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The homotopy theory of Khovanov homology

BRENT EVERITT

PAUL TURNER

We show that the unnormalised Khovanov homology of an oriented link can be

identified with the derived functors of the inverse limit. This leads to a homotopy

theoretic interpretation of Khovanov homology.

Motivation and introduction

In order to apply the methods of homotopy theory to Khovanov homology there are

several natural approaches. One is to build a space or spectrum whose classical

invariants give Khovanov homology, then show its homotopy type is a link invariant,

and finally study this space using homotopy theory. Ideally this approach would begin

with some interesting geometry and lead naturally to Khovanov homology. One also

might hope to construct something more refined than Khovanov homology in this way

(see Lipshitz-Sarkar [12] for a combinatorial approach to this). Another approach is

to interpret the existing constructions of Khovanov homology in homotopy theoretic

terms. By placing the constructions into a homotopy setting one makes Khovanov

homology amenable to the methods and techniques of homotopy theory. In this paper

our interest is with the second of these approaches. Our aim is to show that Khovanov

homology can be interpreted in a homotopy theoretic way using homotopy limits and

to subsequently develop a number of results about the specific type of homotopy limit

arising. The latter will provide homotopy tools appropriate for studying Khovanov

homology.

Recall that the central combinatorial input for Khovanov homology is the decorated

“cube” of resolutions based on a link diagram D (see Section 1.1). As we explain later,

it is convenient to view this cube as a presheaf of abelian groups over a certain poset

Q, that is, as a functor FKH : Qop → Ab.

In the first section we show that Khovanov homology can be described in terms of the

right derived functors of the inverse limit of this presheaf.
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1002 Brent Everitt and Paul Turner

Theorem 1.3. Let D be a link diagram and let FKH : Qop → Ab be the Khovanov

presheaf defined in §1.1. Then,

KH
i
(D) ∼= lim

←−
Qop

iFKH

On the left we have singly graded unnormalised Khovanov homology (see Section 1.1)

while on the right we have the i-th derived functor of the inverse limit (see Section 1.2).

This result is central to the homotopy theoretic interpretation of Khovanov homology

but is also of independent interest: many cohomology theories are defined as the right

derived functors of some interesting partially exact functor, or at least can be described

in such terms. Examples include group cohomology, sheaf cohomology and Hochschild

cohomology. Obtaining a description in these terms for Khovanov homology reveals

its similarity to existing theories not apparent from the original definition. Moreover

it opens up Khovanov homology to the many techniques available to cohomology

theories defined as right derived functors. Also the construction given in this paper

is functorial with respect to morphisms of presheaves, which being more general,

may offer calculational advantage. By connecting with a more familiar description

of higher derived functors we also obtain a description of Khovanov homology as the

cohomology of the classifying space equipped with a system of local coefficients as

described in Proposition 1.3.

Right derived functors of a presheaf of abelian groups can be interpreted in homo-

topy theoretic terms by way of the homotopy limit of the corresponding diagram of

Eilenberg-Mac Lane spaces. In the second section we recall basic facts about homotopy

limits before returning to Khovanov homology. We compose the Eilenberg-Mac Lane

space functor K(−, n) with the Khovanov presheaf FKH of a link diagram to obtain a

diagram of spaces Fn : Qop → Sp whose homotopy limit YnD = holimQop Fn has

homotopy groups described in the following proposition.

Proposition 2.8.

πi(YnD) ∼=

{
KH

n−i
(D) 0 ≤ i ≤ n,

0 else.

For rather elementary reasons the space YnD is seen to be a product of Eilenberg-Mac

Lane spaces and thus determined by the Khovanov homology. Thus the problem of

defining an invariant space or spectrum (a homotopy type) is “solved” by the above

as well, but in an uninteresting way. Nevertheless we now find ourselves within

a homotopy theory context so can apply its methods and techniques to Khovanov

homology.

Algebraic & Geometric Topology XX (20XX)
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In the third section we develop this perspective further by isolating a result about

holim and homotopy fibres in this specific situation which may be useful in the study

of Khovanov homology. One central point is that in the presheaf setting (or using

chain complexes) one has long exact sequences in homology arising from short exact

sequences of presheaves. Typically the latter arise from a given injection or surjection

and one requires some luck for this to be the case. In the homotopy setting, by

contrast, any map of spaces has a homotopy fibre and an attendant long exact sequence

in homotopy groups. We illustrate the use of this calculus in the last section where

we discuss the skein relation as the homotopy long exact sequence of the smoothing

change map, reprove Reidemeister invariance from the homotopy perspective and make

an explicit computation.

We have tried as far as possible to make this article readable both by knot theorists

interested in Khovanov homology and by homotopy theorists with a passing interest in

knot theory.
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1 Khovanov homology and higher inverse limits

The main result of this section is a reinterpretation of the (unnormalised) Khovanov

homology of a link as the derived functors of lim
←−

over a certain small category.

1.1 A modified Boolean lattice and the inverse limit

Let B = BA be the Boolean lattice on a set A: the poset of subsets of A ordered by

reverse inclusion. We write ≤ for the partial order and ≺ for the covering relation,

i.e.: x ≤ y when subsets x ⊇ y and x ≺ y when x is obtained from y by adding a

single element.

Now let D be a link diagram and B the Boolean lattice on the set of crossings of D.

Each crossing of D can be 0- or 1-resolved

0 1
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1004 Brent Everitt and Paul Turner

and if x is some subset of the crossings, then the complete resolution D(x) is what

results from 1-resolving the crossings in x and 0-resolving the crossings not in x . It

is a collection of planar circles.

Let V = Z[1, u] where Z[S] is the free abelian group on the set S . This rank two

abelian group becomes a Frobenius algebra using the maps m : V⊗V → V , ǫ : V → Z

and ∆ : V → V ⊗ V defined by

m : 1⊗ 1 7→ 1, 1⊗ u and u⊗ 1 7→ u, u⊗ u 7→ 0

ǫ : 1 7→ 0, u 7→ 1

∆ : 1 7→ 1⊗ u + u⊗ 1, u 7→ u⊗ u.

The “Khovanov cube” is obtained by assigning abelian groups to the elements of B

and homomorphisms between the groups associated to comparable elements. One says

“cube” as the Hasse diagram of the poset BA is the |A|-dimensional cube, with edges

given by the covering relations.

For x ∈ B let FKH(x) = V⊗k , with a tensor factor corresponding to each connected

component of D(x). If x ≺ y in B then D(x) results from 1-resolving a crossing that

was 0-resolved in D(y), with the qualitative effect that two of the circles in D(y) fuse

into one in D(x), or one of the circles in D(y) bifurcates into two in D(x). In the first

case FKH(x ≺ y) : FKH(y) = V⊗k → V⊗k−1 = FKH(x) is the map using m on the

tensor factors corresponding to the fused circles, and the identity on the others. In the

second, FKH(x ≺ y) : FKH(y) = V⊗k → V⊗k+1 = FKH(x) is the map using ∆ on the

tensor factor corresponding to the bifurcating circles, and the identity on the others.

All of this is most concisely expressed by regarding B as a category with objects the

elements of B and with a unique morphism x → y whenever x ≤ y. The decoration

by abelian groups is then nothing other than a covariant functor, or presheaf,

FKH : Bop → Ab

where Ab is the category of abelian groups. The diagram D is suppressed from the

notation.

Each square face of the cube B is sent by the functor FKH to a commutative diagram

of abelian groups. To extract a cochain complex from the decorated cube these squares

must anticommute, and this is achieved by adding ± signs to the edges of the cube so

that each square face has an odd number of − signs on its edges. We write [x, y] for

the sign associated to the edge x ≺ y of B. The Khovanov complex K∗ has n-cochains

Kn =
⊕

|x|=n FKH(x) the direct sum over the subsets of size n (or rows of the cube),

and differential d : Kn−1 → Kn given by d =
∑

[x, y]FKH(x ≺ y), the sum over all

Algebraic & Geometric Topology XX (20XX)
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pairs x ≺ y with x of size n (or sum of all signed maps between rows n − 1 and n).

That d is a differential follows immediately from the anti-commuting of the signage.

Definition 1.1 The unnormalised Khovanov homology of a link diagram D is defined

as the homology of the Khovanov cochain complex:

KH
∗
(D) = H(K∗, d).

The normalised Khovanov homology of an oriented link diagram D with c negative

crossings is a shifted version of the above:

KH∗(D) = KH
∗+c

(D)

The normalised Khovanov homology is a link invariant. All of the above is standard

and there are several reviews of this material available (see for example Bar-Natan [1],

Turner [17] and Khovanov [11]).

A note on the q-grading. Usually there is an internal grading on Khovanov homology

making it a bigraded theory. This “q-grading” is important in recovering the Jones

polynomial. A huge amount of information is retained however even if this grading

is completely ignored. For example Khovanov homology detects the unknot with or

without the q-grading. In this paper the q-grading plays no role and we consider the

Frobenius algebra V above as ungraded, resulting in a singly graded theory.

For what follows we need to modify the poset B in a seemingly innocuous way, but

one which has considerable consequences (see also the remarks at the end of Section

1.3). There is a unique maximal element 1 ∈ B (corresponding to the empty subset of

A) with x ≤ 1 for all x ∈ B. Now formally adjoin to B an additional maximal element

1′ such that x ≤ 1′ for all x ∈ B with x 6= 1, and denote the resulting poset (category)

by Q = QA . Extend FKH to a (covariant) functor

FKH : Qop → Ab

by setting FKH(1′) = 0 and FKH(x→ 1′) : FKH(1′)→ FKH(x) to be the only possible

homomorphism.

The construction of K∗ extends verbatim to Q: the chains are the direct sum over the

rows of Q (identical to B except for the top row where the zero group is added) and

the differential is the sum of signed maps between consecutive rows – again identical

except between the first and second rows; we adopt the convention [x, 1′] = −1 for an

Algebraic & Geometric Topology XX (20XX)



1006 Brent Everitt and Paul Turner

1

1′

1 1′

Figure 1: Regular CW complex X (left) with cell poset QA (right) for |A| = 3.

x with x ≺ 1′ . The resulting homology is easily seen to be the unnormalised Khovanov

homology again.

It will be convenient later to identify Q with the poset of cells of a certain CW

complex. Recall that a CW complex X is regular if for any cell x the characteristic

map Φx : (Bk, Sk−1) → (Xk−1 ∪ x,Xk−1) is a homeomorphism of Bk onto its image.

We can then define a partial order on the cells of X by x ≤ y exactly when x ⊇ y,

where x is the (CW-)closure of the cell.

To realise QA as such a thing suppose that |A| = n and let ∆n−1 be an (n−1)-simplex.

Let X be the suspension S∆n−1 , an n-ball, and take the obvious CW decomposition

of X with two 0-cells (the suspension points) and all other cells the suspensions Sx of

the cells x of ∆n−1 . As the suspension of cells preserves the inclusions x ⊇ y and the

two 0-cells are maximal with respect to this we get X has cell poset Q. An x ∈ Q

corresponds to an |x|-dimensional cell of X ; the case n = 3 is in Figure 1.

Using the signage introduced above, if x is a 1-cell we have [x, 1] + [x, 1′] = 0; if

dim x− dim y = 2 and z1, z2 are the unique cells with x ≺ zi ≺ y, then [x, z1][z1, y] +

[x, z2][z2, y] = 0. These properties then ensure that there are orientations for the cells

of X so that [x, y] is the incidence number of the cells x and y (see Massey [13, Chapter

IX, Theorem 7.2]).

We finish this introductory subsection by recalling the definition of the inverse limit

of abelian groups. Let C be a small category and F : C → Ab a functor. Then the

inverse limit lim
←−C

F is an abelian group that is universal with respect to the property

that for all x ∈ C there are homomorphisms lim
←−C

F → F(x) that commute with the

homomorphisms F(x)→ F(x′) for all morphisms x→ x′ in C. The limit is constructed

by taking the subgroup of the product Πx∈CF(x) consisting of those C-tuples (αx)x∈C

such that for all morphisms x→ x′ , the induced map F(x)→ F(x′) sends αx to αx′ .

Algebraic & Geometric Topology XX (20XX)
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It is an easy exercise to see that lim
←−Qop

FKH = ker d0 , the degree zero differential of

the cochain complex K∗ , and so

(1) lim
←−
Qop

FKH
∼= KH

0
(D)

1.2 Derived functors of the inverse limit

We have seen that presheaves of abelian groups provide a convenient language for

the construction of Khovanov homology, and that the inverse limit of the presheaf

FKH : Qop → Ab captures this homology in degree zero. In this subsection we review

general facts about the category of presheaves, the inverse limit functor and its derived

functors. These “higher limits” give, by definition, the cohomology of a small category

C with coefficients in a presheaf. The moral is that they are computed using projective

resolutions for the trivial (or constant) presheaf, just as group cohomology, say, is

computed using projective resolutions for the trivial G-module. The material here is

standard (see e.g. Weibel [19, Chapter 2]) and obviously holds in greater generality;

rather than working in the category RMod of modules over a commutative ring R, we

content ourselves with Ab := ZMod. In the following subsection we will show that

the higher limits capture Khovanov homology in all degrees, not just degree zero.

Recall that a presheaf on a small category C is a (covariant) functor F : Cop → Ab.

The category PreSh(C) = AbCop

has objects the presheaves F : Cop → Ab and

morphisms the natural transformations τ : F → G. For x ∈ C we write F(x) for its

image in Ab and τx for the map F(x) → G(x) making up the component at x of the

natural transformation τ .

PreSh(C) is an abelian category having enough projective and injective objects. Many

basic constructions in PreSh(C), such as kernels, cokernels, decisions about exactness,

etc, can be constructed locally, or “pointwise”, e.g. the value of the presheaf ker (τ :

F → G) at x ∈ C is ker (τx : F(x) → G(x)), and similarly for images. In particular,

a sequence of presheaves F → G → H is exact if and only if for all x ∈ C the local

sequence F(x)→ G(x)→ H(x) is exact.

The simplest presheaf is the constant one: if A ∈ Ab define ∆A : Cop → Ab by

∆A(x) = A for all x and for all morphisms x→ y in C let ∆A(x→ y) = 1 : ∆A(y)→

∆A(x). If f : A→ B is a map of abelian groups then there is a natural transformation

τ : ∆A→ ∆B with τx : ∆A(x)→ ∆B(x) the map f . Thus we have the constant sheaf

functor ∆ : Ab→ PreSh(C) which is easily seen to be exact.

Algebraic & Geometric Topology XX (20XX)



1008 Brent Everitt and Paul Turner

We saw at the end of §1.1 that the inverse limit lim
←−

F exists in Ab for any presheaf

F ∈ PreSh(C). Indeed, we have a (covariant) functor lim
←−

: PreSh(C) → Ab by

universality. For any A ∈ Ab and any F ∈ PreSh(C) there are natural bijections

(2) HomPreSh(C)(∆A,F) ∼= HomZ(A, lim
←−

F),

so that lim
←−

is right adjoint to ∆. In particular lim
←−

is left exact, and we have the right

derived functors

lim
←−

i := Ri lim
←−

: PreSh(C)→ Ab (i ≥ 0)

with lim
←−

0 naturally isomorphic to lim
←−

.

A special case of the adjointness (2) is the following: for any presheaf F over C the

universality of the limit gives a homomorphism HomPreSh(C)(∆Z,F) → lim
←−

F that

sends a natural transformation τ ∈ HomPreSh(C)(∆Z,F) to the tuple (τx(1))x∈C ∈

lim
←−

F . This is in fact a natural isomorphism, so we have a natural isomorphism of

functors

lim
←−
∼= HomPreSh(C)(∆Z,−)

and thus

(3) lim
←−

i ∼= Ri HomPreSh(C)(∆Z,−) for all i ≥ 0.

If 0 → F → G → H → 0 is a short exact sequence in PreSh(C) then there is a long

exact sequence in Ab:

(4) 0 −→ lim
←−

F −→ lim
←−

G −→ lim
←−

H −→ · · · lim
←−

iF −→ lim
←−

iG −→ lim
←−

iH −→

It turns out that the derived functors of the covariant Hom functor in (3) can be replaced

by the derived functors of the contravariant Hom functor. Let F,G be presheaves over

the small category C. Then

Ri HomPreSh(C)(F,−)(G) ∼= Ri HomPreSh(C)(−,G)(F)

for all i ≥ 0. One thinks of this as a “balancing Ext” result for presheaves. The

corresponding result in RMod is [19, Theorem 2.7.6], and the reader can check that the

proof given there goes straight through in PreSh(C). Summarizing, for F ∈ PreSh(C)

(5) lim
←−

i(F) ∼= (Ri HomPreSh(C)(∆Z,−))(F) ∼= (Ri HomPreSh(C)(−,F))(∆Z).

To compute the right derived functors of a contravariant functor like HomPreSh(C)(−,F),

we use a projective resolution. Let P∗ → ∆Z be a projective resolution for ∆Z, i.e.:

an exact sequence

(6) · · ·
δ
−→ P2

δ
−→ P1

δ
−→ P0

ε
−→ ∆Z −→ 0

Algebraic & Geometric Topology XX (20XX)
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with the Pi projective presheaves. Then the final term in (5) is the degree i cohomology

of the cochain complex HomPreSh(C)(P∗,F):

(7) · · ·
δ∗
←− HomPreSh(C)(P1,F)

δ∗
←− HomPreSh(C)(P0,F)←− 0

1.3 A projective resolution of ∆Z and the Khovanov complex

We return now to the particulars of §1.1 and compute the cochain complex (7) when

F = FKH , the Khovanov presheaf in PreSh(Q) where Q is the poset of §1.1. To do

this we present a particular projective resolution for the constant presheaf ∆Z on Q.

We start by constructing a presheaf Pn in PreSh(Q) for each integer n > 0 . Re-

membering that Q is the cell poset of the regular CW complex X of §1.1, for x ∈ Q

set

Pn(x) := Z[n-cells of X contained in the closure of the cell x].

Thus if dim x < n then Pn(x) = 0; if dim x = n then Pn(x) = Z[x] ∼= Z; and if

dim x > n then Pn(x) is a direct sum of copies of Z, one copy for each n-cell in the

boundary of x . If x ≤ y in Q then we take Pn(x ≤ y) : Pn(y)→ Pn(x) to be the obvious

inclusion.

For a given presheaf F ∈ PreSh(Q) there is a nice characterization of the group of

presheaf morphisms Pn → F :

Proposition 1.1 For F ∈ PreSh(Q) the map

f n : HomPreSh(Q)(Pn,F)→
⊕

dim x=n

F(x)

defined by f n(τ ) =
∑

dim x=n τx(x), is an isomorphism of abelian groups.

Proof That f n is a homomorphism is clear since (τ + σ)x = τx + σx . To show

injectivity, suppose that f n(τ ) = 0 from which it follows that τx(x) = 0 for all n-cells

x ∈ Q. To show that τ = 0 we must prove that τy : Pn(y)→ F(y) is zero for all y ∈ Q.

For dim y < n there is nothing to prove since Pn(y) = 0. For dim y = n we have

Pn(y) = Z[y] and τy(y) = 0 since y is an n-cell. For dim y > n

Pn(y) = Z[yα | dim yα = n and yα in the closure of y]

and we have

τy(yα) = τy(Pn(y ≤ yα)(yα)) = F(y ≤ yα)(τyα(yα)) = 0.

The first equality since Pn(y ≤ yα) : Pn(yα) → Pn(y) is an inclusion, and the second

by naturality of τ and the third since yα is an n-cell. Finally, f n is surjective because

Pn(x) is free and so there is no restriction on the images τx(x) ∈ F(x) .

Algebraic & Geometric Topology XX (20XX)



1010 Brent Everitt and Paul Turner

The isomorphism given in Proposition 1.1 allows us to define a morphism τ : Pn → F

by specifying a tuple
∑

λx ∈ ⊕F(x), where the sum is over the n-cells x .

It is easy to see that the Pn are projective presheaves. Given the following diagram of

presheaves and morphisms (with solid arrows) and exact row:

Pn

τ

��

τ̂

~~

G
σ // F // 0

then the local maps G(x)
σx−→ F(x) are surjections. Thus if

∑
λx ∈ ⊕F(x) specifies

the map τ then for each x there is a µx ∈ G(x) with σx(µx) = λx . Hence there exists a

morphism τ̂ : Pn → G specified by
∑

µx , which clearly makes the diagram commute.

The Pn are thus projective presheaves.

We now assemble the Pn ’s into a resolution of ∆Z by defining maps δn : Pn → Pn−1 .

For x ∈ Q let δn,x : Pn(x)→ Pn−1(x) be the homomorphism defined by

δn,x(y) =
∑

y≺z

[y, z] z

for y an n-cell ⊂ x and the sum is over the (n− 1)-cells z ⊂ y. Here, [y, z] = ±1 is

the incidence number of y and z given by the orientations chosen at the end of §1.1. It

is easy to check that these homomorphisms assemble into a morphism of presheaves

δn : Pn → Pn−1 . The sequence

· · ·
δ
−→ Pn+1

δ
−→ Pn

δ
−→ Pn−1

δ
−→ · · ·

is exact at Pn if and only if each of the local sequences P∗(x) is exact at Pn(x). But

P∗(x) is nothing other than the cellular chain complex of the dim(x)-dimensional ball

corresponding to the closure of x with the induced CW decomposition. In particular

HnP∗(x) =

{
Z, n = 0

0, n > 0

so that P∗(x), and hence P∗ , is exact in degree n > 0.

To define an augmentation P0
ε
→ ∆Z → 0 take ε to be the canonical surjection onto

coker (δ):

P1
δ
→ P0

ε
→ coker (δ)→ 0.

The computation of P∗(x) above immediately shows that coker (δ) ∼= ∆Z.

We now have our projective resolution (6) for ∆Z and hence a cochain complex (7)

that computes the derived functors lim
←−

i FKH . Proposition 1.1 gives an isomorphism

Algebraic & Geometric Topology XX (20XX)
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of graded abelian groups f : HomPreSh(Q)(P∗,FKH)→ K∗ where K∗ is the Khovanov

cochain complex of §1.1. As the following lemma shows, f is in fact a chain map and

thus there is an isomorphism of cochain complexes

HomPreSh(Q)(P∗,FKH) ∼= K∗.

Lemma 1.2 f is a chain map HomPreSh(Q)(P∗,FKH)→ K∗ .

Proof We must show that the following diagram commutes.

HomPreSh(C)(Pn+1,FKH)

f n+1

��

HomPreSh(C)(Pn,FKH)
δoo

f n

��

Kn+1 Kndoo

Let τ ∈ HomPreSh(Q)(Pn,FKH) and write F for FKH . If x is an n-cell, write λx :=

τx(x) ∈ F(x) so that f n sends τ to the tuple
∑

x λx , the sum over the n-cells of X .

Applying the Khovanov differential d we get

d(f n(τ )) =
∑

x

∑

y≺ x

[x, y] F(y ≺ x)(λx).

Consider now δ(τ ) = τδ ∈ HomPreSh(C)(Pn+1,FKH). For y an (n + 1)-cell we have

δy(y) =
∑

x≻y[x, y]x and by an argument similar to that in the proof of Proposition 1.1,

for x an n-cell we have τy(x) = F(y ≺ x)(λx). Thus f n+1(δ(τ )) is equal to
∑

dim y=n+1

(τyδy)(y) =
∑

y

∑

x≻y

[x, y]τy(x) =
∑

y

∑

x≻y

[x, y]F(y ≺ x)(λx) = d(f n(τ )).

Summarizing: to compute the higher limits of the Khovanov presheaf we use the

complex HomPreSh(Q)(P∗,FKH), which is isomorphic to K∗ , and this in turn computes

the unnormalised Khovanov homology. We have therefore proved the first theorem:

Theorem 1.3 Let D be a link diagram and let FKH : Qop → Ab be the Khovanov

presheaf defined in §1.1. Then

KH
i
(D) ∼= lim

←−
Qop

iFKH

Remark It is essential that we use the modified Boolean lattice Q rather than just

B: if we work with the Khovanov presheaf over B then the higher limits all vanish.

This follows from the general fact that for a presheaf over a finite poset with unique

maximal element the higher limits all vanish – see Mitchell [15].

Algebraic & Geometric Topology XX (20XX)



1012 Brent Everitt and Paul Turner

1.4 Aside on the cohomology of classifying spaces with coefficients in a

presheaf

Although not central to what follows it is worthwhile making the connection with a

more topological description of higher limits in which lim
←−

iFKH is identified with the

cohomology of a classifying space equipped with a system of local coefficients. We

recall that the classifying space BC is the geometric realization of the nerve of the

small category C. This point of view is novel in the context of Khovanov homology,

so we give a brief presentation of it, but otherwise we make no particular claim to

originality here.

Starting with a presheaf F ∈ PreSh(C), the cochain complex C∗(BC,F) is defined on

the nerve of C to have cochains

Cn(BC,F) =
∏

x0→···→xn

F(x0),

the product over sequences of morphisms x0
f1
→ · · ·

fn
→ xn in C. If λ ∈ Cn write

λ · (x0 → · · · → xn) for the component of λ in the copy of F(x0) indexed by the

sequence x0 → · · · → xn . The coboundary map d : Cn(BC,F) → Cn+1(BC,F) is

given by

dλ · (x0
f1
→ · · ·

fn+1
→ xn+1) = F(x0

f1
→ x1)(λ · (x1

f2
→ · · ·

fn+1
→ xn+1))

+

n∑

i=1

(−1)iλ · (x0
f1
→ · · · xi−1

fifi+1
−→ xi+1 · · ·

fn+1
→ xn+1) + (−1)n+1λ · (x0

f1
→ · · ·

fn
→ xn).

Write H∗(BC,F) for the cohomology of C∗(BC,F). The following result of Moerdijk

[16, Proposition II.6.1] shows that this cochain complex computes the higher limits:

Proposition 1.2 Let F ∈ PreSh(C). Then H∗(BC,F) ∼= lim
←−

C

∗F .

From Theorem 1.3 we immediately get the following description of unnormalised

Khovanov homology in terms of the cohomology of the classifying space BQ with a

system of local coefficients induced by the Khovanov presheaf:

Proposition 1.3 Let D be a link diagram and let FKH : Qop → Ab be the Khovanov

presheaf defined in §1.1. Then,

KH
∗
(D) ∼= H∗(BQ; FKH).
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Remark Proposition 1.3 is very similar in spirit to the main result (Theorem 24) of the

authors [6] which gives an isomorphism between a homological version of Khovanov

homology and a slight variation on the homology of a poset with coefficients in a

presheaf (termed “coloured poset homology” in [6]; see also [7]).

2 Interpreting higher limits in homotopy theoretic terms

2.1 Homotopy limits

Limits and colimits exist in the category of spaces but are problematic in the homotopy

category: deforming the input data up to homotopy may not result in the same homotopy

type. This problem is resolved by the use of homotopy limits and homotopy colimits,

which are now standard constructions in homotopy theory. In this section we will use

homotopy limits to build spaces whose homotopy groups are Khovanov homology. We

begin by recalling the key properties of homotopy limits, and while we will adopt a

blackbox approach to the actual construction (leaving the inner workings firmly inside

the box), we will provide references to the classic text by Bousfield and Kan [3].

We briefly return to the generality of a small category, but later will again specialise

to posets. Let Sp denote the category of pointed spaces. All spaces from now on will

be pointed. Let C be a small category and let SpC be the category of diagrams of

spaces of shape C: an object is a (covariant) functor X : C → Sp and a morphism

f : X → Y is a natural transformation. Thus a diagram of spaces associates to

each object of C a (pointed) space and to each morphism of C a (pointed) continuous

function such that these fit together in a coherent way. Given a morphism f : X → Y

we will use the notation fx for the component at x . The trivial diagram takes value the

one-point space ⋆ for all objects of C and the identity map ⋆→ ⋆ for all morphisms.

For our purposes holim is a covariant functor

holimC : SpC → Sp

whose main properties are recalled below in Propositions 2.1-2.5 . For a morphism

f : X → Y we denote by f̄ the induced map holim X → holim Y . The holim con-

struction is natural with respect to change of underlying category: a functor F : C′ → C

induces a map holimC X → holimC′ X ◦ F .

Remark We adopt the convention of Bousfield and Kan [3] where if pressed on

the matter, space means “simplicial set”. Furthermore, if thus pressed, we will also
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assume that diagrams take as values fibrant simplicial sets [3, VIII, 3.8]. Indeed there

are models of Eilenberg-Mac Lane spaces that are simplicial groups, and hence fibrant.

The reader should be aware however that in the proper generality the propositions

below require fibrant objects.

The first important property of holim is its well-definedness in the homotopy category;

it is robust with respect to deformation by homotopy [3, XI, 5.6]:

Proposition 2.1 (Homotopy) Let f : X → Y be a morphism in SpC such that for all

x ∈X the map fx : X (x)→ Y (x) is a homotopy equivalence. Then f̄ : holim X →

holim Y is a homotopy equivalence.

Next, a morphism of diagrams which is locally a fibration induces a fibration on holim

[3, XI, 5.5]:

Proposition 2.2 (Fibration) Let f : X → Y be a morphism in SpC such that for

all x ∈ X the map fx : X (x) → Y (x) is a fibration. Then f̄ : holim X → holim Y

is a fibration.

There is also a nice description of holim for diagrams over a product of categories [3,

XI, 4.3]:

Proposition 2.3 (Product) Let X : C × D → Sp be a diagram of spaces over the

product category C× D. Then

holimC holimD X ≃ holimC×D X ≃ holimD holimC X

We also need to be able to compare diagrams of different shape, i.e.: where the base

categories are different. The result turns out to be easier to state in the context of posets

than for small categories, and this suffices for us [3, XI, 9.2]:

Proposition 2.4 (Cofinality) Let f : P2 → P1 be a map of posets.

(i) Let X : P1 → Sp be a diagram of spaces and suppose that for any x ∈ P1

the poset f−1{y ∈ P1 | y ≤ x} ⊂ P2 is contractible. Then holimP2
X ◦ f ≃

holimP1
X .

(ii) Let X : P
op
1 → Sp be a diagram of spaces and suppose that for any x ∈ P1

the poset f−1{y ∈ P1 | y ≥ x} ⊂ P2 is contractible. Then holimP2
op X ◦ f ≃

holimP
op
1

X .
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Here a poset is contractible if its geometric realisation BP is contractible, so in particular

BP, and hence P, is non-empty. For example if P has an extremal (i.e.: maximal or

minimal) element then BP is a cone. Statement (ii) above is simply a restatement of

(i), but the potential confusion in taking opposites makes it worth while stating both.

For a simple application of Proposition 2.4 let P2 be a contractible poset and X the

constant diagram over P2 having value the space X at each x and the identity map

X → X at each morphism x → y. Let P1 be the single element poset and Y the

diagram having value X at this single element. If f : P2 → P1 is the only possible

map, then X = Y ◦ f and the conditions of Proposition 2.4 are satisfied. Thus

holim X ≃ holim Y ≃ X .

The final basic property of holim is that it commutes with mapping spaces (of pointed

maps between pointed spaces) – see [3, XI, 7.6]:

Proposition 2.5 (Mapping) Let X be a diagram of spaces in SpC and let Y be a

(pointed) space. Then

Map(Y, holim X ) ≃ holim Map(Y,X ).

Here Map(Y,−) is the functor that takes a pointed space Z to the space of pointed

maps from Y to Z and Map(Y,X ) ∈ SpC is the composition Map(Y,−) ◦X .

2.2 Spaces for Khovanov homology

Bousfield and Kan give an interpretation of derived functors of the inverse limit as

follows. Consider the Eilenberg-Mac Lane functor K(−, n) : Ab→ Sp for which we

adopt the construction given by Weibel [19, 8.4.4] where there is an obvious choice of

basepoint for K(A, n). For more details on Eilenberg-Mac Lane spaces see May [14,

Chapter V] or Hatcher [9, Chapter 4]. The following proposition [3, XI, 7.2] gives an

interpretation of lim
←−

i F in homotopy theoretic terms where C is a small category.

Proposition 2.6 Let F : C → Ab be a (covariant) functor. Then there are natural

isomorphisms:

πi(holimC K(−, n) ◦ F) ∼=

{
lim
←−

n−i

C
F 0 ≤ i ≤ n,

0 else.

The spaces holimC K(−, n) ◦ F contain no more information than higher derived

functors of F . Indeed, as a consequence of the Dold-Kan theorem (see [19, Section

8.4] or Curtis [4, Section 5]) we have:
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Proposition 2.7 For n big enough the space holimC K(−, n) ◦ F has the homotopy

type of a product of Eilenberg-Mac Lane spaces:

holimC K(−, n) ◦ F ≃
∏

m

K(lim
←−

n−m

C
F,m).

For a self contained and elementary argument proving the appropriate result needed

here we refer the reader to [5].

After these preliminaries on homotopy limits we return to Khovanov homology. As-

sociated to a link diagram D we have the Khovanov presheaf FKH : Qop → Ab of

§1.1. Let n ∈ N and let Fn : Qop → Sp be the diagram of spaces defined by

Fn = K(−, n) ◦ FKH , the composition of FKH with the Eilenberg-Mac Lane space

functor K(−, n). We can now define a space YnD as the homotopy limit of this

diagram:

YnD = holimQop Fn = holimQop K(−, n) ◦ FKH.

Remark The homotopy limit above, taken over the augmented Boolean lattice Q, is

what Goodwillie [8], in his theory of calculus of functors, calls the total fiber of the

(decorated) Boolean lattice B.

From Theorem 1.3 and Proposition 2.6 we see that YnD is a space whose homotopy

groups are isomorphic to the unnormalised Khovanov homology of D:

Proposition 2.8

(8) πi(YnD) ∼=

{
KH

n−i
(D) 0 ≤ i ≤ n,

0 else.

Indeed by Proposition 2.7 we have

YnD ≃
∏

m

K(KH
n−m

(D),m).

In order to normalise Khovanov homology a global degree shift is applied. As πiΩX ∼=

πi+1X for a pointed space X , we see that degree shifts are implemented at the space

level by taking loop spaces. Suppose now D is oriented and has c negative crossings.

The collection of spaces Y∗={YnD} is an Ω-spectrum which may be delooped c times

to obtain a new Ω-spectrum X∗D = Ω−cY∗D whose homotopy groups are normalized

Khovanov homology:

πi(X∗D) ∼= KH−i(D).
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3 Diagrams over Boolean lattices and homotopy limits

This section develops some results on the homotopy limits of diagrams defined over

(modified) Boolean lattices. These will then provide tools applicable to Khovanov

homology, and in the next section we illustrate this with homotopy theoretic proofs

of some Khovanov homology results. In light of the Remark after Prosposition 2.7

some of the conclusions of this section are consequences of Goodwillie’s calculus of

functors, but we prefer to (re)prove the results we need in a self-contained manner.

We make extensive use of homotopy fibres and so record here some of their properties.

Given a map (of pointed spaces) f : X → Y we define the homotopy fibre of f as a

homotopy limit by

hofibre(X
f
−→ Y) = holim(X

f
−→ Y ←− ⋆).(9)

By lifting the lid of the black box only a fraction (see [3, Chapter XI]) one sees that

this has the homotopy type of the usual homotopy fibre: namely defining

(10) Ef = {(x, α) | x ∈ X, α : [0, 1]→ Y a continuous map such that α(0) = f (x)},

then this is a space homotopy equivalent to X and the map Ef → Y sending (x, α) 7→

α(1) is a fibration whose fibre is homotopy equivalent to the hofibre (9).

Relevant examples of homotopy fibres are

hofibre(X → ⋆) ≃ X(11)

hofibre(⋆→ Y) ≃ ΩY.(12)

Using the long exact homotopy sequence for a fibration and the Whitehead theorem

one immediately gets:

Lemma 3.1 For Y connected, if hofibre(X → Y) ≃ ⋆ then X ≃ Y .

If f : X → Y is a map of pointed spaces with Y contractible, then (11) extends to

hofibre(X
f
−→ Y) ≃ X,(13)

and similarly if X is contractible then (12) extends to

hofibre(X
f
−→ Y) ≃ ΩY.(14)

From now on we assume that C is a connected category. Given diagrams X ,Y ∈ SpC

(of pointed spaces) and a morphism f : X → Y one may form the homotopy fibre
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diagram hof(f ) by (locally) defining hof(f )(x) = hofibre(fx : X (x) → Y (x)) and

hof(f )(x → y) : hofibre(fx) → hofibre(fy) the map induced by taking homotopy limits

of the two rows of the diagram

X (x) //

��

Y (x)

��

⋆oo

��
X (y) // Y (y) ⋆oo

with the lefthand square commuting courtesy of f . It is a standard trick in homotopy

theory to compute the homotopy limit of a diagram of homotopy fibres as a homotopy

fibre. In the interest of completeness we have included the details, but the main point is

that the homotopy fibre is an example of a homotopy limit and homotopy limits enjoy

the product property of Proposition 2.3:

Proposition 3.1 Let f : X → Y be a morphism in SpC . Then

holim(hof(f )) ≃ hofibre(holim X
f̄
−→ holim Y ).

Proof Let D be the three element category a
α
−→ c

β
←− b. Define Z : C×D→ Sp

by

Z (x, a) = ⋆ Z (x, b) = X (x) Z (x, c) = Y (x).

On morphisms let Z ((id, α) : (x, a) → (x, c)) = ⋆ → Y (x), Z ((id, β) : (x, b) →

(x, c)) = fx and

Z ((θ, z
1
→ z) : (x, z)→ (x′, z)) =





⋆→ ⋆, z = a,

X (θ), z = b,

Y (θ), z = c.

We then have

holimD Z (x,−) = holim(X (x)
fx
−→ Y (x)←− ⋆)

= hofibre(fx : X (x)→ Y (x)) [by (9)]

= hof(f )(x)

from which we get holimC holimD Z ≃ holim hof(f ). Going the other way we

have holimC Z (−, a) ≃ ⋆, holimC Z (−, b) = holimC X , and holimC Z (−, c) =

holimC Y , so

holimD holimC Z = holim(holim X
f̄
−→ holim Y ←− ⋆)

≃ hofibre(holim X
f̄
−→ holim Y ).

The result now follows from Proposition 2.3.
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Later we will use this result in the form: if f : X → Y is a map of diagrams,

the space holim Y is connected and holim hof(f ) contractible, then the induced map

f̄ : holim X → holim Y is a homotopy equivalence.

Notation for diagrams of spaces. We introduce a convenient notation that we will

use extensively. We recall that space means pointed space and diagrams of spaces take

values in pointed spaces. A Boolean lattice B will be represented by the circle below

left and a diagram X : Bop → Sp by the pictogram below right:

X

Extending this to Qop by defining X (1′) = ⋆ we obtain a diagram of spaces, with Q

and X : Qop → Sp represented as

X

The trivial diagram will be denoted ⋆ .

Let B = BA be Boolean of rank r , i.e.: the lattice of subsets of {1, . . . , r}. For each

1 ≤ k ≤ r there is a splitting of B into two subposets, both isomorphic to Boolean

lattices of rank r − 1: one consists of those subsets containing k and the other of

those not containing k . Below we see the splittings for r = 3, with (from left to right)

k = 1, 2 and 3:

A diagram X : Bop → Sp determines (and is determined by) two diagrams of spaces

X1 and X2 over these rank r− 1 Boolean lattices along with a morphism of diagrams

f : X1 → X2 . We denote this situation (and the obvious extension to Qop ) by the

pictograms:

X1

f

X2

and

X1

f

X2
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This process can be iterated with each of the smaller Boolean lattices to give pictures

that are square, cubical, etc.

Lemma 3.2 Let X : Bop → Sp be a diagram of spaces. Then,

holim




X

⋆



≃ holim X

Proof If B has rank r then the diagram on the left-hand side is over a Boolean lattice

of rank r + 1. Let Q be the extended version of this Boolean lattice and suppose that

it has been split as above. Collapsing the bottom Boolean lattice to a point we obtain

a new poset P:

Q =
f = P

The poset map f : Q → P which collapses the lower Boolean lattice to a single point

satisfies the hypotheses of Proposition 2.4 (ii). Moreover we have the following equality

of diagrams of spaces (of shape Qop ):

X

⋆

=
X

⋆

◦ f

Let Q′ be the poset obtained from Q by removing the lower Boolean lattice: then the

obvious inclusion i : Q′ → P satisfies the hypotheses of Proposition 2.4. Hence we

have

holim




X

⋆



≃ holim




X

⋆


 ≃ holim X

using Proposition 2.4 twice (with f and i).
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A somewhat more general version of this result is the following.

Lemma 3.3 Let X ,Y : Bop → Sp be diagrams of spaces such that Y (x) is con-

tractible for all x ∈ Bop . Then,

holim




X

f

Y



≃ holim X

Proof Let τ be the morphism of diagrams defined by

X

f

Y

1
X

⋆

As the map Y (x) → ⋆ is a homotopy equivalence for all x , the result follows from

Proposition 2.1 and Lemma 3.2.

Lemma 3.4 Let X : Bop → Sp be a diagram of spaces. Then,

holim




X

1

X



≃ ⋆

Proof Let Q be an extended Boolean lattice of rank one bigger than the rank of B

and split as above. Let P be obtained from B by adding an element 1′′ which is greater

than all other elements (including the existing maximal element in B). Pictorially:

Q = f

1′′

= P
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The poset map f : Q→ P which identifies elements of the Boolean lattices and sends

1′ 7→ 1′′ satisfies the hypotheses of Proposition 2.4. Moreover we have the following

equality of diagrams of spaces (of shape Qop ).

X

X

= X

⋆

◦ f

Since Pop has a minimal element it follows from [3, XI, 4.1(iii)] that

holim




X

⋆

 ≃ ⋆

whence the result on applying Proposition 2.4.

Proposition 3.2 Let f : X −→ Y be a morphism of diagrams of spaces over

a Boolean lattice. Then,

holim




X

f

Y



≃ hofibre(holim X

f̄
−→ holim Y )

Proof Let g be the following morphism of diagrams of spaces

X

f

Y

f

1

Y

1

Y

We have holim(hof(g)) is homotopy equivalent to

hofibre(holim




X

f

Y




g
−→ holim




Y

1

Y




) ≃ holim




X

f

Y



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by Proposition 3.1, Lemma 3.4 and (13). On the other hand writing

hof(g) =

Z1

Z2

we see that Z2(x) is contractible for all x . Thus, by Lemma 3.3 and Proposition 3.1

we have

holim(hof(g)) ≃ holim Z1 ≃ hofibre(holim X
f̄
−→ holim Y )

Corollary 3.1 Let f : X −→ Y be a morphism of diagrams of spaces over a

Boolean lattice. Then,

holim




X

f

Y



≃ holim(hof( X

f
−→ Y ))

Lemma 3.2 can be generalized as in the first part of the following:

Proposition 3.3 Let Y : Bop → Sp be a diagram of spaces with holim Y ≃ ⋆.

Then

(i). holim




X

Y



≃ holim X (ii). holim




Y

X



≃ Ω holim X

Proof For (ii) we have

holim




Y

g

X



≃ hofibre(holim Y

ḡ
−→ holim X ) ≃ Ω holim X

by Proposition 3.2 and Equation (14). Part (i) is similar.
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Corollary 3.2 Let X ,Y : Bop → Sp be diagrams of spaces such that Y (x) is

contractible for all x ∈ Bop . Then,

holim




Y

f

X



≃ Ω holim X

Proof Let τ be the morphism of diagrams defined by

⋆

X
1

Y

X

As the map ⋆ → Y (x) is a homotopy equivalence for all x , the result follows from

Propositions 2.1 and 3.3(ii).

Notation for presheaves. We adopt a similar notation for presheaves to that for

diagrams of spaces, with the difference that the circles are white rather than shaded.

Thus a presheaf F : Bop → Ab and its extension F : Qop → Ab (with F(1′) = 0) will

be represented by:

F and F

Given a presheaf F we will denote the diagram of spaces K(−, n) ◦ F by F .

Remark For n sufficiently large the space holim F is path connected. To see this,

one may use Proposition 2.6 to calculate

π0(holim F ) ∼= lim
←−

nF.

So long as n is chosen to be greater than the rank of Q the right-hand side is trivial by

Theorem 1.3 (recall that the underlying poset is always assumed connected). We will

always assume that n is large enough in this sense.
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Proposition 3.4 Let F
f
֌ G

g
։ H be a short exact sequence in PreSh(Q).

Then,

(i). hofibre(holim G
ḡ
−→ holim H ) ≃ holim F

(ii). hofibre(holim F
f̄
−→ holim G ) ≃ Ω holim H

Proof For part (i) the left-hand side is homotopy equivalent to holim(hof(g)) by

Proposition 3.1. Here hof(g) is the diagram obtained by taking homotopy fibres

after applying K(−, n) to the surjection g in the statement of the proposition, so

hof(g)(x) = hofibre(K(G(x), n) → K(H(x), n)). We can identify this homotopy fi-

bre with K(ker (gx), n) = K(F(x), n). The maps in the diagram hof(g) under this

identification correspond to the maps induced by F ; this follows since maps on such

Eilenberg-Mac Lane spaces are completely determined by their effect on πn and by the

naturality of the hofibre construction. Thus the diagram hof(g) is equivalent to F

and the result follows by Proposition 2.1. Part (ii) is similar.

Combining Proposition 3.4, Lemma 3.1 and the Remark preceeding Proposition 3.4

gives the following very useful lemma.

Corollary 3.3 Let F
f
֌ G

g
։ H be a short exact sequence in PreSh(Q).

Then,

(i). If holim F ≃ ⋆ then g : holim G ≃ holim H is a homotopy equivalence.

(ii). If holim H ≃ ⋆ then f̄ : holim F ≃ holim G is a homotopy equivalence.

Another result that will prove useful comes from combining Propositions 3.4 and 3.2:

Corollary 3.4 Let F
f
֌ G

g
։ H be a short exact sequence in PreSh(Q).

Then,

(i). holim




G

g

H


 ≃ holim F (ii). holim




F

f

G


 ≃ Ω holim H
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4 Applications to Khovanov homology

The results of the previous section give a collection of tools for Khovanov homology,

and in this section we illustrate with a few simple examples. First we isolate the

two most useful results. One is Corollary 3.3, which is just a presheaf theoretic

reformulation of standard arguments involving chain complexes:

presheaf computational tool. Let H ֌ F ։ G be a short exact sequence.

If holim H (resp. holim G ) is contractible then

holim F ≃ holim G (resp. holim H ≃ holim F )

An arbitrary morphism of presheaves (not necessarily injective or surjective) cannot be

slotted into a short exact sequence. Our second result, which follows from Proposition

3.1 and the discussion preceeding it along with Remark 3, gets around this by using

the homotopy theory in a more essential way:

homotopy computational tool. Let F → G be a morphism in PreSh(Q) with

H = hof( F → G ). If

holim H (resp. holim G ) is contractible

then

holim F ≃ holim G (resp. holim H ≃ holim F ).

Notation for the Khovanov presheaf of a link diagram. We extend our notation

to the specific case of the Khovanov presheaf FKH associated to a link diagram. It is

convenient to have the link diagram back in the picture: given a link diagam D we

denote the associated Khovanov presheaf FKH and diagram of spaces K(−, n) ◦ FKH

by:

D and D

If, as is often the case, we are interested in a link diagram with a specified local piece

we simply display it inside the circle. Thus for example the unit map ι : Z→ V , which

is defined by ι(1) = 1, extends to an injective morphism of presheaves over a Boolean

lattice of appropriate rank which we denote by:

ι
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We have link diagrams D and D′ that are identical outside one part where they differ

by the local piece shown. On the left we have the presheaf FKH : Bop → Ab, the

cube for D, and on the right F′
KH : Bop → Ab, the cube for D′ . For x ∈ B we have

F′
KH(x) = FKH(x)⊗V and the map ιx : FKH(x) = FKH(x)⊗Z→ FKH(x)⊗V = F′

KH(x)

is the map 1 ⊗ ι. These local ιx stitch together to form a morphism of presheaves

ι : FKH → F′
KH . This is what we mean by the picture above.

Similarly the counit map ǫ : V → Z, defined by ǫ(1) = 0, ǫ(u) = 1, extends to a

surjective morphism of presheaves over B

ǫ

and there is a short exact sequence of presheaves

(15)

ι ǫ

The multiplication m : V ⊗ V → V is surjective with ker (m) ∼= V , and this analysis

similarly extends to give a short exact sequence of presheaves

(16)

m

The composition m◦ι is the identity map. Finally, the comultiplication ∆ : V → V⊗V

is injective, coker (∆) ∼= V , and this extends to a short exact sequence of presheaves

(17)

∆

The composition ǫ ◦∆ is the identity map.

Occasionally the link diagram D will be too large for the circle notation above (e.g:

in §4.3), and so we will just write D, or a shaded version. For example if D1,D2 are

unoriented link diagrams then (15) extends to

D1 D2
ι

D1 D2
ε

D1 D2

and there are similar sequences for m and ∆.
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D D′

(I+)

D D′

(I−)

D D′

(II)

D D′

(III)

Figure 2: Reidemeister moves

4.1 The skein relation

By choosing a crossing there is an evident smoothing change morphism of presheaves:

ϕ

In general this is neither surjective nor injective. There is however an induced map of

spaces

holim
ϕ

holim

and we can easily describe its homotopy fibre to give a homotopy theoretic incarnation

of the skein relation:

Proposition 4.1 hofibre(holim → holim ) ≃ holim

Proof We have

holim ≃ holim




ϕ




and the result follows immediately from Proposition 3.2.

The associated long exact homotopy sequence can be identified with the usual long

exact skein sequence in Khovanov homology (see [18] and [17]).
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4.2 Reidemeister invariance.

We now give a homotopy theoretic proof of the invariance of Khovanov homology by

Reidemeister moves (Figure 2). The original proofs can be found in [10] (see also [1])

and more a geometrical argument can be found in [2]. We recall that the rank of the

underlying Boolean lattice is the number of crossings in the given diagram, thus moves

(I±) and (II) alter the underlying Boolean lattice.

Recalling from the remarks at the end of Section 2.2 that a negative degree shift in

Khovanov homology is equivalent to taking the loop space, we see that we must prove

(I+).YnD ≃ YnD′ , (I−).YnD ≃ ΩYnD′ , (II).YnD ≃ ΩYnD′ and (III).YnD ≃ YnD′ .

4.2.1 Reidemeister moves (I±).

Let D and D′ be two (unoriented) link diagrams locally described as in (I−) in Figure

2. The short exact sequence (17) and Corollary 3.4(ii) give

YnD = holim




∆



≃ Ω holim = ΩYnD′.

A completely analogous argument, using (16) and Corollary 3.4(i), gives Reidemeister

(I+).

4.2.2 Reidemeister move (II).

Let D and D′ be two link diagrams locally described as in (II) and let FKH be the

Khovanov presheaf for D. There is a short exact sequence H ֌ FKH ։ G:

=

ι

ε

0

0

1

d1 d2

d3 d4

0

1 d2
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We leave it to the reader to check that G and H are indeed presheaves. All missing

horizontal maps are either the identity or zero (it should be clear which is which), ι

and ǫ are the unit and counit, and we are using the short exact sequence (15). To check

that we have morphisms of presheaves we need to show that εd1 = 1 and d3ι = 1.

The former follows from ε∆ = 1 and the latter from mι = 1.

We have

holim H = holim




⋆

⋆

1




≃ Ω holim




1



≃ ⋆,

with the homotopy equivalences by Propositions 3.4(i), 3.3 and Lemma 3.4 respectively.

The map induced by FKH ։ G is thus a homotopy equivalence by the presheaf

computational tool, and so YnD equals

holim







≃ holim




⋆




≃ Ω holim




⋆




with the last homotopy equivalent to Ω holim = ΩYnD′ by Proposition 3.3(ii)

and Lemma 3.2.

4.2.3 Reidemeister move (III).

Let D and D′ be two (unoriented) link diagrams locally described as in (III) in Figure

2 and let FKH be the Khovanov presheaf for D. We start with a short exact sequence
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G0 ֌ FKH

τ
։ G defined by:

=

ι ε

1

0

0 0 0

0 0

d1 d2 d3

d4

d5

d6 d7

d8

d9

d10 d11 d12

d1 d2 d3

d4

εd5

d6 d7

εd8

d9

0

One can check that G is indeed a presheaf and that τ is surjective. All missing

horizontal maps are either the identity or zero. Proposition 3.3(ii) gives holim G0 ≃

Ω2⋆ ≃ ⋆, hence holim F ≃ holim G by the presheaf tool (abbreviating FKH to

F ).

We now define another presheaf H and a presheaf map σ : G→ H where all missing

maps are either the identity or zero as before. For this we note that in G we have

εd5 = εd8 = ∆ε = 1 and d1 = d3 :

d9

d9

d1 d2 d1

d4

1

d6 d7

1

d9

0

d1 d2 d9d1

d4

d9

d6 d7

1

1

0

Now, σ is neither injective or surjective so we turn to the homotopy tool. Using the
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contractibility of many of the hofibres we have from Lemma 3.3 and Corollary 3.2 that

holim(hof(σ)) ≃ Ω holim(hof




1

d9

d9

1




) ≃ Ω⋆ ≃ ⋆

with the second to last homotopy equivalence from Corollary 3.1, Lemma 3.4 and

Proposition 3.3. Thus by Proposition 3.1

hofibre(holim G
σ
→ holim H ) ≃ holim hof(σ) ≃ ⋆

It follows that σ is a homotopy equivalence from which we obtain

YnD = holim F ≃ holim G ≃ holim H

Now repeat the entire process starting with F′
KH , the Khovanov presheaf for D′ : a

short exact sequence G′
0 ֌ F′

KH ։ G′ and a morphism σ′ : G′ → H′ can be defined

in a completely analogous way and the homotopy tool invoked to give

YnD′
= holim F′ ≃ holim G′ ≃ holim H′

Comparing H and H′ , it turns out that the vertex groups are visibly identical, as are the

edge maps except for an occurrence of d9d1 in H and d7d2 in H′ . However the front

top face of F shows that d9d1 = d7d2 and so H and H′ are in fact identical diagrams.

Thus, YnD ≃ YnD′ , completing the proof of Reidemeister (III).

4.3 An example.

We take the technology for a test drive by showing that

holim D1 D2 ≃ holim D1 D2 × Ω2 holim D1 D2

where D1,D2 are (unoriented) link diagrams and we are simplifying our pictograms

as in the remarks immediately before §4.1. The conclusions for Khovanov homology

are at the end of this calculation, and although they could be acheived at the level of

chain complexes, our purpose here is to illustrate our machinery in action.
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The Skein relation (Proposition 4.1) gives

holim D1 D2 ≃ hofibre


holim D1 D2 → holim D1 D2




which in turn is homotopy equivalent to

(†)holim




holim




D1 D2

D1 D2

m



−→ holim




D1 D2

D1 D2

∆



←− ⋆




Consider the following two diagrams over Q × D (with D = • −→ • ←− •) and the

morphism between them:

ker m

ι

D1 D2

D1 D2

m

m

∆
D1 D2

D1 D2

∆

⋆

⋆

D1 D2

⋆

⋆

D1 D2 ⋆

⋆

where ⋆ is the trivial diagram of spaces. We have the short exact sequence

H ֌ F ։ G of presheaves:

0

D1 D2
ker m

D1 D2

D1 D2

m

m

1
D1 D2

D1 D2

1

Algebraic & Geometric Topology XX (20XX)



1034 Brent Everitt and Paul Turner

with 0 the trivial presheaf, and H′
֌ F′

։ G′ :

D1 D2

0

ι
D1 D2

D1 D2

∆

1

ε
D1 D2

D1 D2

1

As G ,G ′ ≃ ⋆ by Lemma 3.4, the presheaf computational tool gives H ≃ F ,

H ′ ≃ F ′ . Proposition 2.1 applied to the morphism of diagrams over Q × D thus

gives that (†) is homotopy equivalent to

hofibre




holim




⋆

D1 D2




⋆
−→ holim




D1 D2

⋆






where
⋆
−→ indicates that the induced map of the holim’s factors through a point. The

result then follows using hofibre(X
⋆
−→ Y) ≃ X × ΩY , Lemma 3.2 and Corollary 3.2.

To convert to a statement about Khovanov homology let D1,D2 now be oriented, with

D1##D2 = D1 D2 and D1#D2 = D1 D2

Then by the discussion at the end of §2.2

Y∗(D1##D2) ≃ Y∗(D1#D2)× Ω
2Y∗(D1#D2)

so that

X∗(D1##D2) ≃ X∗(D1#D2)× Ω
2X∗(D1#D2)

as the two additional crossings in D1##D2 are both positive. Thus

KHi(D1##D2) ∼= π−i(X∗(D1#D2)× Ω
2X∗(D1#D2))

∼= π−iX∗(D1#D2)⊕ π−i+2X∗(D1#D2)

∼= KHi(D1#D2)⊕ KHi−2(D1#D2)

For example

KHi


 D


 ∼= KHi(D)⊕ KHi−2(D).
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