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Low-Complexity Direction-of-Arrival

Estimation Based on Wideband Co-Prime

Arrays

Qing Shen, Wei Liu, Senior Member, IEEE, Wei Cui,

Siliang Wu, Yimin D. Zhang, Senior Member, IEEE,
and Moeness G. Amin, Fellow, IEEE

Abstract—A class of low-complexity compressive sensing based
direction-of-arrival (DOA) estimation methods for wideband co-
prime arrays is proposed. It is based on a recently proposed
narrowband estimation method, where a virtual array model is
generated by directly vectorizing the covariance matrix and then
using a sparse signal recovery method to obtain the estimation
result. As there are a large number of redundant entries in both
the auto-correlation and cross-correlation matrices of the two
sub-arrays, they can be combined together to form a model with
a significantly reduced dimension, thereby leading to a solution
with much lower computational complexity without sacrificing
performance. A further reduction in complexity is achieved
by removing noise power estimation from the formulation.
Then, the two proposed low-complexity methods are extended
to the wideband realm utilizing a group sparsity based signal
reconstruction method. A particular advantage of group sparsity
is that it allows a much larger unit inter-element spacing than the
standard co-prime array and therefore leads to further improved
performance.

Index Terms—Microphone arrays, direction-of-arrival estima-
tion, sparsity, wideband, co-prime.

I. INTRODUCTION

Traditionally, for wideband uniform linear arrays (ULAs),

including microphone arrays, the minimum inter-element spac-

ing between adjacent sensors is less than λmin/2 to avoid

spatial aliasing, where λmin is the minimum wavelength within

the frequency band of interest [3]–[5]. This can be problematic

when considering arrays with a large aperture size, due to

the cost associated with the number of sensors. In the past,

sparse arrays have been proposed as a solution [6]–[12], where

their non-uniform configuration can avoid grating lobes, while

allowing adjacent physical sensor spacings to be greater than

λmin/2.

Recently, a new class of sparse arrays, referred to as co-

prime arrays, was proposed [13], [14]. Assume M and N
are co-prime. Then, a co-prime array can be constructed by

two sub-arrays, with number of sensors varying based on the

values of M and N . A typical co-prime array consists of
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two sub-arrays sharing a sensor at the zeroth position, one

with 2M sensors and the other with N sensors. The adjacent

sensor spacing for the first sub-array is Nd, while it is Md
for the second sub-array, where d is the unit inter-element

spacing and also the adjacent virtual sensor spacing of the

resultant co-prime difference array (as a result, we need to

have d ≤ λ/2, where λ is the operating frequency of the co-

prime array). As such, with a total number of 2M + N − 1
sensors, the difference co-array of the two sub-arrays can

provide more than MN degrees of freedom. The increased

degrees of freedom (DOFs) can be exploited for effective

direction of arrival (DOA) estimations [14]–[17]. In [14], a

virtual array of a larger aperture is generated from the co-prime

array by vectorizing the covariance matrix, with equivalent

coherent impinging signals. Then, a rank restoring method

based upon spatial smoothing is utilized for DOA estimation

[18], [19]. Under the condition of imperfect correlation matrix,

sparsity-based signal recovery method is applied in [15]. In

[17], a sparse signal recovery method based on compressive

sensing is used for narrowband DOA estimation, employing

a ULA with two co-prime frequencies. The aforementioned

methods were all designed for narrowband waveforms.

For wideband DOA estimation, several methods have been

proposed, most notably the incoherent signal subspace method

[20], the coherent signal subspace method [21], the test of

orthogonality of projected subspaces method [22], and the

recently proposed approximate maximum likelihood approach

[23]. In particular, a series of DOA estimation methods based

on the sparse signal recovery approach were developed in [24],

[25]. In [26], a subband information fusion method based on

the concept of group sparsity is introduced to jointly explore

the information in all subbands.

Most recently, we have extended the work in [16] to

wideband DOA estimations using sparse reconstruction and

group sparsity techniques [1]. In essence, the wideband sig-

nals received by the array are decomposed into different

frequencies/subbands by a discrete Fourier transform (DFT)

or, more generally, a filter bank system. Virtual arrays are then

formed by vectorizing the covariance matrix in each subband.

In this case, the equivalent signal vector of each virtual

array is a column vector consisting of all impinging signal

powers. In order to jointly exploit the information provided

by all subbands, the group-sparsity based signal reconstruction

method is employed for enhanced wideband DOA estimation.

However, one problem associated with the above method

is its extremely high computational complexity. We recognize

that the virtual array model proposed in the narrowband case

in [16] includes a large number of redundant entries in both

the auto-correlation and the cross-correlation matrices [2].

These redundancies can be combined to form a model with a

significantly reduced dimension, thereby leading to a solution

with a lower computational complexity without sacrificing

performance. A further reduction of complexity is achieved

by considering that the estimation result for noise power

can be removed from the problem formulation. These newly

derived low-complexity methods are then extended to the

wideband case by employing the group-sparsity based sig-

nal reconstruction method to jointly exploit the information
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Fig. 1. Structure of a general co-prime array.

provided by all subbands. It is shown that, with a much

lower computational complexity, the proposed methods for the

single frequency case achieve a very similar performance to

the existing one, whereas their respective wideband extensions

exhibit a significantly improved performance compared to the

narrowband ones.

It is well-known that the resolution of an array improves

with an increased aperture size. However, to avoid aliasing,

traditionally, a spacing between adjacent sensors of a ULA

smaller than λmin/2 is commonly used. An advantage of the

proposed group sparsity based methods is that the equivalent

spacing d between adjacent virtual sensors of the co-prime

array can be increased beyond λmin/2, while still avoiding

spatial aliasing in the estimated results. This is because alias-

ing locations for different frequencies are different and our

group sparsity based methods will force a common sparsity

location across all frequencies, corresponding to the true

location of the impinging signals. In this respect, we enable

the use of a larger inter-element spacing than that associated

with the standard co-prime array, leading to a further improved

DOA estimation performance.

Our contributions are therefore: 1) Developing the group

sparsity-based wideband DOA estimation beyond our prelim-

inary results in [1]; 2) Developing low complexity narrowand

and wideband DOA estimation using sparse reconstruction

by removing the noise term and recognizing the built in

redundancies in subarray auto-correlation and cross-correlation

lags; 3) Extending the array aperture by permitting a larger

sensor spacing than that defined by half of the minimum

wavelength.

This paper is organized as follows. The wideband signal

model for co-prime arrays is presented in Section II. The

proposed low-complexity DOA estimation method is intro-

duced in Section III for a single frequency. Their wideband

extensions are then given in Section IV-A to Section IV-C,

and the co-prime arrays with further improved performance

due to an increased spacing is presented in Section IV-D.

Simulation results are provided in Section V, and results

based on collected acoustic data is presented in Section VI.

Conclusions are drawn in Section VII.

II. SIGNAL MODEL WITH CO-PRIME ARRAYS

A co-prime array consists of two uniform linear sub-arrays,

as shown in Fig. 1, where M < N is assumed. The first sub-

array has N sensors with an inter-element spacing of Md,

and the second one has 2M sensors separated by Nd, where

d ≤ λmin/2. Note another layout of the co-prime array uses M
sensors for the second sub-array, instead of 2M . The proposed

methods here are equally applicable to both cases.

The zeroth positions of the two sub-arrays share the same

sensor and in total there are 2M + N − 1 sensors. Denote

the set of sensor positions for the two sub-arrays as S1 and

S2, respectively. The zeroth sensor is removed in S2 for

convenience of formulation at a later stage, i.e.,

S1 = {Mnd, 0 ≤ n ≤ N − 1, n ∈ Z} ,

S2 = {Nmd, 1 ≤ m ≤ 2M − 1,m ∈ Z} ,
(1)

where Z is the set of all integers.

Assume that there are K uncorrelated wideband signals

sk(t) with the same bandwidth impinging from incident angles

θk, k = 1, 2, . . . ,K, respectively, where θk is measured from

the broadside of the array. Then, the signals observed from an

element in the two sub-arrays can be expressed as:

x1,n(t) =
K∑

k=1

sk [t− τ1,n(θk)] + n1,n(t) ,

x2,m(t) =

K∑

k=1

sk [t− τ2,m(θk)] + n2,m(t) ,

(2)

where 0 ≤ n ≤ N − 1 and 1 ≤ m ≤ 2M − 1. Take the

zeroth position of the co-prime array as the reference. Then,

τ1,n(θk) and τ2,m(θk) represent the time delay of the k-th

impinging signal with the incident angle θk arriving at the

n-th sensor of the first sub-array and the m-th sensor of the

second sub-array, respectively. n1,n(t) and n2,m(t) are white

noise at the corresponding sensors.With a sampling frequency

fs, the discrete version of the two sets of sub-array signals

can be expressed as

x1[i] =
[
x1,0[i], x1,1[i], . . . , x1,N−1[i]

]T
,

x2[i] =
[
x2,1[i], x2,2[i], . . . , x2,2M−1[i]

]T
,

(3)

where {·}T denotes the transpose operation and i the discrete-

time variable.

Each received sensor signal is divided into non-overlapping

groups with length L, and an L-point DFT is applied. Then,

the l-th frequency bin/subband samples of the p-th group for

each sub-array can be grouped into one vector as follows

X1 [l, p] =
[
X1,0[l, p], X1,1[l, p], . . . , X1,N−1[l, p]

]T
,

X2 [l, p] =
[
X2,1[l, p], X2,2[l, p], . . . , X2,2M−1[l, p]

]T
,

(4)

where

X1,n[l, p] =
L−1∑

i=0

x1,n[L · (p− 1) + i] · e−j 2π
L

il ,

X2,m[l, p] =

L−1∑

i=0

x2,m[L · (p− 1) + i] · e−j 2π
L

il ,

(5)

with p = 0, 1, . . . , P − 1, and l = 0, 1, . . . , L− 1.

Define Sk[l, p], N1,n[l, p], and N2,m[l, p] as the DFT of

the p-th group discrete-time impinging signals sk[i], discrete-

time noises at sensors of the two sub-arrays n1,n[i] and

n2,m[i], respectively. S[l, p] =
[
S1[l, p], . . . , SK [l, p]

]T
is a

column vector holding signals at the l-th frequency bin, and

N1[l, p] =
[
N1,0[l, p], . . . , N1,N−1[l, p]

]T
and N2[l, p] =
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[
N2,1[l, p], . . . , N2,2M−1[l, p]

]T
are the corresponding col-

umn noise vectors at the two sub-arrays. Then, the output

signal model in the DFT domain can be expressed as

X1[l, p] = A1(l,θ)S[l, p] +N1[l, p] ,

X2[l, p] = A2(l,θ)S[l, p] +N2[l, p] ,
(6)

where A1(l, θ) = [a1(l, θ1), . . . ,a1(l, θK)] and A2(l,θ) =
[a2(l, θ1), . . . , a2(l, θK)] are the steering matrices at frequency

fl corresponding to the l-th frequency bin. The column vectors

a1(l, θk) and a2(l, θk) are the steering vectors at frequency fl
and angle θk, given as

a1(l, θk) =

[
1, e

−j 2πMd
λl

sin(θk), . . . , e
−j

2πM(N−1)d
λl

sin(θk)

]T
,

a2(l, θk) =

[
e
−j 2πNd

λl
sin(θk), . . . , e

−j
2πN(2M−1)d

λl
sin(θk)

]T
,

(7)

where λl = c/fl and c is the wave speed. For each l of interest,

(6) can be considered as a narrowband signal model.

III. SPARSITY-BASED LOW-COMPLEXITY DOA

ESTIMATION FOR A SINGLE FREQUENCY

In this section, we first review the narrowband DOA esti-

mation method for co-prime arrays proposed in [16], using

the single-frequency model in (6) as an example in Subsec-

tion III-A, and then propose our two low-complexity DOA

estimation methods in Subsections III-B and III-C.

A. Review of DOA estimation for narrowband co-prime arrays

We consider DOA estimation using the data at the l-th

frequency bin. Denote X[l, p] =
[
X

T
1 [l, p],X

T
2 [l, p]

]T
. Then,

the covariance matrix for X[l, p] is

Rxx[l] = E
{
X[l, p] ·XH [l, p]

}

=
K∑

k=1

σ2
k[l]a(l, θk)a

H(l, θk) + σ2
n̄[l]I2M+N−1 ,

(8)

where {·}H denotes Hermitian transpose, E{·} is the ex-

pectation operator, a(l, θk) =
[
a
T
1 (l, θk),a

T
2 (l, θk)

]T
and

I2M+N−1 is the (2M +N − 1) × (2M +N − 1) identity

matrix. σ2
k[l] represents the power of the k-th impinging signal

at the l-th frequency bin, and σ2
n̄[l] is the corresponding noise

power.

In practice, Rxx[l] can be estimated by

Rxx[l] ≈ R̂xx[l] =
1

P

P−1∑

p=0

X[l, p] ·XH [l, p] , (9)

where P is the number of signal blocks for DFT and we

assume that the impinging source signals are wide-sense

stationary over this period.

Vectorizing Rxx[l] yields

z[l] = vec {Rxx[l]} = Ã[l]̃s[l] + σ2
n̄[l]̃I2M+N−1 , (10)

where Ã[l] = [ã(l, θ1), . . . , ã(l, θK)] with ã(l, θk) =
a
∗(l, θk)⊗ a(l, θk) (⊗ is the Kronecker product and {·}∗ de-

notes the conjugate operation), and s̃[l] =
[
σ2
1 [l], . . . , σ

2
K [l]

]T
.

Ĩ2M+N−1 is a (2M +N − 1)
2
×1 column vector obtained by

vectorizing I2M+N−1.

Equation (10) characterises a virtual array with a higher

number of DOFs, where Ã[l] represents its steering matrix

and s̃[l] represents its equivalent impinging signal vector. Note

that the increased DOFs are only available in the signal and

noise power domain, which enable the DOA estimation of the

signals, but cannot be used to recover their waveforms. Ã[l]
contains virtual sensor positions distributed in the set of cross

differences{
±(Nm−Mn) · d, 0 ≤ n ≤ N − 1

∩
1 ≤ m ≤ 2M − 1

}

and the two sets of self differences

{(Nm1 −Nm2) · d, 1 ≤ m1 ≤ 2M − 1, 1 ≤ m2 ≤ 2M − 1} ,

{(Mn1 −Mn2) · d, 0 ≤ n1 ≤ N − 1, 0 ≤ n2 ≤ N − 1} .

Moreover, (10) can be modified into

z[l] = Ã[l]̃s[l] + σ2
n̄[l]̃I2M+N−1 = Ã

◦[l]̃s◦[l] , (11)

where Ã
◦[l] =

[
Ã[l], Ĩ2M+N−1

]
and s̃

◦[l] =
[
s̃
T [l], σ2

n̄[l]
]T

.

For the l-th frequency bin, with a search grid of Kg

potential incident angles θg,1, . . . , θg,Kg
, the steering matrix

is generated by Ãg[l] =
[
ã(l, θg,1), . . . , ã(l, θg,Kg

)
]
. Here we

use the subscript {·}g to describe matrices, vectors or elements

related to the generated search grid. Construct a column vector

s̃g[l] consisting of Kg elements, each representing a potential

source signal at the corresponding incident angle. Denote

Ã
◦

g
[l] =

[
Ãg[l], Ĩ2M+N−1

]
, s̃◦

g
[l] =

[
s̃g[l], σ

2
n̄[l]

]T
. (12)

The last element σ2
n̄[l] in s̃

◦

g
[l] can also be considered as a

variable because the noise power is unknown. All the elements

in s̃
◦[l] are powers, and therefore positive real numbers. The

method proposed in [16] can be applied to a single frequency

in the wideband case directly with the following formulation

min
∥∥s̃◦

g
[l]
∥∥
1

subject to

∥∥∥z[l]− Ã
◦

g
[l]̃s◦

g
[l]
∥∥∥
2
≤ ε ,

s̃◦g,kg
[l] ≥ 0, 0 ≤ kg ≤ Kg ,

(13)

where ε is the allowable error bound, ∥·∥1 is the l1 norm and

∥·∥2 the l2 norm. s̃◦g,kg
[l] represents the kg-th entry in the

column vector s̃◦
g
[l].

B. Low-complexity DOA estimation for a single frequency

We first add the received signal of the zeroth sensor into

the signal vector of the second sub-array. Then (4) changes to

X1 [l, p] =
[
X1,0[l, p], . . . , X1,N−1[l, p]

]T
,

X2 [l, p] =
[
X2,0[l, p], . . . , X2,2M−1[l, p]

]T
,

(14)

where X2,0[l, p] = X1,0[l, p], and the steering vectors de-

scribed in (7) become

a1(l, θk) =

[
1, e

−j 2πMd
λl

sin(θk), . . . , e
−j

2πM(N−1)d
λl

sin(θk)

]T
,

a2(l, θk) =

[
1, e

−j 2πNd
λl

sin(θk), . . . , e
−j

2πN(2M−1)d
λl

sin(θk)

]T
.

(15)



4

Then, the auto-correlation matrices of the signal vectors

observed in the two sub-arrays can be obtained as

R11[l] = E
{
X1[l, p] ·X

H
1 [l, p]

}

=

K∑

k=1

σ2
k[l]a1[l, θk]a

H
1 [l, θk] + σ2

n̄[l]IN ,
(16)

R22[l] = E
{
X2[l, p] ·X

H

2 [l, p]
}

=
K∑

k=1

σ2
k[l]a2[l, θk]a

H
2 [l, θk] + σ2

n̄[l]I2M ,
(17)

where IN and I2M are identity matrices with size of N ×N
and 2M × 2M , respectively. Note here that R11[l] and R22[l]
are both Hermitian and Toeplitz.

We can also obtain the cross-correlation matrices of the two

sub-arrays, given by

R12[l] = E
{
X1[l, p] ·X

H

2 [l, p]
}

=
K∑

k=1

σ2
k[l]a1[l, θk]a

H
2 [l, θk] + σ2

n̄[l]WN,2M ,
(18)

R21[l] = E
{
X2[l, p] ·X

H
1 [l, p]

}

=

K∑

k=1

σ2
k[l]a2[l, θk]a

H
1 [l, θk] + σ2

n̄[l]W2M,N ,
(19)

where WN,2M has a size of N × 2M and W2M,N has a size

of 2M ×N , both being all zeroes except for a value of 1 at

the (0, 0)th entry. We have R12[l] = R
H
21[l].

For 0 ≤ n ≤ N −1 and 0 ≤ m ≤ 2M −1 , the set of cross

difference b = Nm−Mn can reach any integer in the range

of 0 to MN [13], [14]. The cross difference sets of b = Nm−
Mn and −b = −Nm+Mn also contain all the lags included

in self difference sets provided by R11 and R22 [27]. The

redundant lags can be combined together. Furthermore, the

information contained in R21[l] is the same as that in R12[l].
Therefore, the virtual array generated from R12[l] contains all

the degrees of freedom. In practice, R12[l], R11[l], and R22[l]
can be replaced by their finite-sample estimates R̂12[l], R̂21[l],
R̂11[l], and R̂22[l], respectively.

Considering R̂11[l] = R̂
H
11[l], R̂22[l] = R̂

H
22[l], and

R̂12[l] = R̂
H
21[l], the complex conjugate part in matrices

R̂11[l], R̂22[l], and the entire matrix R̂21[l] can be removed

in virtual array generation for complexity reduction. A more

accurate estimation of the virtual array model can be obtained

by averaging all the entries with the same lag in auto-

correlation matrices. Denote Rc[l] as the new cross-correlation

matrix at the l-th frequency bin. Then, the entry in the n-th

row and the m-th column of Rc[l] is expressed as

Rn,m
c [l] =





N−1∑
n̂=0

R̂n̂,n̂
11 [l] +

2M−1∑
m̂=1

R̂m̂,m̂
22 [l]

2M +N − 1
, n,m = 0,

2M−1∑
m̂=m

R̂m̂−m,m̂
22 [l]

2M −m
, n = 0,m ̸= 0,

N−1∑
n̂=n

R̂n̂,n̂−n
11 [l]

N − n
, n ̸= 0,m = 0,

R̂n,m
12 [l], others,

(20)

where the superscripts are the corresponding row and column

indexes.

In (20), an accurate estimation of R12 is obtained by

removing duplicate entries and combining redundant entries

in R11 and R22. Furthermore, redundant entries in R12 can

also be combined for further complexity reduction.

The n-th row and m-th column entry in R12 is

Rn,m
12 [l] =





K∑
k=1

σ2
k[l]e

−j
2π(nM−mN)d

λl
sin(θk) + σ2

n̄[l], m = n = 0,

K∑
k=1

σ2
k[l]e

−j
2π(nM−mN)d

λl
sin(θk), others.

(21)

Signal powers σ2
k[l], k = 1, 2, · · · ,K, and noise power σ2

n̄[l]
are all positive real numbers. Considering indexes of (n1,m1)
and (n2,m2), R

n1,m1

12 [l] and Rn2,m2

12 [l] are complex conjugate

when the indexes satisfy the following relationship

n1M −m1N = −(n2M −m2N
)
,

which can be modified as

(n1 + n2)M = (m1 +m2)N , (22)

where 0 ≤ n1 ≤ N − 1, 0 ≤ n2 ≤ N − 1, 0 ≤ m1 ≤ 2M − 1,

and 0 ≤ m2 ≤ 2M−1. Then, the only necessary and sufficient

condition of (22) is

n1 + n2 = N
∩

m1 +m2 = M . (23)

Thus, we can obtain the following relationship in matrix R12

Rn1,m1

12 [l] =
{
Rn2,m2

12 [l]
}
∗

=
{
RN−n1,M−m1

12 [l]
}
∗

, (24)

where 1 ≤ (n1, n2) ≤ N − 1 and 0 ≤ (m1,m2) ≤ M .

In practice, R12[l] is replaced by R̂12[l], and a more

accurate estimation of the smoothed cross-correlation matrix

can be obtained by averaging the conjugate entries, with (20)
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updated to

R̄n,m
c [l] =




N−1∑
n̂=0

R̂n̂,n̂
11 [l] +

2M−1∑
m̂=1

R̂m̂,m̂
22 [l]

2M +N − 1
, n,m = 0,

2M−1∑
m̂=m

R̂m̂−m,m̂
22 [l]

2M −m
, n = 0,m ̸= 0,

N−1∑
n̂=n

R̂n̂,n̂−n
11 [l] +

{
R̂N−n,M−m

12

}
∗

N − n+ 1
, n ̸= 0,m = 0,

{ N−1∑
n̂=N−n

R̂n̂,n̂−N+n
11 [l]

}
∗

+ R̂n,m
12

n+ 1
, n ̸= 0,m = M,

R̂n,m
12 +

{
R̂N−n,M−m

12

}
∗

2
, n ̸= 0, 1 ≤ m < M,

R̂n,m
12 [l], others,

(25)

where R̄n,m
c [l] is the n-th row and the m-th column entry in

the updated smoothed cross-correlation matrix R
n,m

c
[l].

Matrix Rc[l] corresponds to the cross difference co-array

−b = Mn−Nm, with the ability of reaching all the integers

in the range of −MN to 0, where 0 ≤ n ≤ N − 1 and

0 ≤ m ≤ 2M − 1. According to (21) and (25), the positive

lags in the cross difference co-array −b = Mn − Nm have

been combined and can be removed when vectorizing Rc[l],

and the number of positive lags is
(N−1)(M+1)

2 .

z̄c[l] is the vector obtained by vectorizing Rc[l], i.e.

z̄c[l] = vec
{
Rc[l]

}

= Ãc[l]̃s[l] + σ2
n̄[l]w̃N,2M = Ã

◦

c
[l]̃s◦[l] ,

(26)

where Ãc[l] =
[
ãc[l, θ1], . . . , ãc[l, θK ]

]
with ãc[l, θk] =

a
∗

2[l, θk]⊗ a1[l, θk], and s̃[l] =
[
σ2
1 [l], . . . , σ

2
K [l]

]T
. w̃N,2M is

a 2MN ×1 column vector obtained by vectorizing the matrix

WN,2M . Ã◦

c
[l] and s̃

◦[l] are given as

Ã
◦

c
[l] =

[
Ãc[l], w̃N,2M

]
, s̃◦[l] =

[
s̃
T [l], σ2

n̄[l]
]T

. (27)

With the same search grid of Kg potential angles

θg,1, . . . , θg,Kg
as used earlier, the steering matrix is generated

by Ãcg[l] =
[
ãc[l, θg,1], . . . , ãc[l, θg,Kg

]
]
. Construct a Kg-

element column vector s̃g[l], with each element representing

a potential source at the corresponding incident angle. Denote

Ã
◦

cg
[l] =

[
Ãcg[l],W̃N,2M

]
, s̃◦

g
[l] =

[
s̃
T
g
[l], σ2

n̄[l]
]T

. (28)

We use nc, 0 ≤ nc ≤ 2MN − 1, to denote the row index

of the column vector z̄c[l], the matrix Ãc[l] in (26), and the

matrix Ãcg[l] in (28). Then, each entry of z̄c[l] is expressed as

z̄nc
[l]. Row vectors ãc,nc

[l] and ãcg,nc
[l] are used to represent

the nc-th row of the matrices Ãc[l] and Ãcg[l], respectively.

Denote nc,n0 ∈ Φ, n0 = 0, 1, · · · , N0 − 1, as the row indexes

corresponding to all the negative lags, where N0 = 2MN −
(N−1)(M+1)

2 is the number of indexes set Φ = {Nm+n, 0 ≤

n ≤ N − 1
∩
0 ≤ m ≤ 2M − 1

∩
Mn−Nm ≤ 0}. Keeping

all the row indexes nc,n0 , we obtain a virtual array model as

žc[l] = Ǎ
◦

c
[l]̃s◦[l] , (29)

where žc[l] =
[
z̄nc,0 [l], · · · , z̄nc,N0−1

[l]
]T

and Ǎ
◦

c
[l] =[

ã
T
c,nc,0

[l], · · · , ãT
c,nc,N0−1

[l]
]T

.

Then the proposed low-complexity DOA estimation method

can be expressed as

min
∥∥s̃◦

g
[l]
∥∥
1

subject to
∥∥žc[l]− Ǎ

◦

cg
[l]̃s◦

g
[l]
∥∥
2
≤ ε ,

s̃◦g,kg
[l] ≥ 0, 0 ≤ kg ≤ Kg ,

(30)

where Ǎ
◦

cg
[l] =

[
ã
T
cg,nc,0

[l], · · · , ãT
cg,nc,N0−1

[l]
]T

, and s̃g,kg
[l]

is the kg-th entry of column vector s̃g[l].
In (13) and (30), the first Kg elements of s̃

◦

g
[l] give the

corresponding DOA estimation results over Kg search grids.

Compared with (13), there is a significant reduction in the

number of entries in the optimization problem (30) due to the

combination of redundant entries, leading to reduction in com-

putational complexity using various optimisation toolboxes.

C. Further reduction by removing noise power estimation

In (26), w̃N,2M is an all-zero column vector except for

the zeroth entry. Only the zeroth element in žc[l] related

to the zero lag is influenced by noise power σ2
n̄[l], and the

estimation of noise power takes up one DOF. As a result,

we can remove the zero lag part to avoid estimating σ2
n̄[l]

in (30). In so doing, the range of difference co-array lags

in Rc[l] from −MN to −1 with MN DOFs can still be

provided by the co-prime array, with the new set of available

DOFs fully dedicated to DOA estimation. Further reduction in

computational complexity is achieved due to the reduction in

the number of parameters to be estimated and the number of

entries.

We use n0, 0 ≤ n0 ≤ N0 − 1, to be the row index of

žc[l], Ǎc[l] in (29), and Ǎcg[l] in (30). Then, each entry

of žc[l] is expressed as žc,n0 [l]. Row vectors ǎcr,n0 [l] and

ǎcg,n0
[l] are used to represent the n0-th row of Ǎc[l] and

Ǎcg[l], respectively. Removing the first row with n0 = 0, we

obtain a virtual array model

zs[l] = Ãs[l]̃s[l] , (31)

where zs[l] =
[
žc,1[l], · · · , žc,N0−1[l]

]T
, and Ãs[l] =[

ǎ
T
cr,1[l], · · · , ǎ

T
cr,N0−1[l]

]T
.

Then, the modified low-complexity DOA estimation method

for a single frequency at the l-th frequency bin can be

expressed as

min ∥s̃g[l]∥1

subject to

∥∥∥zs[l]− Ãsg[l]̃sg[l]
∥∥∥
2
≤ ε

s̃g,kg
[l] ≥ 0, 0 ≤ kg ≤ Kg − 1 ,

(32)

where Ãsg[l] =
[
ǎ
T
cg,1[l], · · · , ǎ

T
cg,N0−1[l]

]T
, and s̃g,kg

[l] is

the kg-th entry of the column vector s̃g[l].
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The problems in (13), (30), and (32) can be solved using

CVX, a software package for specifying and solving convex

problems [28], [29].

IV. WIDEBAND DOA ESTIMATION METHOD BASED ON

GROUP SPARSITY FOR CO-PRIME ARRAYS

For wideband signals transformed into multiple frequency

bins as described in Section II, we could apply the algorithm

in (13), (30), and (32) to the frequency range of interest

one by one and then average the results to give the final

estimation. A more effective approach that achieves a higher

accuracy, however, is to jointly estimate the DOA of the

impinging signals across the entire frequency range of interest

simultaneously based on the group sparsity concept, i.e., the

DOA results corresponding to different frequencies share the

same spatial support, although they may have varying power

values. Assume that the frequency range or bandwidth of

interest covers Q frequency bins in the DFT domain, where

the Q ≤ L frequency bins may or may not be adjacent to each

other. For each frequency bin lq ∈ Φl, 0 ≤ q ≤ Q− 1, where

Φl is the set of Q frequency bin indexes, the same search grid

of Kg potential incident angles are used to generate all the

matrices needed as described for each method.

A. Wideband extension 1 based on existing DOA estimation

method

First, we construct two matrices: a block diagonal matrix

B̃
◦

g
using Ã

◦

g
[lq], expressed as

B̃
◦

g
= blkdiag

{
Ã

◦

g
[l0], Ã

◦

g
[l1], . . . , Ã

◦

g
[lQ−1]

}
(33)

and a (Kg + 1)×Q matrix R
◦

g
using s̃

◦

g
[lq] with

R
◦

g
=

[
s̃
◦

g
[l0], s̃

◦

g
[l1], . . . , s̃

◦

g
[lQ−1]

]
. (34)

Then, we obtain the following virtual array model

z̃ = B̃
◦

g
r̃
◦

g
, (35)

where z̃ =
[
z
T [l0], . . . , z

T [lQ−1]
]T

and r̃
◦

g
= vec

(
R

◦

g

)
is a

(Kg + 1) ·Q× 1 column vector by vectorizing R
◦

g
.

We use the row vector r◦
g,kg

, 0 ≤ k0 ≤ Kg, to represent the

k0-th row of the matrix R
◦

g
. Then, we form a new (Kg+1)×1

vector r̂◦
g

based on the l2 norm of r◦
g,k0

, 0 ≤ k0 ≤ Kg

r̂
◦

g
=

[∥∥r◦
g,0

∥∥
2
, . . . ,

∥∥r◦
g,Kg

∥∥
2

]T
. (36)

Finally, our group-sparsity based wideband DOA estimation

method is formulated as follows

min
r̃◦
g

∥∥r̂◦
g

∥∥
1

subject to

∥∥∥z̃− B̃
◦

g
r̃
◦

g

∥∥∥
2
≤ ε ,

r̃◦g,kg
≥ 0, 0 ≤ kg ≤ (Kg + 1) ·Q− 1 ,

(37)

where r̃◦g,kg
represents the kg-th element of the column vector

r̃
◦

g
, and the nonzero entries in the first Kg elements of

the column vector r̂
◦

g
are the corresponding wideband DOA

estimation results over the Kg search grids.

B. Wideband extension 2 based on proposed low-complexity

DOA estimation method

The proposed low-complexity wideband virtual array model

extended from narrowband DOA estimation method (30) can

be shown as

ž
◦

c
= B̌

◦

cg
r̃
◦

g
, (38)

where ž
◦

c
=

[
z
T
c
[l0], . . . , z

T
c
[lQ−1]

]T
, r̃◦

g
= vec

(
R

◦

g

)
, and the

block diagonal matrix B̌
◦

cg
given by

B̌
◦

cg
= blkdiag

{
Ǎ

◦

cg
[l0], Ǎ

◦

cg
[l1], . . . , Ǎ

◦

cg
[lQ−1]

}
. (39)

Then, the proposed low-complexity wideband DOA estimation

method is formulated as

min
r̃◦
g

∥∥r̂◦
g

∥∥
1

subject to
∥∥ž◦

c
− B̌

◦

cg
r̃
◦

g

∥∥
2
≤ ε ,

r̃◦g,kg
≥ 0, 0 ≤ kg ≤ (Kg + 1) ·Q− 1 ,

(40)

C. Wideband extension 3 based on further complexity reduc-

tion DOA estimation method

Two matrices, i.e., block diagonal matrix B̃sg and Kg ×Q

matrix Rg, are constructed using Ãsg[lq] and s̃g[lq] respec-

tively, given by

B̃sg = blkdiag
{
Ãsg[l0], Ãsg[l1], . . . , Ãsg[lQ−1]

}
,

Rg =
[
s̃g[l0], s̃g[l1], . . . , s̃g[lQ−1]

]
.

(41)

Then, the further improved wideband virtual array model is

given by

z̃s = B̃sgr̃g , (42)

where z̃s =
[
z
T
s
[l0], . . . , z

T
s
[lQ−1]

]T
and r̃g = vec (Rg) is a

Kg ·Q× 1 column vector by vectorizing Rg.

Row vector rg,k0 , 0 ≤ k0 ≤ Kg − 1 is used to represent

the k0-th row of Rg. Then, we form a new Kg × 1 vector r̂g
based on the l2 norm of rg,k0 , 0 ≤ k0 ≤ Kg − 1, as

r̂g =
[∥∥rg,0

∥∥
2
,
∥∥rg,1

∥∥
2
, . . . ,

∥∥rg,Kg−1

∥∥
2

]T
. (43)

Finally, the modified wideband DOA estimation method

based on group sparsity is formulated as follows

min
r̃g

∥r̂g∥1

subject to

∥∥∥z̃s − B̃sgr̃g

∥∥∥
2
≤ ε ,

r̃g,kg
≥ 0, 0 ≤ kg ≤ Kg ·Q− 1 ,

(44)

where r̃g,kg
represents the kg-th element of the column vector

r̃g, and the nonzero entries in the Kg elements of the column

vector r̂g are the corresponding wideband DOA estimation

results over the Kg search grids.

Similar to the single frequency case, the reduction in the

number of entries in the proposed wideband formulation will

result in significant complexity reduction in the optimisation

process. These optimization problems in (37), (40), and (44)

can also be solved using CVX [28], [29].
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D. Performance improvement with large unit spacing

The resolution of an array will improve with an increased

aperture size. For existing DOA estimation methods for both

narrowband signals and wideband signals, an equivalent unit

spacing satisfying d ≤ λmin/2 is normally chosen to avoid

spatial aliasing. An advantage of our proposed group sparsity

based methods is that we can increase the spacing d to

be larger than λmin/2, while still avoiding spatial aliasing.

This is because aliasing locations for different frequencies

are different and the proposed group sparsity based methods

will force a common sparsity location across all frequencies,

corresponding to the true location of the impinging signals.

Thus, the proposed methods allow a larger spacing than the

standard co-prime array, leading to a larger virtual array

aperture, and therefore more accurate estimation results can

be obtained. However, we can expect that when d is larger

than some threshold value, the DOA estimation results will

degrade, as will be shown in our simulations part. When

d = λmax/2, where the largest virtual array aperture can be

achieved under the condition of no spatial aliasing only for the

minimum frequency of interest, we can still perform effective

DOA estimation.

V. SIMULATION RESULTS

Consider a co-prime array with M = 3 and N = 5. With

fs twice the highest frequency of interest, the normalized

frequencies of the impinging signals cover the range from 0.5π
to π, and the unit spacing d = λmin/2 with λmin = 2c/fs.

As an example, for a microphone array, this is equivalent to

a frequency band from 5 kHz to 10 kHz with a sampling

frequency of 20 kHz and λmin = 3.4 cm at a speed of 340
m/s.

The number of signal samples in the time domain at each

sensor is 128000, and DFT of L = 64 points is applied. Then,

the number of data blocks used for estimating Rxx[l], R11[l],
R22[l], R12[l], and R21[l] at each frequency bin is P = 2000.

There are 15 uncorrelated wideband signals impinging on

the array, with incident angles uniformly distributed between

−60◦ and 60◦. A search grid of Kg = 3601 angles is formed

within the full angle range with a step size of 0.05◦. The

normalized frequency range of impinging signals covers the

frequency bin set Φl = {17, 18, · · · , 31} with Q = 15.

A. Data Storage Analysis and Computation Time Comparison

First, the number of entries in the vectors/matrices involved

is shown in Table I for the three narrowband DOA estimation

methods and their wideband extensions. Fewer entries lead to

less multiplicative and additive operations in the corresponding

formulations, which is then translated into a lower compu-

tational complexity. For the underlying example, the exact

number of entries is shown in Table II. We see that the existing

method in (13) has the largest number of entries among all

narrowband methods, while its wideband extension (37) has

the largest number of entries among all wideband ones. The

computation time using the CVX package, calculated by the

MATLAB profiler under the environment of Intel CPU I5-3470

with a clock speed of 3.20GHz and 8GB RAM, is also listed

in Table II. It is clear that the existing method has the longest

processing time among all the three narrowband methods, with

the one in (32) being the shortest. Their wideband extensions

keep the same features.

B. Low-complexity DOA estimation results

For the first set of simulations, the input SNR is 0 dB and

the allowable error bound ε is chosen to give the best result

for each method through trial-and-error in every experiment1.

Specifically, it is set to be 10 for the existing narrowband

method in (13), 5 for our proposed low-complexity method

in (30), and 4 for our modified method in (32). For the

wideband case, 65, 25, and 13 were chosen as the allowable

error bound ε, respectively. The much larger value for ε in

the wideband case is due to the norm operation based on

Q = 15 frequencies instead of one single frequency. The DOA

estimation results for the single frequency (l = 31) are shown

in Fig. 2, and the wideband results are shown in Fig. 3, where

the dotted lines in the figures represent the actual incident

angles of the impinging signals, while the solid lines represent

the estimation results. It is clear that all the sources have been

distinguished successfully by all the studied methods.

To compare the estimation accuracy with respect to a varied

input SNR, the root mean square error (RMSE) results are

shown in Fig. 4, where each point is based on an average

of the results obtained by 500 simulation runs. Clearly, their

narrowband performances are nearly the same for most of the

cases, and their wideband extensions share a similar perfor-

mance with extensions 2 and 3 being slightly more accurate.

Furthermore, these proposed wideband extensions consistently

outperform the narrowband ones by a large margin.

Finally, in this part, we give an example where the nar-

rowband method clearly fails while the proposed wideband

method can still provide a good result. The setting is the

same as before except that now there are 21 sources uniformly

distributed between −60◦ and 60◦. Due to the increased signal

number and reduced separation between DOAs of adjacent

signals, the estimation task is much tougher than the previ-

ous settings and therefore can show the difference of their

performances more effectively. The results of the modified

low-complexity method for the single frequency case and its

wideband extension are shown in Fig. 5, which again verifies

the superior performance of the wideband method.

C. Results with large unit spacing co-prime arrays

Now we increase the unit spacing d to be larger than

λmin/2, with d = df · λmin/2 = df · c/fs, and examine its

effect on the estimation results. To depict the change of the

estimation results due to a change of df more clearly, a search

grid of Kg = 18001 incident angles is formed within the full

angle range with a smaller step size of 0.01◦. Other parameters

1Roughly speaking, the value of ε is related to the noise power of the
system and also all kinds of array and data model errors in the sparse
reconstruction equation. Unfortunately, as a common parameter for all sparsity
based optimisation methods, there is no analytical result for its selection for
the general case and it is very difficult to give the range of this parameter for
our simulation scenarios.
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TABLE I
NUMBER OF ENTRIES IN VECTORS/MATRICES

Vector / Matrix
Methods for a Single Frequency

Existing (13) Proposed (30) Modified (32)

s̃◦
g
[l] / s̃◦

g
[l] / s̃g[l] Kg + 1 Kg + 1 Kg

z[l] / žc[l] / zs[l] (2M +N − 1)2 3MN−N+M+1
2

3MN−N+M−1
2

Ã◦

g
[l] / Ǎ◦

cg
[l] / Ãsg[l] (2M +N − 1)2(Kg + 1)

(3MN−N+M+1)(Kg+1)

2

(3MN−N+M−1)Kg

2

Vector / Matrix
Wideband DOA Estimation Methods

Extension 1 (37) Extension 2 (40) Extension 3 (44)

r̃◦
g

/ r̃◦
g

/ r̃g (Kg + 1)Q (Kg + 1)Q Kg ·Q

z̃ / ž◦
c

/̃zs (2M +N − 1)2 ·Q
(3MN−N+M+1)Q

2
(3MN−N+M−1)Q

2

B̃◦

g
/ B̌◦

cg
/ B̃sg (2M+N−1)2(Kg+1)Q2 (3MN−N+M+1)(Kg+1)Q2

2

(3MN−N+M−1)KgQ
2

2

TABLE II
NUMBER OF ENTRIES IN VECTORS/MATRICES AND COMPUTATION TIME FOR THE EXAMPLE

Vector / Matrix
Methods for a Single Frequency

Existing (13) Proposed (30) Modified (32)

s̃◦
g
[l] / s̃◦

g
[l] / s̃g[l] 3602 3602 3601

z[l] / žc[l] / zs[l] 100 22 21

Ã◦

g
[l] / Ǎ◦

cg
[l] / Ãsg[l] 360200 79244 75621

Computation Time 16.426s 4.587s 4.072s

Vector / Matrix
Wideband DOA Estimation Methods

Extension 1 (37) Extension 2 (40) Extension 3 (44)

r̃◦
g

/ r̃◦
g

/ r̃g 54030 54030 54015

z̃ / ž◦
c

/̃zs 1500 330 315

B̃◦

g
/ B̌◦

cg
/ B̃sg 81045000 17829900 17014725

Computation Time 2146.594s 273.104s 255.137s

remain the same as the previous simulation examples. We set

df to be 1.33. Then, for Q = 15 frequency bins, the first 8
frequency bins with l = 17, 18, · · · , 24 satisfy d ≤ λl/2 while

the other 7 bins of l = 25, 26, · · · , 31 satisfy d > λl/2. We use

wideband extension 3 based on the modified low-complexity

method (44) in our simulation. The results are shown in Fig.

6, where we can observe that all the 15 sources have been

distinguished successfully.

To compare the estimation accuracy for different values of

df with respect to a varied input SNR, the RMSE results of

df = 1, df = 1.33 and df = 1.6 are shown in Fig. 7, where

each point is based on an average of the results obtained by

500 simulation runs. Clearly, a relatively larger unit spacing

d, corresponding to a larger df , yields more accurate results.

However, there is a limit to which an increase of df will lead

to an improved performance. To show this, we fix the input

SNR to 0 dB and the RMSE results versus df are shown in

Fig. 8. In this example, since the frequency range is from 0.5π
to π, we have λmax = 2λmin. Then d = λmax/2 corresponds

to df = 2. So, we can expect df = 2 should still give a

good performance, as verified in Fig. 8. Note that there are

two factors guiding the best value for d or df . Increasing

d, the aperture size is increased and so is resolution; on the

other hand, an increase of d beyond the value of λmax/2
will cause aliasing problems for all frequencies and make the

whole DOA estimation problem more difficult to solve. When

d keeps increasing until some value beyond which, the gain

due to a larger aperture size will be offset by the loss due to

the increased difficulty. Therefore, we expect the performance

becomes better with the initial increase of d, but gets worse

when d is increased beyond some value. As shown in Fig.

8, for about 1.6 < df < 2.6, the performance is quite flat,

but df = 2 seems to be the middle point of this flat region,

indicating that d = λmax/2 can be a reasonable choice in

practice.

VI. EXPERIMENT RESULTS

To test the performance of the proposed algorithms in a real

scenario, a co-prime microphone array system with M = 2
and N = 5 is set up for our experiment and there are 2M+N−
1 = 8 microphones in total. The received acoustic signals, after

amplification, are then sampled through a data acquisition card

(ADLINK’s DAQ-2205) and stored in a computer. A picture

of the system is shown in Figure 9. The sampling frequency

fs is set to be 20 kHz, and the frequency band of interest

is from 5 kHz to 10 kHz giving a minimum wavelength of

λmin = 3.4 cm at a speed of 340 m/s. Then, the equivalent

unit spacing d = λmin/2 = 1.7 cm, and the positions of the

two sub-array elements are given by

S1 = {0, 3.4, 6.8, 10.2, 13.6} cm ,

S2 = {0, 8.5, 17, 25.5} cm .
(45)

In this experiment, there are 10 uncorrelated acoustic source

signals distributed from around −40◦ to 50◦ with an ap-

proximate step size of 10◦. We apply the method in (44)

to the collected data to obtain the DOA estimation results.

The number of signal samples in the time domain for each

microphone channel is 128000, and DFT of L = 64 points

is applied. A search grid of Kg = 3601 incident angles is
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(a) Estimation results of existing method for single frequency.
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(b) Estimation results of proposed low complexity method for
single frequency.
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(c) Estimation results of modified low complexity method for
single frequency.

Fig. 2. Estimation results obtained by the three narrowband methods. The
dotted lines represent the actual incident angles of the impinging signals,
while the solid lines represent the estimation results.

formed within the full angle range with a step size of 0.05◦.

The normalized frequency range of impinging signals covers

the frequency bin set Φl = {17, 18, · · · , 31} with Q = 15.

These parameters are the same as the setting in Section V, and

the results are shown in Fig. 10. It is evident that all the 10
sources have been distinguished successfully by the proposed

method.

VII. CONCLUSION

A class of low-complexity compressive sensing based DOA

estimation methods for wideband co-prime arrays have been

proposed. We first derived a class of low-complexity narrow-

band DOA estimation methods, where a virtual array at each

frequency bin with a much larger aperture is formed. Then

redundant entries are combined in both auto-correlation and
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(a) DOA estimation results of wideband extension based on
existing method.
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(b) DOA estimation results of wideband extension based on
proposed low complexity method.
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(c) DOA estimation results of wideband extension based on
modified low complexity method.

Fig. 3. DOA estimation results obtained by the three wideband extensions.

cross-correlation matrices to obtain more accurate approxima-

tions to the required correlation values. A further reduction in

the computational complexity is achieved by removing noise

power estimation from the formulation. By simultaneously

exploiting the information at different frequency bins for the

wideband case, a group-sparsity based optimisation problem is

formulated which is amenable to application of existing convex

optimisation toolboxes. This group-sparsity based method is

further applied to co-prime arrays with a much larger unit

spacing for better performances. It has been shown by sim-

ulations that our proposed methods in narrowband case have

almost the same estimation performance, but with significantly

lower computational complexity than the existing method. All

these methods work effectively in the wideband case over a

wide input SNR range, and achieve a much better estimation

result than using one frequency only.
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(a) RMSEs of different methods for single frequency.
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(b) RMSEs of different wideband extensions.

Fig. 4. RMSEs of different DOA estimations for single frequency and their
wideband extensions versus input SNR.
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(a) Narrowband DOA estimation results.
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(b) Wideband DOA estimation results.

Fig. 5. DOA estimation results obtained by the modified low complexity
narrowband method and its wideband extension.
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Fig. 6. DOA estimation results obtained by group sparsity based wideband
method with df = 1.33.
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Fig. 7. RMSEs with different df versus input SNR.
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Fig. 9. The co-prime microphone array system for data collection.
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Fig. 10. Estimation results for collected acoustic data.
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