious target results in a smaller probability of fulfilment by any
solution.
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Figure 7. The objectives values of all feasible solutions and Pareto front, for maximizing the threshold probability
φtp = Pr(S < 11W).
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Figure 8. Pareto frontiers for different thresholds q. See online version for color display.

Sensitivity to the Sampled Representation of Uncertainties

The random variates are represented in this study with a sampled set, using Monte-
Carlo methods. The following experiment was conducted in order to verify that 1,000
samples are enough to provide a reliable evaluation of the solutions’ statistics: Solutions A
and C were evaluated for their mean power consumption over 5, 000 different sampled
sets with sizes varying from k = 100 to k = 100, 000. Figure 9(a) depicts the metric
values of the solutions for every sample size. It is evident from the results that a large
number of samples is required for the sampling error to converge. For both solution,
the standard deviation is 15%, 6%, 2% and 0.5% of the mean value, for sample sizes of
k = 100, k = 1, 000, k = 10, 000, and k = 100, 000, respectively. If an accurate estimate is
required for the actual power consumption, a large sample size must be used (i.e. larger
than k = 1, 000 that was used in this study).
On the other hand, a comparison between two candidate solutions can be based on a

much smaller sampled set. Although the values of π
(

x,Y⋆,P
)

may change considerably

between two consequent realisations of P, a similar change will occur for all candidate
solutions. This can be seen in Figure 9(a) where the “funnels” of the two solutions seem
like exact replicas with a constant bias. The difference in performance between the two
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solutions ∆π
(

P
)

is defined:

∆π
(

P
)

= π
(

xC ,Y
⋆,P

)

− π
(

xA,Y
⋆,P

)

(24)

Figure 9(b) depicts the value of ∆π
(

P
)

for every evaluated sampled set. It can be seen
that ∆π converges to 200mW. For a sampling size of k = 100, the standard deviation
of ∆π is 25mW, which is only 12% of the actual difference. This means that it can be
argued with confidence that Solution A has better performance than Solution C, based
on a sample size of k = 100.
Based on the results from this experiment, it can be concluded that the solution to the

AROP (i.e. the set of Pareto optimal solutions) is not sensitive to the sample size. The
Pareto front shown in Figure 3 might be shifted along the π axes for different sampled
representations of the uncertainties, but the same (or very similar) solutions would always
be identified.

6. Conclusions

This study is the first of its kind to extend gearbox design optimization to consider the
realities of uncertain load demand. It demonstrates how the stochastic nature of the
uncertain load demand can be fully catered for during the optimization process using
an Active Robustness approach. A set of optimal solutions with a trade-off between cost
and efficiency was identified, and the advantages of a gearbox from this set over a non-
optimal one were shown. The robustness of the obtained Pareto optimal solutions to
several aspects of the problem formulation was verified.
The approach takes account of – and exploits – user influence on system performance,

but presently assumes that the user is able to operate the gearbox in an optimal manner
to achieve best performance. Of course, this assumption can only be fully validated if a
skilled user or a well tuned controller activates the gearbox. This raises an important issue
of how to train this user or controller to achieve best performance, which is identified as
a priority for further research.
Computational complexity is a concern for the AR approach demonstrated in this

study. This case study used very simple analytic functions to evaluate each candidate
solution. Therefore the real solution to the AROP could be found almost instantly. When
applying this method to real world applications, every function evaluation might require
extensive computational effort. In this case, efficient optimization algorithms would be
required, and the uncertainties may need to be described by methods other than Monte-
Carlo sampling. However, the large amount of function evaluations required to solve a
typical AROP is a feasible prospect for real industrial problems. Since the problem is
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solved off-line, before the product goes to manufacturing, supercomputing facilities are
likely to be available, and a reasonable time-scale for solving the problem might be days
or even a few weeks.
Adaptability is the solution’s ability to react to changes in its environment by adjust-

ing itself to a configuration that improves its performance. In this study the gearbox’s
adaptability was evaluated by only considering its performance at each of the sampled
load scenarios, i.e., at steady-state. However, the Active Robustness methodology, pre-
sented by Salomon et al. (2014), considers adaptability in a wider sense. In addition
to its performance at steady-state, the solution’s transient behaviour during adaptation
to environmental changes is also considered. For the problem presented in this paper,
an environmental change is a change in demand from one load scenario to another. Al-
though the optimal configurations can be found for both scenarios, the gearing ratios and
input voltages applied while changing between these configurations may have a substan-
tial impact on the solution’s performance. This notion was deliberately not considered
in the current study in order to focus on basic aspects of the approach. An important
extension to this work would be to examine the transient behaviour when evaluating a
candidate solution. Additional objectives such as acceleration and energy consumption
during adaptation can be examined by doing so. The Optimal Adaptation method (Sa-
lomon et al. 2013) can be used to search for adaptation trajectories that optimize these
objectives.
The transient extension to the problem formulation requires extra considerations with

respect to computational complexity. The two main reasons for this are: (a) A change
between any two scenarios can be made by infinite possible gear sequences and voltage
trajectories. This requires a search for the optimal trajectory in order to be consistent
with the AR approach. This kind of search is usually computationally expensive. (b)
Each adaptation between two scenarios has to be examined. The number of possible
adaptations between k scenarios are k(k − 1). For the sampled set of 1,000 scenarios used
in this study, there will be 999,000 adaptations to examine for each solution, implying a
requirement to solve 999,000 optimization problems. As a part of future research, special
attention should be given to model simplification and finding reliable ways to reduce
the number of evaluated adaptations, e.g. by using efficient algorithms and sampling
methods.
This initial study of gearbox optimization is based on a simple DC motor and gearbox.

This is advantageous in focusing the presentation on the Active Robustness approach
rather than, for example, constraint handling, and enables the objective functions to be
calculated analytically. Additional applications for the AR methodology will be demon-
strated in future publications, including more complex real-world geared systems.
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