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On the calculation of energy release rates in composite laminates by
Finite Elements, Boundary Elements and Analytical Methods
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ABSTRACT

To characterise a transversal crack evolution in a cross-ply [0/90]; fibre reinforced composite laminate, the
associated energy release rate (ERR) was calculated by means of the J-integral embedded into the Finite Element
Method (FEM). The ERR values computed for the propagation of the transversal crack were correlated to the
ones abtained by using the Virtual Crack Closure Technique (VCCT) embedded within the Boundary Element
Method (BEM). In addition, the results were compared with analytical values. The results correlated well except
when the crack length was approximately 80% of the ply thickness. In such case, ERR values showed some
discrepancies between FEM and BEM. The reason stems from the fact that in the VCCT used not all components
of the stresses are considered, resulting in smaller ERR values. In addition, the results proved that transversa
cracks can influence each other only in alimited distance.

1. Introduction

Matrix cracks often appear prior to other damage modes in composite materials. It is well known that the fracture
process starts at micro-level as soon as the laminate is subjected to loading. In cross ply fibre reinforced laminates
subjected to unidirectiona loading micro-cracks appear immediately in the 90° plies. Increasing the load can lead to
their coalescence and formation of macro-transverse cracks [1],[2]. Propagation of transverse cracks toward the
interface can lead to other failure modes such as delamination or fibre fracture [3]. To assess the integrity of the
laminate, transversal cracks can be modelled; athough this has proved challenging due to shortcomings such as
gradual redistribution of stress during fracture and degradation of mechanical properties[4], [5].

Characterizing the conditions which lead to failure of a composite laminate due to transversal cracks triggering
delamination between laminae is a long-standing research topic [6], [7], [8], [9]. Studies on related engineering
applications such as helicopter rotor blades prone to matrix cracking preceding fibre breaking [10], [11], cracking of
large laminates used in wind turbines [12], damage created by hail ice impacts on |eading-edge, control surfaces,
engine nacelles, fan blades of aircrafts [13], and soft body impact [14] can be found in the literature. Modelling
progressive damage [15] and [16], and prediction of fracture in composite laminates with different techniques, such
as extended Finite Element Method (XFEM) [17], is another area of interest for obvious critical-safety reasons.

Researchers have attempted to predict different modes of failure in composite materials by using the energy release
rate (ERR) as a fracture criterion. The modes of failure include but not limited to: compressive and inter-laminar
shear failure in aerospace laminates [18], delamination growth due to buckling [5] and inter-ply cracking in
adhesive-bonded aircraft composite joints [19].

There are several methods used for ERR evaluation and comprehensive study on these methods can be found in
reference [20]. Xie et al [21] used VCCT in order to calculate the ERR using finite element method. Similarly Zou et
al [5] implemented VCCT using the laminate theory instead of linear elastic fracture mechanics to express the energy
released in terms of stress-jumps and relative displacements for modes I, II, and III. This approach allows individual
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ERR calculation for delamination and the singular stress at the crack tip is represented in terms of the stress resultant
jumps across the delamination front. This approach can eliminate the oscillations in stress when incorporated in a
finite element framework [5]. Conversely, VCCT with solid finite elements results in oscillatory stresses and
displacements in front of the crack tip, which may cause divergence [22]. The use of VCCT within a boundary
element framework (BEM) is deemed more appropriate because the boundaries of the problem are directly related to
the problem features such as fracture parameters (see Paris et al.[1]). Paris and co-workers [1] considered different
conditions (e.g. models with and without delamination) and calculated the ERR for different crack lengths. Their
results were in good agreement with the analytical results by McCartney [23].

The J-integral approach as a measure of the energy release rate associated with crack propagation whereby a criterion
can be introduced in terms of a bounding limit value has been studied in [24], [25] among others. One of the
advantages of using J-integral is that under quasi-static conditions, it is equal to the energy release rate G for linear
elastic materials. For two dimensional problems in a mixed fracture mode (mode I and mode II) loading the relation
between stress intensity factor and J-Integral is

1—v2
1= w4k m
where J denotes J-integral and, K; and Ky, are the stress intensity factors corresponding to mode I and mode II
fracture, respectively. E and v denote elastic modulus and Poisson’s ratio respectively. The domain integral method is
often integrated in commercial packages, e.g. Abaqus, to take advantage of J-integral path independency.

In this paper, parametric studies by finite element analysis with different specimen and crack lengths are conducted
and compared with results by VCCT-BEM and analytical means. Results showing the stress distribution in the
composite laminate are provided for better assessment of the structural integrity of the composite. In addition,
discussion about finite element modelling features for ERR calculation is presented.

2. Background: J-integral

2.1 Finite element J-Integral calculation

J. R. Rice in 1968 [25] formulated Eshelby’s [26] contour integral for crack problems. For an edge crack in a
nonlinear elastic body the J-integral equals the rate of change (with respect to crack growth, da) in potential energy
U,:

du,
~da )

By definition, J-integral is equal to ERR if the material behaviour is linear and elastic. This definition is between
Griffith’s model of fully elastic and that of Irwin’s with a small crack tip plasticity [27]. Fig.1. shows the contour "
surrounding crack tip singularity in a semi-infinite two dimensional body.
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Fig.1. Integration path around crack tip



The change in potential energy for infinitesimal crack extension is:
Uy _ li ! T, Au;d AWdA
T da  aa%0da f i At s‘f 3)
r A

Where Aa is the crack growth and A4 is the area encompassed by the contour, ¥ is the elastic strain energy, u; is the
displacement, T is the traction and ds is an infinitesimally small section of contour I'.

Applying the Green’s theorem, it is possible to write Eq. (3) in the form of a line integral:

=6 (wax, -7, o% ) @
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with
Ti = aijnj (5)

n; is the normal vector to the integration path and o is the stress component on I'. The density of energy is expressed
as.

W = W(X,y) = W(S) = j o-ijdgij (6)
0

For linear elastic material elastic strain energy is related to stress and strain as:
W = 0y;€;/2 (7

The material within the contour integral is assumed homogeneous and the process is time independent. Line integrals
have difficulty of implementation in FE and domain integrals are preferred [28]; unlike VCCT which uses nodal
values for ERR calculation. Li et al [29] showed that line integral can be transformed into an equivalent area integral
as shown in Fig.2.

Fig.2. Domain definition for areaintegral

For linear elastic materials Atkinson and Eshelby [30] proposed the domain integral expressed as follows,
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The process is assumed isothermal and body forces are neglected. n is the unit vector normal to I" and &y; is the
Kronecker delta. This formula can be rewritten in the form

J= f[“iiulj—W‘?u]miqldS— f 02,1 Mg, dS )]
c cttc™

C is the closed curve C=C,+C"+C-T and q; is a smooth function in C domain which is unity on I" and 0 on C;, m;=0
and my==1 on the crack surfaces and mj=-n; on I. The second integral vanishes because of traction free surfaces of
the crack. By applying the divergence theorem to the close contour (9):

]:f[(o-ijuj,l_wali)qi]‘i dA (10)
A

A is the area enclosed by C. To implement this integration within the FEM, Shih et al [28] formulated the discretized
form of Eq.(10) by means of Gaussian integration:

0q ox (11)
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Where
4
q1 = Z N;Qq; (12)
I1=1

For a quadrilateral element. N; are the shape function and Q; is the nodal value for ™ node. Qi is zero on C; and 1
on I'. Using the chain rule we have:

9q dN; dn 13
_1_21 1Zk lamingl ( )

Where P k jstheinverse Jacobean matrix of transformations;
J

X; = Yi=1 NeXig , Ui = Xf=1 NgUp, 1=1,2 (14)

N are the shape functions.

3. Modélling of Transverse Crack in [0/90]slaminate

A schematic view of the tested laminate composite HexPly8552 is shown in Fig.3. The thickness of each lamina is
0.55mm with @ defining the crack length. 2L is the distance between two transversal cracks. The interface between
the two plies is modelled without potential discontinuity and, therefore, there is no possibility of replicating
delamination at this time.



When the [0/90]; laminae is under uniaxial loading, transversal cracks appear on the 90° ply and, then, progress
towards the interface with the 0° ply. Further details of this can be found in the works by Dvorak and Laws [31] and
Wang [32]. As the crack is assumed to be through the width [1]. A two dimensional model is justified for analysis.

Transverse
crack

Fig. 3. Transverse crack in [0/90]s laminate

The properties for the laminate used are extracted from Hexcel datasheets [33]. This toughened epoxy resin system
is made of unidirectional glass fibres. It is used in aerospace structures present in commercial airplanes, helicopters
and jet engine parts.

Tablel. Material properties for Hexeply8552. All the values for E and G are in GPa. Ey; represents fibre direction elastic module.

En Ez Ess Gr Gun G ve Vi3 V23

1413 985 958 5 35 5 03 03 032

The fibre tensile strength is 2207 MPa. The transversal —resin- strength is 81 MPa. The laminate thickness is much
smaller than the other two dimensions, i.e. width and length. Therefore, the strain in perpendicular direction can be
neglected and, hence, a plane strain state can be assumed.

McCartney proposed the ERR analytical solution for the [0/90]; laminae. His calculation is based on the Gibbs free
energy [1]:

1 1
AG = E_[V Uijgijdv = ELh o& (15)

By substituting € = o/E, renders that,

AG—th o 16
=2 <E> (16

The ERR is calculated as the infinitesimal variation of G respect to the crack propagation (0a):

1 o (a2
ERR = Lh=(%) (17)
In McCartney’s solution, o, E and € are axial components of stress, Young’s modulus and strain in the first principal
direction respectively. In this case, the principal direction is denoted as y-direction. Paris et al [1] calculate ERR by
means of VCCT-BEM. VCCT calculates the ERR by multiplying the displacement of crack face nodes by the force
required for crack closure at each node [1]. The interested reader is referred to reference [34] for further details.

4. 2D Cross-ply Laminate M odel

The cross section of the laminate is modelled as two sections with separate material definition. No adhesive layer
exists at the interface. The model represents half of the specimen in both vertical and horizontal directions where



symmetric boundary conditions can apply. In this case only one surface of the crack is drawn, Fig.4. The analysis is

quasi static and Abaqus standard solver is used.

£=0.01,
=0

N
L 0.55mm N R5mm o=0
. =0
u=0 0° ply
OO0 O O OO0 OO0
Cracka U= 0

Fig.4. Boundary conditions and crack illustration.

In order to evaluate the results, the work by Blazquez et al [1] using VCCT-BEM and the work by McCartney [23]
using analytical methods are used for comparison. Four contours were used in the test to check the consistency of the
results. As the model dimension relatively large in to z direction, plain strain element is used. Furthermore, it is
necessary to define the mesh such that the contour does not overlap the adjacent ply and to remain neatly
homogeneous. The crack length was varied between 0 and 0.55 mm (which is 90 plies thickness) at 0.1mm intervals
(smaller intervals were used near the interface as the mesh had to be refined). Four different model lengths, L, were
tried (0.5mm, 1mm, 2mm, and 4 mm).

5. Results and Discussion
5.1 ERR for Different Crack Lengths

Fig.(5) shows the ERR calculated for L=2mm from three different methods (FEM, theoretical and BLM). J-integral
values are slightly higher than those of BEM and analytical solutions. FE solver considers transverse stresses which
are not considered in VCCT. Therefore g higher value of ERR is achieved. The maximum value is observed
approximately at a=0.4 mm. Theoretically, the crack progresses if ERR is beyond the critical value G..
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Fig.5. ERR for L=2 mm. The crack will extend unstably after a = 0.1 mm



For Hexply8552 G, is equal to 0.3 KJ/m® for mode one crack opening [33]. For this load setting G. is attained
approximately a=0.1mm. When this value is reached the crack extends until somewhere between the maximum ERR
and the interface where ERR becomes zero [1]. Theoretically because the ERR decreases to very small amount near
the interface the crack must stop just before reaching the 0° ply. In the stress analysis it is clearly visible that for
cracks so close to the interface the normal tension at the interface is much larger than the material strength and
delamination might happen prior to the crack reaching the interface.

5.2 Transverse Crack Separation Length

Fig.(6) shows the variation of J-integral at similar strain for different model lengths (L=0.5mm, 1mm, 2mm and 4
mm). At L=2 mm, which is twice as large as the model thickness, the neighbouring cracks do not have influence on
each other and larger specimens have the same ERR curve (Fig.6). This means that the crack existence does not
affect the stress distribution on distances twice as large as the models’ thickness.
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Fig.6. Comparison of ERR for different specimen length. If L greater than 2mm, the ERR for different lengths have small difference

There is a specific pattern for transverse cracks in composite materials which is related to the geometry and material
that aso constrains the number of cracks that can develop in the matrix. This limit is known as upper limit or

“saturation state” [3] which can be related to the separation length. The stress releases because of the crack
occurrence can only influence within certain distance.

5.3 Effect of mesh size and contour path

ABAQUS uses the contour integral method to calculate J-integrals. It automatically selects a node at the crack tip for
the inner contour and the outer contours that pass through adjacent nodes. The contour should be confined within the
homogeneous area. Fig.(7) depicts distinct contour . Mesh size analysis showed that for mesh sizes as large as 0.2

mm to very small mesh sizes (mesh size 0.0lmm) convergence is attainable. It also showed independence of J-
integrals to mesh size.

Fig.7. Contours around crack tip singularity in ABAQUS.



The first contour shows slightly higher value compared to the larger contours. No matter what the mesh size is
Fig.(9). ABAQUS help suggests mesh refinement for accurate results and neglecting the first two contour outcomes.
The approximation of FEA slightly affects the results of J-integrals but it must be noted that mesh refinement should
not be related to contour integral accuracy. For the first contour, the error stem from crack tip singularity definition.
This means mesh refinement does not increase the J-Integral accuracy anyway. This was also argued by Brocks and
Scheider [35].

ABAQUS can use quarter-node element to create 1’ singularity at crack tip by shifting the mid node of quadrilateral
element toward the singularity (Fig.9). Barsoum [36] proposed this method for elastic and plastic crack tip region but
Carka and Landis [37] suggested it is more suitable for linear elastic material.

Quarter point node distance Eiemenf
to singular pobut jgp Leng’th [

Fig.8. Quarter-point element technique shifts mid-node in 8 node quadrilateral element toward the crack tip to model singularity

The stress distribution close to the singularity is strongly dependant on the distance between the singularity and the
mid-element node. In order to clarify the effect of quarter-point element on the J-integrals a test was run by changing
the position of mid-element node along element side. The results show that the optimum position for the shifted node
is around 25% of the element side length (Fig.9).

This might also show that this distance gives more accurate stress distribution for singularity, as it produced closer
results for the J-integral.

0.83
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0.82 - = = - second contour
0.81 — - — third contour
0.8 [ oo fourth contour

0.79
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0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
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Fig.9. First contour integral result is ruled by the position of mid-node. Iq, is the mid-node distance to singularity and le is the length of the element.

5.4 Stress Distribution

When the crack progresses toward the interface, the normal stress and shear stress are changed significantly and can
trigger other forms of failure including delamination. Figs.10a and 10b show the change in normal stress at the
interface as the crack tip gets closer. The crack tip exerts large tensile force on the interface ahead of the crack.
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Figure 11 (a) Strain in transverse direction (zoomed) (b) Strain in loading direction (zoomed) (c) von Mises stress (zoomed) (d) Maximum in-plane principal
strain (e) Stressin normal direction to loading and (f) Stress in loading direction for L=2 mm and a=0.5mm

The normal stress has a sudden increase when the crack is about to reach the interface and pushes normal stress to
above the yield strength of the resin (approximately 81MPa). Concurrently, the normal stress decreases moving away
from y=0 axis and between 0.1mm and 1mm, it is mostly compressive force at the interface. For cracks this close to
the interface the specimen is experiencing large stresses but the J-integral does not predict crack propagation.
Fig.(11) provides stress and strain contours as well as von Mises stress for a=0.5mm.



For shear stress (Fig.12) there is an alteration of direction at distances close to y=0. For a=0.54 mm (Fig.12), the
shear stress is not zero at y=0 -unlike other crack lengths- because of the singularity definition.

As the tensile stress is far greater than the strength of resin at the interface, it is not realistic to consider a transverse
crack without addressing delamination. Paris et al. investigated ERR for transverse crack when there is a
delamination and the results showed that the ERR is the same for most of the crack lengths for cases when the crack
tip is further than 0.1mm from the interface [1]. Also in an experimental study, Paris et al. verified their results on the
transverse crack arresting just before reaching the interface and the effect of such cracks on delamination [42].
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Fig.12. Shear stress at interface

6. Conclusion

ERR is a key factor in fracture analysis and, therefore, there is a genuine interest by engineers in developing accurate
tools for its evaluation. The present study has compared three different methodologies for the calculation of the ERR
associated to transversal crack in a [0/90], laminate. Those are:

- The J-integral embedded into FEM.
- The VCCT embedded within BEM and,
- Analytical means.

The following remarks can be highlighted:

e ERR values were well-correlated by all three methodologies except when the crack length was
approximately 80% of the ply thickness, i.e. to a 20% distance of the interface between distinct plies. VCCT
neglects the transversal stress in this implementation of BEM and also the analytical expression that is the
possible reason for smaller value of ERR. Therefore, it results in a certain difference only at the
aforementioned distance in which that neglected component is significant.

e No mesh dependence was observed with the FEM for the calculation of the J-integral, although the number
of contours used can effect at some point.

e The effect of displacing the mid-element node was investigated in this work. It was showed that the
inaccuracy of the J-integral first contour is due to the definition of the singularity. The first contour provided
the closest result when the mid node is placed at % element length from the singular point.



o The stress distribution at the interface was also presented. It was observed that the stress reaches the
maximum allowable at the interface between distinct plies when the transverse crack is very close to the
interface.

Acknowledgment
The author would like to thank Dr. A. Blazquez for providing data for this analysis.

References

[1] F. Paris, A. Blazquez, L. N. McCartney and V. Mantic”, “Characterization and evolution of matrix and interface related damage in [0/90]S
laminates under tension. part I: Numerical predictions,” Composites science and technology, pp. 201. 70 (7), 1168-1175, 2010.

[2] J. Berthelot, “Transverse cracking and delamination in cross-ply glass-fibre and carbon-fibre reinforced plastic laminates: static and fatigue
loading,” Appl Mech Reyv, pp. 56:111-47, 2003.

[38] K. L. Reifsnider, “Fatigue of Composite Materials,” vol. 4, 1991.
[4] E.J.Barbero and D. H. Cortes, “A mechanistic model for transverse damage initiation, evolution, and stiffness,” vol. 124-132, 2010.

[5] Z. Zou, S. R. Reid, S. Li and P. D. Soden, “General expressions for energy-release rates for delamination in composite laminates,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp. 458(2019): p. 645-667, 2002.

[6] S. Lim and S. Li, “Energy release rate for transverse cracking and delaminations induced by transverse cracks in laminated composites,
Comput Part A:,” Appl Sci Manuf, p. 36(11):1467-76, 2005.

[71 J.Wang and B. Karihaloo , “Matrix crack-induced delamination in composite laminates under transverse loading,” Compos Struct, p. 38:661—
6., 1997.

[8] Z. Petrossian and M. Wisnom, “Prediction of delamination initiation and growth from discontinuous plies using interface elements,”
Composites A, p. 29:503-15., 1998.

[9] J.Zhang, J. Fan and K. P. Herrmann, “Delaminations induced by constrained transverse cracking in symmetric composite laminates,” Int. J
Solids Struct, p. 36:813-46., 1999.

[10] P. M. Pawar and R. Ganguli, “Modeling multi-layer matrix cracking in thin walled composite rotor blades,” Journal of the American Helicopter
Society, pp. 50(4): p. 354-366., 2005.

[11] N. Roy and R. Ganguli, “Helicopter rotor blade frequency evolution with damage growth and signal processing,” Journal of Sound and
Vibration, pp. 283(3-5): p. 821-851, 2005.

[12] L. Overgaard, E. Lund and P. P. Camanho, “A methodology for the structural analysis of composite wind turbine blades under geometric and
material induced instabilities,” Computers and Structures, pp. 88(19-20): p. 1092-1109., 2010.

[13] H. Kim and K. T. Kedward, “Modeling hail ice impacts and predicting impact damage initiation in composite structures,” AIAA Journal, pp.
38(7): p. 1278-1281, 2000.

[14] A. F. Johnson and M. Holzapfel, “Modelling soft body impact on composite structures,” Composite Structures, pp. 61(1-2): p. 103-113, 2003.

[15] J. L. Curiel Sosa , S. Phaneendra and J. J. Munoz, “Modelling of mixed damage on fibre reinforced composite laminates subjected to low
velocity impact,” Int J Damage Mechanics, Vols. 22(3), 356-374, 2013.

[16] J. L. Curiel-Sosa, “Finite element analysis of Progressive Degradation versus failure stress criteria on Composite damage mechanics. In:
Brahim Attaf (ed.). Advances in composite materials - ecodesign and analysis,” InTech, p. 429, 2011.

[17] J. L. Curiel Sosa and N. Karapurath, “Delamination modelling of GLARE using the extended finite element method,” Composites science and
technology, pp. 72 (7), 788-791, 2012.

[18] M. L. Costa, S. F. S.F.M. De Almeida and M. C. Rezende, “Critical void content for polymer composite laminates,” AIAA Journal, pp. 43(6): p.
1336-1341., 2005.

[19] A. Chadegani, S. S. Smeltzer and C. Yang, “Adhesive-bonded composite joint analysis with delaminated surface ply using strain-energy
release rate,” Journal of Aircraft, pp. 49(2): p. 503-520, 2012.

[20] Banks-Sills and Leslie, “Application of the finite element method to linear elastic fracture mechanics,” Applied mechanics reviews, pp. 44 (10),
447-461, 1991.

[21] D. Xie, A. M. Waas, W. K. Shahwan, A. J. Schroeder and G. R. Boeman, “Computation of Energy Release Rates for Kinking Cracks based
on Virtual Crack Closure Technique,” Vols. CMES, vol.6, no.6, pp.515-524, 2004.

[22] I. S. Raju, M. A. Aminpour and J. H. Crews Jr, “Convergence of strain energy release rate components for Edge-Delaminated composite
laminates,” Engineering Fracture Mechanics, pp. 30 (3), pp. 383-396, 1988.

[23] L. N. McCartney, “ Predicting transverse crack formation in cross-ply laminates,” Composites science and technology, pp. 58 (7), 1069-1081.,
1998.

[24] L. J. Lee and D. W. Tu, “J-integral for delaminated composite laminates,” Composites Science and Technology, pp. Volume 47, Issue 2,
1993, Pages 185-192, ISSN 0266-3538.

[25] J. R. Rice, “A path independent integral and the approximate analysis of strain concentration by notches and cracks,” J. Appl. Mech, pp. vol.



35, pp. 379-386, 1968.

[26] J. D. Eshelby, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Solid State Physics, vol. Series:A.
Vol. 241, p. Vol.3, 1957.

[27] J. Lemaitre and J. L. Chaboche, Mechanics of solid materials, Cambridge U.P., 1994.

[28] C. F. Shih, B. Moran and T. Nakamura, “Energy release rate along a three-dimensional crack front in a thermally stressed body,” International
Journal of Fracture, pp. 30 (2), pp. 79-102, 1986.

[29] F. Z. Li, C. F. Shih and A. Needleman, “A comparison of methods for calculating energy release rates,” Engineering Fracture Mechanics, pp.
21 (1985) 405-421.

[30] C. Atkinson and J. D. Eshelby, “The flow of energy into the tip of a moving crack,” International Journal of Fracture, pp. 4, pp. 3-8., 1968.
[31] L. N. Dvorak GJ, “Analysis of progressive matrix cracking in composite laminates. Il. First ply failure,” J Comput Mater , p. 21:309-29, 1987.
[32] A. Wang, “Fracture mechanics of sublaminate cracks in composite materials,” ComputTechnol Rev, p. 6(2):45-62, 1984.

[33] Hexcel Composites, “HexPly 8552, Feburary 2013. [Online]. Available: http://www.hexcel.com/Resources/DataSheets/Prepreg-Data-
Sheets/8552_eu.pdf. [Accessed 2013].

[34] R. Krueger, “Virtual crack closure technique: History, approach, and applications,” Applied mechanics reviews, pp. 57 (1-6), 109-143, 2004.

[35] W. Brocks and I. Scheider, “Reliable J-Values - Numerical Aspects of the Path-Dependence of the J-Integral in Incremental Plasticity,”
Materialpriifung, pp. Vol. 45, 6, 264 - 275, 2003.

[36] R. Barsoum, “Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements,” International Journal for Numerical
Methods in Engineering, pp. , vol. 11, 1977, pp. 85-98.

[37] D. Carka and C. Landis, “On the Path-Dependence of the J-Integral Near a Stationary Crack in an Elastic-Plastic Material,” J. Appl. Mech.,
pp. 78(1):011006-011006-6. doi:10.1115/1.4001748, 2010.

[38] ABAQUS, “ABAQUS Tutorial/documentation. Help within ABAQUS program for users,” 2011. [Online]. [Accessed 10 2012].

[39] L. SH and S. Li, “Energy release rate for transverse cracking and delamination induced by tharsverse crack in laminated composites,” Applied
Science and Manufacturing, p. Computational Part A, 2005.

[40] D. Broek, “The practical use of fracture mechanics,” Kluwer. Springer., 1989.

[41] R. Krueger, “The Virtual Crack Closure Technique: History, Approach and Applications,” Vols. ICASE Report No. 2002-10, no. NASA/CR-
2002-211628, 2002.

[42] Paris, F., Blazquez, A., McCartney, L.N., Barroso, A. "Characterization and evolution of matrix and interface related damage in [0/90]s
laminates under tension". Part Il: Experimental evidence, Composites Science and Technology, 70 (7), pp. 1176-1183, 2010.



