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Abstract 

Establishing phylogenetic relationships within a clade can help to infer ancestral origins and 

indicate how widespread species reached their current biogeographic distributions. The small 

plovers, genus Charadrius, are cosmopolitan shorebirds, distributed across all continents except 

Antarctica. Here we present a global, species-level molecular phylogeny of this group based on 

four nuclear (ADH5, FIB7, MYO2 and RAG1) and two mitochondrial (COI and ND3) genes, and use 

the phylogeny to examine the biogeographic origin of the genus. A Bayesian multispecies 

coalescent approach identified two major clades (CRD I and CRD II) within the genus. Clade CRD 

I contains three species (Thinornis novaeseelandiae, Thinornis rubricollis and Eudromias 

morinellus), and CRD II one species (Anarhynchus frontalis), that were previously placed outside 

the Charadrius genus. In contrast to earlier work, ancestral area analyses using parsimony and 

Bayesian methods supported an origin of the Charadrius plovers in the Northern hemisphere. 

We propose that major radiations in this group were associated with shifts in the range of these 

ancestral plover species, leading to colonisation of the Southern hemisphere. 

 

Keywords 

Charadrius, phylogeny, nuclear genes, mitochondrial DNA, ancestral area analysis  
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1.  Introduction 

Molecular phylogenies can provide the means for estimating the geographic origins of 

widespread species and determining how they attained their current distribution (Avise, 2009; 

Edwards et al., 2012; Schweizer et al., 2011; Yu et al., 2014). However, establishing the exact 

phylogenetic relationships between species within a clade is often challenging. The history of 

phylogenetic inference for the Charadriiformes (shorebirds, gulls, alcids and allies) provides an 

example of such challenges. This order provides ideal study organisms for many areas of 

research since the taxa exhibit remarkable diversity in breeding systems, migratory behaviours, 

modes of offspring development, sexual size dimorphism, egg size and plumage colouration 

(Delany et al., 2009; Graul, 1973; Thomas et al., 2007; Piersma and Wiersma, 1996). 

Comparative analyses have made heavy use of existing phylogenies (Lislevand and Thomas, 

2006; Székely et al., 2004a; Thomas et al., 2006a, 2006b) despite the relationships between 

many species not being fully resolved (Baker et al., 2012; Barth et al., 2013; Corl and Ellegren, 

2013; Thomas et al., 2004). 

Within the Charadriiformes, the genus Charadrius consists of 30 species of small plovers 

with highly diverse behavioural, ecological and life history traits, that breed on all continents 

except Antarctica. The phylogenetic history of the genus is controversial and, to date, molecular 

analyses have been based on only partially complete species datasets.  The most complete 

molecular Charadrius phylogeny in terms of included taxa (26 species) was based on partial 

nuclear and mtDNA sequence data and outlined two major species clusters (Barth et al., 2013).  

Barth et al. (2013) controversially suggested the positioning of genera Vanellus, Phegornis, 

Anarhynchus, Thinornis and Elseyornis within the Charadrius clade, bringing into question the 

monophyly of the genus. This result was in contrast to traditional theories and phenotypic 

studies (Livezey, 2010), but supported earlier work based on allozymes and cyt b variation in a 

small number of species (four Charadrius species, Christian et al. 1992; 10 Charadrius species, 

Joseph et al., 1999). However, a limitation of the phylogeny presented by Barth et al. (2013) was 

the incomplete sampling of molecular markers (66% of sequences missing; 70% missing 
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characters). This can be problematic since phylogenetic analyses that rely on patchy datasets 

with large areas of missing data can lead to erroneous tree topologies (Lemmon, 2009; Roure et 

al., 2013) and therefore further analyses using more complete datasets are needed to more 

accurately establish the phylogenetic relationships within the genus. 

The biogeographic origin of the Charadrius group is still debated. Contrasting Northern 

hemisphere and Southern hemisphere origins have been proposed. Proponents of the Northern 

hemisphere origin hypothesis have focussed on phenotypic characters, suggesting that the 

primitive Charadrius stock had breast bands, black lore lines and crown patches similar to the 

modern Palearctic-breeding common ringed plover (C. hiaticula; Bock, 1958; Graul, 1973). They 

speculated that these ornaments were reduced as their descendants colonised habitats with 

lighter coloured substrates. Additionally, Northern hemisphere proponents suggested that the 

ancestral species produced clutches of four eggs (as do C. hiaticula and neighbouring Palearctic 

species) from which species with reduced clutch sizes of two or three eggs evolved (Maclean, 

1972). In contrast, in support of the Southern hemisphere origin hypothesis, similarities in the 

plumage patterns of the two-banded plover (C. falklandicus) of South America and the double-

banded plover (C. bicinctus) of New Zealand were proposed as evidence of a close phylogenetic 

relationship, and the distribution of ten plover species at the southernmost tips of southern land 

masses were taken to be suggestive of a common ancestor inhabiting Antarctica at a time when 

the continent was not covered by ice (Vaughan, 1980). Support for a Southern Hemisphere 

origin was provided by an analysis of mitochondrial sequence variation in 15 plovers and allies 

(Joseph et al., 1999) that tentatively proposed South America as the ancestral home of this 

group. However, taxon sampling in this study was heavily biased towards species currently 

restricted to the Southern hemisphere whereas approximately half of the modern Charadrius 

species inhabit the Northern hemisphere (Hayman et al., 1986). 

Here we attempt to more rigorously address the question of a Northern or Southern 

origin for the genus Charadrius. Recently-developed methods for ancestral area reconstruction 

include parsimony-based, likelihood-based and Bayesian models that statistically evaluate 
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alternative ancestral ranges at each node in a Bayesian phylogeny taking into account 

phylogenetic uncertainty (Heled and Drummond, 2010; Maddison and Maddison, 2015). 

To achieve this goal we estimated the most comprehensive global molecular phylogeny 

of the Charadrius plovers to date, based on sequence data from two mitochondrial (mtDNA) and 

four nuclear loci and constructed using a Bayesian multi-species coalescent approach (*BEAST; 

Drummond et al., 2012; Heled and Drummond, 2010). With this phylogeny we investigated i) 

phylogenetic relationships within the genus Charadrius and ii) their biogeographic origins, 

using both parsimony-based and Bayesian methods (Maddison and Maddison, 2015; Yu et al., 

2014). 

 

2.  Material and methods 

2.1.  Taxon sampling 

Samples were collected from three individuals for a total of 34 species (Table S1, 

Supplementary material) including 29 currently classified Charadrius species (all recognised 

species except C. javanicus) as well as five non-Charadrius species: four species with debated 

taxonomic classification, from closely-related genera (Anarhynchus frontalis, Eudromias 

morinellus, Thinornis rubricollis, Thinornis novaeseelandiae; Barth et al., 2013; Bock, 1958; Davis, 

1994; Nielsen, 1975; Vaughan, 1980) and one more distantly-related outgroup species, Pluvialis 

squatarola. 

Blood samples were collected from 23 Charadrius species, and five non-Charadrius 

species from wild populations following methods outlined by Székely et al. (2008). Toe-pad 

samples were collected from museum specimens at the Natural History Museum, Tring, from six 

further Charadrius species (C. alticola, C. asiaticus, C. forbesi, C. peronii, C. placidus and C. 

obscurus). 

2.2.  DNA extraction, amplification and sequencing 
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DNA was extracted from blood samples using an ammonium acetate precipitation method 

(Nicholls et al., 2000; Richardson et al., 2001) at the University of Sheffield. To avoid cross-

contamination with blood samples, DNA extraction from museum toe-pad skin samples was 

conducted in a separate, dedicated pre-PCR laboratory at a different location, Swansea 

University, using DNeasy Tissue Kits (Qiagen); see Bantock et al. (2008) for full protocol. 

 We amplified six loci using Polymerase Chain Reaction (PCR), two mtDNA loci: COI 

(cytochrome oxidase I) and ND3 (NADH dehydrogenase subunit 3), and four nuclear loci: ADH5 

(alcohol dehydrogenase 5), FIB7 (Ⱦ-fibrinogen intron 7), MYO2 (myosin-2/3) and RAG1 

(recombination activating gene 1). These genes were selected based on their previous utility in 

species-level avian phylogenies (Chesser, 1999; Fain et al., 2007; Fain and Houde, 2007; Ericson 

et al., 2003; Hebert et al., 2004ȌǤ For DNA extracted from blood samplesǡ Ǯuniversalǯ avian 
primers were utilised (Table S2, Supplementary material). For DNA samples extracted from toe 

pads, primers targeting at least one shorter region per gene were used to handle degradation 

(Table S3, Supplementary material). For the mtDNA genes ND3 and COI, suitable primers were 

already available (Lee and Prys-Jones, 2008; Rheindt et al., 2011), including a set of three 

primer pairs designed to amplify the COI gene partially ȋǮDǯǡ ǮLǯ and ǮQǯ fragments; Table S3, 

Supplementary material). For nuclear genes, we designed new primers using Primer3 (Rozen 

and Skaletsky, 2000). New primers were located in conserved regions based on alignment of full 

Charadrius sequences to improve cross-species amplification (e.g. Küpper et al., 2008). 

 PCRs were conducted on a DNA Engine Tetrad 2 Peltier Thermal Cycler in 1Ͳ Ɋl reaction 
mixes containing 4 Ɋl Qiagen Multiplex Mixǡ ͲǤͳ ɊM of each primer and ʹͲ-30 ng DNA. PCR 

conditions were as follows: 95°C for 15 min, followed by 42 cycles of 94°C for 30 s, Ta (primer 

specific annealing temperature, Tables S2 and S3, Supplementary material) for 30 s, 72°C for 30 

s, and a final extension of 72°C for 10 min. We ran a small aliquot of the PCR products on a 1% 

agarose gel to ensure amplification success. PCR products were then purified using ʹ Ɋl ͳͲx 
diluted ExoSAP-IT (GE Healthcare) according to the instructions of the manufacturer and 

subsequently sequenced. Cycle sequencing was performed by GenePool Laboratory, Edinburgh, 
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on an ABI 3730 DNA analyser (Applied Biosystems) using BigDye Terminator v3.1 cycle 

sequencing kit (Applied Biosystems). 

2.3.  Sequence alignment and phylogenetic analyses 

Alignment of forward and reverse sequences, base-calling, end-clipping and ambiguity checks 

were carried out in CodonCode Aligner 3.7.1 (CodonCode Corporation) using the ClustalW 

algorithm for alignment. For nuclear genes, heterozygote positions were coded according to the 

universal ambiguity code. Full sequence alignments for each gene were produced in MEGA 5.21 

(Tamura et al., 2011). Best-fit nucleotide substitution models were selected based on Akaikeǯs 
Information Criterion (AIC) in MrModelTest 2.3 (Nylander, 2004; Table 1). Sequence data has 

been deposited in the GenBank sequence database (accession numbers ADH5 GenBank: 

KM001088-KM001169; MYO2 GenBank: KM001170-KM001256; COI GenBank: KO001257-

KM001341; ND3 GenBank: KM001342-KM001425; FIB7 GenBank: KM001426-KM001507; RAG1: 

KM001508-KM001594). 

For eight cases, data was retrieved from GenBank or the Barcode of Life Database 

(BOLD). These sequences included: C. hiaticula COI (GenBank: GU571812.1, GU571811.1, 

GU571331.1; Johnsen et al. unpubl.), C. falklandicus COI (GenBank: FJ027346.1, FJ027345.1; Kerr 

et al. 2009), C. leschenaultii COI (Genbank: DQ432845.1, GQ481569.1; Kerr et al., 2007, 2009), C. 

mongolus COI (GenBank: GQ481572.1, GQ481571.1, GQ481570.1; Kerr et al., 2009), C. ruficapillus 

ND3 (GenBank: FR823187.1, FR823188.1, FR823189.1; Rheindt et al., 2011), A. frontalis COI 

(BOLD: BROM379-06, BROM380-06, BROM617-07; A.J. Baker), E. morinellus COI (GenBank:  

DQ433492.1, GU571813.1, GU571814.1; Kerr et al., 2007; Johnsen et al. unpubl.) and E. morinellus 

RAG1 (GenBank: EF373182.1; Baker et al., 2007). 

Phylogenetic analyses were performed in *BEAST 1.7.5 (Drummond et al., 2012; Heled 

and Drummond, 2010) using XSEDE on the CIPRES (Cyberinfrastructure for Phylogenetic 

Research) gateway (Miller et al., 2010). *BEAST employs a Bayesian multispecies coalescent 

approach and is capable of estimating divergence times, rates of gene evolution and the 
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parameters of evolutionary models for separate gene partitions.  This program co-estimates 

multiple gene trees embedded in a shared species tree, allowing for variation in rates of 

molecular evolution between loci. 

Xml-files for *BEAST analyses were prepared using BEAUti 1.7.5 (BEAST package) with 

all sequences concatenated and each gene assigned to a separate substitution model partition 

and clock model partition. Since the number of informative sites was often low for individual 

genes (i.e. high mean pairwise % identity, see Table 1), the data were grouped into two partition 

trees, one for mitochondrial COI and ND3 genes and one for the five nuclear genes (ADH5, FIB7, 

MYO2, ND3 and RAG1). The species tree prior was set to Yule Process and the population size 

model set to piecewise linear and constant root. Mean substitution rates under an uncorrelated 

log-normal relaxed clock (ucld means) were estimated based on a uniform distribution prior 

with range 0 - 10 and an initial value of 1 (Ferreira and Suchard, 2008). The Markov chains were 

run for 400 million generations and sampled every 15,000 generations. 

Convergence was concluded from stationary distributions of MCMC (Markov chain 

Monte Carlo) sample traces in Tracer v1.5 (BEAST package). Summary of the posterior 

distribution of *BEAST trees and identification of the maximum clade credibility (MCC) tree was 

conducted using TreeAnnotator 1.7.5 (Drummond and Rambaut, 2007) with a burn-in value of 

15% and median node heights. Three independent runs were conducted for each treatment to 

ensure convergence. The MCC tree was visualised in FigTree v1.4.0 (available at: 

http://tree.bio.ed.ac.uk/software/figtree/). 

Nucleotide composition and transition/ transversion ratios for each gene region were 

calculated in MEGA 5.21 (Tamura et al., 2011). Compositional stationarity was assessed based 

on disparity index values (MEGA 5.21) and chi-squared tests of heterogeneity (PAUP* 4.0a142; 

Swofford, 2002). Saturation plots were generated using DAMBE 5.5.29 (Xia, 2013). In order to 

compare phylogenetic estimates for each of the six gene regions, we conducted an additional 

analysis in *BEAST, as above, but with each gene assigned to a separate, unlinked partition tree. 
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Pairwise topological similarity between gene regions was evaluated based on maximum clade 

credibility trees for each gene partition, using Compare2Trees (Nye et al., 2006). 

2.4.  Ancestral area reconstruction 

The present-day breeding distributions of each species (data from International Union for 

Conservation of Nature (IUCN), 2014) were categorised into nine geographic regions. These 

regions were based on terrestrial zoogeographic realms and modified in line with data on 

phylogenetic turnover among regions in birds (Holt et al., 2013) as well as the distribution of 

Charadrius plovers, such that each region is occupied by at least four modern Charadrius species 

(Fig. 1; Table S1, Supplementary material).  

For reconstruction of ancestral areas, we employed two methods that statistically 

evaluated alternative ancestral ranges at each node of the summarised Bayesian phylogeny, 

taking into account phylogenetic uncertainty. The first was a parsimony method implemented in 

Mesquite 3.02 (Maddison and Maddison, 2015; Ancestral States Reconstruction Package) with a 

step (cost) matrix model. This model accounts for the likelihood of dispersal between regions. 

We assumed equal transition costs for movement between adjacent realms, therefore the costs 

reflected the minimum number of neighbouring areas a species would have to disperse through 

to make the transition. 

 Secondly, Bayesian binary Markov chain Monte Carlo (BBM) analysis was implemented 

in RASP v2.1 beta (Reconstruct Ancestral States in Phylogenies; Yu et al., 2010; Yu et al., 2014) 

under a variable F81+G model for 5,000,000 generations with 10 chains sampling every 100 

generations and outgroup root distribution. 

 

3.  Results 

3.1.  Sequence characteristics 



10 

 

 

 

Properties of sequence data for each of the four nuclear and two mtDNA loci, including sequence 

length, nucleotide substitution models, percentage of variable positions, nucleotide composition 

and transition/ transversion ratios are given in Table 1. The full sequence length of all six 

concatenated genes was 4295 base pairs. For DNA extracted from museum toepads the length 

of sequence data amplified was 1343 base pairs leading to 69% missing data in six species. No 

sequence data could be generated or retrieved for the following species / DNA fragments: C. 

bicinctus / COI, C. placidus / ND3 and RAG1, C. melodus / MYO2 and ND3, C. ruficapillus / ADH5 

and E. morinellus / ND3, ADH5, FIB7 and MYO2. A total of 85% of characters were available 

across species and loci. 

3.2.  Phylogeny 

The MCC tree supported the division of the genus Charadrius into two major clades (CRD I and 

CRD II; Fig. 1b). We have further categorised these two major clades into minor clades of sister 

species (Clades a Ȃ f, Fig. 1b) with largely shared geographic distributions and / or 

morphological characteristics (Bock, 1958; IUCN 2014; Nielsen, 1975). Of the taxa currently 

classified outside the genus, three species emerged within the CRD I clade (T. novaeseelandiae, 

T.rubricollis and E. morinellus), and one species within CRD II (A. frontalis). 

Concerning phylogenetic relationships within the genus (Fig. 1b), Charadrius Clade CRD I 

included the ringed plover species, identified as minor Clade a (such as the common ringed 

plover, C. hiaticula and little ringed plover, C. dubius), a group which also included two species 

not presently classified as members of the genus Charadrius: T. rubricollis and T. 

novaeseelandiae. Additionally, CRD I included two species morphologically distinct from the 

ringed plover group in terms of body size and plumage colouration, namely E. morinellus and C. 

modestus. These two species were basally positioned in the CRD I lineage.  

Within CRD II, we outlined five minor clades: Clade b included four Asian red-breasted 

species; Clade c included three Oceanian species - C. bicinctus, C. obscurus and one currently 

non-Charadrius species, A. frontalis; Clade d consisted of five American (Nearctic and 



11 

 

 

 

Neotropical) species of the mountain and plains plover group (Vaughan, 1980); Clade e included 

three African species - two endangered island species (C. thoracicus and C. sanctaehelenae) and 

one widespread species (C. pecuarius);  and Clade f consisted of six species of the sand plover 

group, including C. alexandrinus and its allopatric sister species. 

For the six species for which museum toepad samples were the source of DNA (C. 

alticola, C. asiaticus, C. forbesi, C. peronii, C. placidus and C. obscurus), sequence information was 

incomplete. Additionally, four Charadrius species were missing sequence data for one or two 

genes, namely C. bicinctus, C. placidus, C. melodus and C. ruficapillus, and only two gene regions 

were included for E. morinellus. Nonetheless, the phylogenetic placement of these species with 

partial or missing data did not differ from expectations based on geographical distribution or 

plumage colouration (Nielsen, 1975; Hayman et al., 1986). 

Levels of nodal support, based on posterior probability, were above 0.9 for 20 of the 33 

nodes and overall assignment of sister species to the six minor clades was highly supported 

(Fig. 1b). Nine nodes across the MCC tree had posterior probabilities below 0.7 (Fig. 1b). Five of 

these nodes were within Clade a and two within Clade d, where some species-level relationships 

could not be resolved with certainty. The final two nodes with notably low support (posterior 

probability <0.7) emerged at the basal node adjoining Clades e and f, and at the node linking the 

CRD I and CRD II clades. These nodes are likely to indicate areas of discordance between genes 

as pairwise topological similarity scores between gene regions ranged from only 72.1 to 81.2% 

(Table 2). Individual MCC gene trees, were often unable to resolve nodes with high support, 

though differences were restricted to species relationships in recently diverged clades (Fig. 2). 

Concordance between the two grouped tree partitions (mitochondrial and nuclear) was high 

with no discordance in species placement between clades (Fig. S1, Supplementary material). 

3.3 Sequence stationarity and substitution saturation 

No significant compositional heterogeneity was observed based on mean disparity index values 

or chi-squared tests (see Table 3) suggesting stationarity across sequences. Levels of 
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substitution saturation at third codon positions differed between genes. Saturation plots for 

ADH5, MYO2 and RAG1 indicated near-linear divergence of transitions and transversions over 

genetic distance (Fig. S2, Supplementary material). However, for the two mitochondrial genes, 

ND3 and COI, non-linear trends emerged for both transitions and transversions, suggesting 

saturation at F84 distances above 1.2 (COI) or 0.7 (ND3). For FIB7 (intronic DNA), transitional 

saturation was reached by an F84 distance of 0.4. At this locus, ingroup Charadrius data 

corresponded to F84 distances of <0.11, whereas distances of 0.38 Ȃ 0.59 appeared between 

Charadrius spp. and Pluvialis squatarola suggesting saturation issues at the inter-genus level. 

 Differences in substitution saturation appeared associated with increased discrepancies 

in species placement in individual gene trees relative to the MCC species tree. On average, six 

species differed in clade positioning where saturation issues were present (COI, ND3 and FIB7) 

compared to four species for other loci (Fig. 2). 

3.4.  Ancestral area reconstruction 

Based on parsimony analysis, the most recent common ancestor of the Charadrius plovers (CRD 

I and CRD II) originated in the Northern hemisphere, with a distribution in the Arctic and/or 

Palearctic regions (Fig. 1). The BBM analysis concurred in identifying the Northern hemisphere 

as the centre of origin but identified the Nearctic and Arctic regions as the most likely ancestral 

range. The probability that the genus originated in the Southern hemisphere was <0.01 

(parsimony) and <0.05 (BBM). Similarly, both major clades CRD I and CRD II emerged in the 

Northern hemisphere based on both parsimony and BBM analyses. The most recent common 

ancestor (MRCA) of clade CRD I was likely to have occupied a similar Northern hemisphere 

range to the Charadrius MRCA, whereas the CRD II clade was more likely to have emerged in 

Central Asia or the Palearctic than in Arctic or Nearctic regions (Fig. 1). BBM analysis confirmed 

the Northern hemisphere origin of CRD II (Southern hemisphere probability < 0.14), though this 

method did not provide strong resolution, instead identifying five regions with similar 

probabilities for the MRCA of the clade. 
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During evolutionary radiation from their Northern origins, ancestral Charadrius plovers 

appear to have moved southwards and colonised Africa three times (within Clades a, e and f) 

and the Oriental - Oceanian regions at least three times (within Clades a, c and f). Consistently, 

the two extant species (C. alticola and C. falklandicus) that breed solely within the Neotropical 

region diverged within Clade d from North American ancestors. 

 

4.  Discussion 

4.1  Phylogenetics and taxonomy 

Our global molecular phylogeny of the Charadrius plovers evaluates the controversial 

evolutionary history of the genus based on the most extensive and complete molecular dataset 

to date. Our results supported the presence of two major clades (CRD I and CRD II) within the 

genus, and also supported the recent classification of the wrybill (A. frontalis) and the two 

Thinornis species, T. rubricollis and T. novaeseelandiae, as members of the genus as suggested by 

Barth et al. (2013). Furthermore, we include C. modestus and E. morinellus within CRD I, but note 

that these species appear to have diverged from other CRD I species early in the history of the 

clade. 

Our results were based on a Bayesian multi-species coalescent approach, including 85% 

complete sequence characters from four nuclear and two mtDNA loci, and including all but one 

Charadrius species (C. javanicus), in order to recover the most likely species tree, taking into 

account levels of phylogenetic uncertainty and discordance across gene trees (Brito and 

Edwards, 2009; Corl and Ellegren, 2013). We identified six minor clades of sister species within 

the genus and these were strongly coherent with geographic distributions and morphological 

characters (e.g. plumage colouration; Bock, 1958; IUCN 2014; Nielsen, 1975). Of particular 

conservation interest is the result that the Kittlitzǯs plover ȋC. pecuarius) of Africa was the closest widespread sister species of the Ǯcritically endangeredǯ St (elena plover ȋC. 

sanctaehelenaeȌ and Ǯvulnerableǯ Madagascar plover ȋC. thoracicus). 
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Whilst our results largely supported those of Barth et al.ǯs (2013) partial dataset, there 

was disagreement in two areas. Firstly, we provided new evidence on the positioning of one 

Nearctic-breeding species, C. montanus, as a sister species to the Nearctic and Neotropical 

species C. collaris, C. wilsonia, C. alticola and C. falklandicus (Clade d), whereas Barth et al. (2013) 

suggested that C. wilsonia shared more recent ancestry with the Afrotropical C. pecuarius and 

Oceanian C. ruficapillus (Clades e and f respectively). Secondly, disagreement emerged 

concerning the order of divergence among Clades d, e and f within CRD II. Additionally, our 

analyses included three species (C. tricollaris, C. forbesi and C. placidus) as members of Clade a, 

within CRD I, that were not studied by Barth et al. (2013). 

Whilst the members of Clade a were confidently assigned to this group (posterior 

probability 0.96), our analyses could not elucidate finer scale species-level relationships here 

with high probability. This was also the case for Clade d. We suggest that these areas of 

uncertainty emerged due to discordance in the phylogenetic signals of the six gene regions 

analysed since topological similarity between gene trees was only 72.1 to 81.2% and differences 

occurred in nucleotide composition and base substitution saturation. In particular, we observed 

signs of substitution saturation in mtDNA (COI and ND3) and FIB7 regions. 

Already identified as a major issue in recovering phylogenetic histories at deeper levels 

of the Charadriiform tree (Baker et al., 2012; Corl and Ellegren, 2013), discordance between 

gene trees is common when lineages have emerged following periods of rapid radiation (Jarvis 

et al., 2014). Such radiation commonly leads to incomplete lineage sorting, making it difficult to 

disentangle true orders of divergence in species trees (Chung and Ané, 2011; Corl and Ellegren, 

2013; Degnan and Rosenberg, 2006; Jarvis et al., 2014; Knowles and Chan, 2008). Speciation is 

often a gradual, extended process rather than a single point event and gene flow commonly 

occurs after initial divergence (Avise and Walker, 1998). Additionally, hybridisation or 

introgression between species can enable gene flow even after species divergence (Kubatko, 

2009). 
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Recent statistical advances in coalescent-based methods have indicated that statistically 

grouping genes into subsets can improve the accuracy of species tree estimation (Mirarab et al. 

2014). Our analyses also benefited from this approach. Initial *BEAST MCMC models failed to 

converge with each gene assigned to separate gene tree partitions, suggesting that the number 

of informative sites per gene was often low. To optimise the analyses, we therefore grouped the 

six gene regions into two partition trees (mitochondrial and nuclear), whilst allowing 

estimation of separate substitution models and clock models for each region. 

Technical advances in sequencing methodology and further reduction of sequencing and 

assembly costs will soon help to determine with greater confidence the evolutionary 

relationships between all species. These advances, facilitating multiple-locus and genome-wide 

sequence analyses, will enable the use of a newly emerging phylogenomic approach to infer 

evolutionary history (Delsuc et al., 2005, Jarvis et al., 2014) and should provide greater 

resolution in uncertain areas of the Charadrius phylogeny in future. 

4.2.  Biogeographic origin 

Our results strongly supported a Northern hemisphere rather than Southern 

hemisphere origin for the genus Charadrius. Parsimony and BBM analyses were consistent in 

their support for the Northern hemispheric origin. The modern CRD I species are largely 

distributed within the Northern hemisphere (seven Northern, four Southern) whereas CRD II 

species breed largely in the Southern hemisphere (eight Northern, 13 Southern). Despite their 

differing distributions both major clades were identified as originating in the Northern 

hemisphere based on parsimony analysis (CRD I Palearctic/ Arctic, CRD II Palearctic/ Central 

Asian origins). The BBM results included high uncertainty over the biogeographic region of 

origin of Charadrius. However, unlike the parsimony analysis, BBM models do not take into 

account geographical connectivity and likelihood of dispersal between regions (Yu et al., 2014). 

Nevertheless, the four biogeographic regions with highest support according to BBM for the 

MRCA of CRD II (probabilities 0.19 Ȃ 0.29) and the top two regions for the MRCA of CRD I 
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(probabilities 0.27 and 0.50) were located in the Northern hemisphere. Based on these results 

we suggest that the MRCA of the genus Charadrius was distributed in the Northern hemisphere, 

and that southwards dispersal led to subsequent colonisation of the Southern hemisphere. 

These Northern hemisphere origins match large-scale biogeographic patterns reported across a 

range of avian and mammalian taxa (Hunt, 2004; Maguire and Stigall, 2008; Schweizer et al., 

2011; Zachos et al., 2001) and may have been important in driving speciation within the genus. 

 

5.  Conclusions 

Our new phylogeny of the genus Charadrius provides much needed information on the 

evolutionary history of a diverse group of shorebirds. This group is emerging as an ideal model 

for studying the evolution of a range of phenotypic traits including breeding systems, migration 

strategies and plumage (Argüelles-Ticó, 2011; Owens et al., 1995; van de Kam et al., 2004), yet 

to date, studies on the genus Charadrius have only focused on microevolutionary patterns, 

investigating just one or a few closely related species (e.g. Székely et al., 2004b; Vincze et al., 

2013). This updated phylogeny which largely shows agreement of molecular and phenotypic 

characters in the genus Charadrius provides a more robust framework to enable larger scale 

investigations into macroevolutionary changes within the clade. Whilst resolving many areas of 

taxonomic controversy, our phylogeny also highlights key points of uncertainty. Future 

phylogenetic studies should aim to resolve these points by examining more molecular markers, 

and by making use of advancements in sequencing technologies. 
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Table 1: Characteristics of mitochondrial and nuclear loci used in the phylogenetic analysis of 

Charadrius and seven allied species. 

Gene Length (bp) Nucleotide 

frequencies (%) 

Transition/ 

transversion 

bias (R) 

Mean 

pairwise  

identity (%) 

Nucleotide 

substitution 

model Fresh 

samples 

Museum 

samples (% 

of full 

sequence) 

AT CG 

ND3
a 

401 200 (50) 51.3 48.7 2.7 88.6 HKY + I + G 

COI
a
 626 429 (69) 57.0 43.0 3.9 89.3 GTR + I + G 

ADH5
b 

829 150 (18) 54.5 45.5 4.6 95.5 GTR + G 

FIB7
b 

840 138 (16) 63.4 36.6 1.4 95.2 GTR + G 

MYO2
b 

688 209 (30) 52.3 47.7 2.5 96.4 HKY + G 

RAG1
b 

911 217 (24) 53.4 46.6 4.1 98.2 HKY + I + G 

a mitochondrial loci; b nuclear loci 

Table 2: Pairwise topological scores (% similarity) between maximum clade credibility (MCC) 

trees constructed for each gene region. 

 COI ND3 ADH5 FIB7 MYO2 RAG1 

ND3
a
 - 81.2 74.1 73.2 76.0 80.3 

COI
a
 81.2 - 73.8 76.7 80.2 76.2 

ADH5
b
 74.1 73.8 - 73.9 75.2 76.2 

FIB7
b
 73.2 76.7 73.9 - 72.1 73.8 

MYO2
b
 76.0 80.2 75.2 72.1 - 75.8 

RAG1
b
 80.3 76.2 76.2 73.8 75.8 - 

a mitochondrial loci; b nuclear loci 

Table 3: Mean disparity index values (ID) and chi-squared tests of compositional heterogeneity 

for each gene region and codon position. 

Gene All 1
st

 codon 2
nd

 codon 3
rd

 codon 

ID
 ʖ2

 p ID
 ʖ2

 p ID
 ʖ2

 p ID
 ʖ2

 p 

COI a 0.012 24.87 >0.99 0.034 13.79 >0.99 0.011 21.34 >0.99 0 37.15 >0.99 

ND3 a 0.026 13.8 >0.99 0.075 31.57 >0.99 0.006 10.93 >0.99 0.005 4.08 >0.99 

ADH5 b 0.006 34.8 >0.99 0.013 23 >0.99 0.01 17.74 >0.99 0.005 45.03 >0.99 

FIB7 b 0.006 24.3 >0.99 0.001 17.59 >0.99 0.01 15.69 >0.99 0.013 77 0.95 

MYO2 b 0.00 80.16 0.88 0.00 37.11 >0.99 0.00 46.92 >0.99 0.00 53.86 >0.99 

RAG1 b 0.004 22.39 >0.99 0.00 9.41 >0.99 0.006 18.69 >0.99 0.00 18.67 >0.99 

a mitochondrial loci; b nuclear loci  
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Figure 1: a) Biogeographic regions (revised from Holt et al., 2013) used to define current 

breeding distributions for each species. b) The maximum clade credibility tree for 29 Charadrius 

and five species currently assigned to different genera. Results of parsimony ancestral area 

analysis are shown for all nodes (pie chart colours by region) and Bayesian binary Markov chain 

Monte Carlo (BBM) results with probability distributions are added for the three basal 

Charadrius nodes (larger pie charts). Minor clades within CRD I and CRD II are labelled a Ȃ f. 

Posterior probabilities are indicated at each node. 
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Figure 2: *BEAST maximum clade credibility trees based on sequence data from six genes: a) 

COI*, b) ND3*, c) ADH5, d) FIB7, e) MYO2 and f) RAG1. *Mitochondrial gene. Branches are shaded 

according to posterior probability. Black species labels indicate matches to MCC species tree 

(Fig. 1); grey and red labels indicate differences to MCC species tree placement, either within or 

between minor clades respectively. 

 


