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Convergence of Parareal with spatial coarsening

Daniel Ruprecht1∗

1 Institute of Computational Science, Università della Svizzera italiana, CH-6904 Lugano, Switzerland

The effect is investigated of using a reduced spatial resolution in the coarse propagator of the time-parallel Parareal method for

a finite difference discretization of the linear advection-diffusion equation. It is found that convergence can critically depend

on the order of the interpolation used to transfer the coarse propagator solution to the fine mesh in the correction step. The

effect also strongly depends on the employed spatial and temporal resolution.

Copyright line will be provided by the publisher

1 Introduction

For the solution of time-dependent partial differential equations on parallel computers, spatial parallelization by means of mesh

or domain decomposition is a standard and very successful approach. To advance the solution in time, time marching schemes

like Runge-Kutta or multi-step methods are typically used that compute step after step in a serial fashion. Therefore, in a

certain sense, the temporal direction constitutes a serial bottleneck: If one increases the spatial resolution for a given problem,

the increase in computational cost per time-step can be compensated by using more processors for the spatial parallelization.

However, the temporal resolution will have to be increased as well in order to maintain either accuracy or stability and therefore

also more time-steps will be necessary. The resulting increase in computational cost by having to compute a larger number of

steps cannot be mitigated by parallelization in space alone.

Time-parallel methods are parallel methods for the solution of initial value problems that feature concurrency along the

temporal axis. A widely studied example is Parareal, introduced in [1] and comprehensively analyzed mathematically in [2].

Another approach is the "parallel full approximation scheme in space and time" (PFASST), introduced in [3]. PFASST has

been shown to be able to provide significant additional speedup beyond the saturation point of spatial parallelization in runs

using 262,144 cores [4].

The idea of both Parareal and PFASST is to introduce a two-level (or even multi-level) hierarchy of decreasing accuracy

and cost and to "shift" the serial dependency in time to the coarsest and therefore cheapest level. Accuracy is achieved by

performing a number of iterations and successively correcting the solution. Parareal does this by means of two classical

integration methods called the "fine" and the "coarse" integrator. The coarse method will typically be of lower order and use a

much larger time-step than the fine. The achievable speedup depends on the one hand on the runtime ratio of the coarse to the

fine level and on the other hand on the number of iterations required for convergence.

For time-dependent PDEs, it is possible to also reduce the accuracy of the spatial discretization on the coarse level. For

multi-level SDC, a method closely related to PFASST, a number of such approaches have been studied in [5]. For Parareal, a

lower order finite difference discretization for the coarse method is used e.g. in [6]. The possibility to use a coarsened spatial

mesh in Parareal is studied in [7] in the context of finite elements. Transfer of the solution from the coarse to the fine mesh

is done by interpolation as well as by L2 projection. While projection worked well, simple interpolation is found to cause

stability problems.

Here, the approach of using a lower spatial resolution for the coarse method in Parareal is studied for a finite difference

discretization of the advection-diffusion equation and the effect of the order of the interpolation is investigated. Furthermore,

two different ways to track convergence are briefly compared, one based on monitoring the norm of corrections from one

iteration to the next, the other on a residual defined by interpreting Parareal as a preconditioned fixed point iteration.

2 Parareal

Consider an initial value problem

yt(t) = f(y(t), t), y(0) = b ∈ R
D, 0 ≤ t ≤ T. (1)

Now let t0 := 0 < t1 < . . . < tN = T be a decomposition of [0, T ] into N so-called time-slices [tn, tn−1], n = 1, . . . , N
of equal length (for the sake of simplicity). Further, let δt and ∆t be a fine and coarse time-step size such that each time-

slice consists of an integer number of δt or ∆t steps. Denote by Fδt an accurate integration method, e.g. a higher-order

Runge-Kutta method, using a time-step δt. Then, integrating (1) over all time-slices serially corresponds to evaluating

yn+1 = Fδt(yn, tn+1, tn), n = 0, . . . , N − 1. (2)

∗ Corresponding author. Email: daniel.ruprecht@usi.ch

Copyright line will be provided by the publisher



2 PAMM header will be provided by the publisher

step-by-step with y0 := b. Parareal replaces (2) by an iteration

yk+1
n+1 = G∆t(y

k+1
n , tn+1, tn) + Fδt(y

k
n, tn+1, tn)− G∆t(y

k
n, tn+1, tn), (3)

where G∆t is a coarser method of typically lower order and with time-step ∆t ≫ δt. Note that in (3), once the ykn are known,

the evaluation of the fine method can be parallelized. When a coarsened spatial mesh is to be used for G∆t, the iteration

becomes

yk+1
n+1 = IG∆t(Ryk+1

n ) + Fδt(y
k
n)− IG∆t(Rykn) (4)

see [7], where R and I denote interpolation and restriction operators between the two spatial meshes. In the example below,

aligned meshes are used where the coarse mesh consists simply of every second point of the fine one. Lagrangian interpolation

of orders p = 1, 3, 5, 7 is used for I while R is always simple injection. However, using R := cIT with normalization c such

that row sums are unity did not much change the results.

2.1 Convergence criteria

The quality of the solution provided by Parareal can be measured by the defect at the end of each time-slice between the

parallel solution and the solution provided by running Fδt in serial

dkn := ykn − yn, n = 1, . . . , N. (5)

Once
∥

∥dkn
∥

∥ for all n is smaller than the (estimated) discretization error of Fδt, both solutions will typically be of comparable

accuracy. All values reported here use the maximum norm ‖·‖
∞

. An easy way to track convergence of Parareal without

needing the serial reference solution is to compute the norm of the corrections

ckn := ykn − yk−1
n , n = 1, . . . , N (6)

and iterate until the maximum
∥

∥ckn
∥

∥ is below a predefined threshold. As ckn → 0, the G-terms in (3) will cancel out and we get

yk+1
n+1 = F(ykn) for n = 1, . . . , N , that is the fine serial solution. As shown below, the corrections can give a good estimate of

the defect.

A different estimate can be derived by considering Parareal as a fixed point iteration, see e.g. [8] or [9]. For a linear

problem, the propagators F and G can be written as matrices G,F ∈ R
D×D. Then, integrating with the fine or coarse method

over all time-slices can be written as size (N + 1)D × (N + 1)D matrices

Mf =











I . . .

−F I

. . .
. . .

−F I











, Mg =











I . . .

−G I

. . .
. . .

−G I











. (7)

Therefore, serially computing the fine solution is equivalent to a block-wise solution of Mfy = b where y = (y0, . . . , yN )T

and b = (b, 0, . . . , 0)T. The Parareal iteration (3) can now be written as the preconditioned fixed point iteration

Mgy
k+1 = (Mg −Mf )y

k + b, (8)

iteratively computing the solution of Mfy = b. Inverting Mg by block-wise elimination corresponds to a serial run of the

coarse propagator. The proper residual for Parareal is therefore

rk := b−Mfy
k or component wise rk0 = 0, rkn := Fykn−1 − ykn, n = 1, . . . , N. (9)

It is shown below that
∥

∥rk
∥

∥

∞
can give a slightly more accurate estimate of the norm of the defect than

∥

∥ck
∥

∥

∞
. The drawback

of (9) is that in order to compute rkn, the fine propagator has to be run first to provide Fykn, while the correction ckn := ykn−yk−1
n

is available directly after ykn has been computed.

3 Numerical results

The benchmark problem here is the one-dimensional linear advection-diffusion equation

ut(x, t) + aux(x, t) = νuxx(x, t), u(x, 0) = u0(x) = sin(2πx) (10)

on [0, 1] with periodic boundary conditions. Both gradient and Laplacian are discretized using second-order centered finite

differences. A second-order implicit trapezoidal rule is used for Fδt and a first order implicit Euler for G∆t. Parameters for
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Fig. 1 Maximum norm of defect
∥

∥d
k
∥

∥ versus k. NC indicates that no spatial coarsening is used, C indicates spatial coarsening. In addition,

lowres means a spatial resolution of Nx = 40 on the fine level while highres means Nx = 80. The order of the interpolation operator I is

indicated by p. While for Parareal without coarsening (NC) convergence is identical for lowres and highres Parareal with spatial coarsening

(C) shows significant differences in convergence behavior depending on resolution and interpolation order.

advection and diffusion are a = ν = 0.25 and the problem is integrated until T = 1. The interval [0, 1] is decomposed into

P = 40 time-slices of length 0.025. The coarse time-step is ∆t = 0.025 (that is, one step per time-slice), the fine time-step

δt = 0.005. Two setups are used, a low resolution run using Nx = 40 nodes in space (labeled lowres) and a high resolution

run with Nx = 80 (labeled highres). The resulting CFL numbers on the fine level for diffusion and advection are

C lowres
diff = 2, C lowres

adv = 0.05 and C
highres
diff = 8, Chighres

adv = 0.1. (11)

Each setup is run once with no spatial coarsening (NC) for reference and then with spatial coarsening (C) for interpolation of

order p = 1, 3, 5, 7. Figure 1 shows the maximum norm of the defect, that is
∥

∥dk
∥

∥

∞
versus the iteration number k for the

different runs. A number of observations can be made:

1. Without coarsening, convergence of Parareal does not seem to be affected by the spatial resolution. The lines for NC-

lowres and NC-highres essentially coincide.

2. The runs using spatial coarsening (C-lowres and C-highres) always converge slower than the NC runs, since the coarse

solver G is less accurate.

3. For the Nx = 40 runs with coarsening (C-lowres), linear interpolation (p = 1) reduces convergence speed somewhat

compared to higher order interpolation (p = 3, 5, 7). However, for p ≥ 3 there is essentially no difference.

4. The high-resolution runs with coarsening (C-highres) show a strong dependence on the order of interpolation: Depending

on p, there is a defect level after which convergence becomes significantly slower. The higher p is chosen, the lower this

level becomes. For p = 7, convergence is again essentially the same for C-highres and C-lowres, up to very small values

of
∥

∥dk
∥

∥ ∼ 10−13. Because the effect is much more pronounced for the highres case and can be counteracted to some

extend by using a smaller δt (see comment below), it seems to be linked to the CFL number.
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Fig. 2 Maximum norm of defect
∥

∥d
k
∥

∥

∞

, see (5), correction
∥

∥c
k
∥

∥

∞

, see (6), and residual
∥

∥r
k
∥

∥

∞

, see (9), versus k for interpolation

operators I of order p = 1 (left) and p = 7 (right) for the C-highres run. Note that the norm of the residual gives a slightly better estimate

for the defect than the norm of the corrections and how the high order interpolation leads to a massive improvement in convergence.

These results cover only a very small range of possible parameters and thus cannot offer a systematic study of how spatial

and temporal resolution affect the impact of spatial coarsening. Further tests not documented here suggest that e.g. a smaller

δt reduces the impact of the interpolation order. For δt = 0.001, an interpolation order of p = 3 suffices to eliminate the

difference in convergence between C-lowres and C-highres. On the other hand, the order of the spatial discretization seems

to have no big effect: If one uses fourth-order centered differences, the results are very similar to what is shown in Figure 1.

Although preliminary, the results strongly suggest that applying spatial coarsening in Parareal might not be straightforward

and that higher-order interpolation might be required to achieve good convergence, at least for some setups. It is interesting to

note that the necessity for higher-order interpolation for MLSDC was also recognized in [5].

Figure 2 shows again the maximum norm of the defect for the C-highres run versus the iteration number for p = 1 (left) and

p = 7 (right). In addition, it also shows the norm of the residual
∥

∥rk
∥

∥

∞
as defined in (9) and the iterative correction

∥

∥ck
∥

∥

∞
.

Comparing the left and right figure shows again the drastic improvement in convergence by using a high-order interpolation.

Furthermore, in both cases, residual as well as correction provide a good estimate of the actual defect, with the residual giving

slightly more accurate values.

4 Conclusion

The paper investigates how using a reduced spatial resolution in the coarse method in Parareal affects convergence. It is found

that the order of the employed interpolation can have a significant influence. The effect however strongly depends on the used

resolutions in both space and time. An in-depth investigation including a detailed explanation is left for future work.
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