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Feasible parallel-update distributed MPC for uncertain linear systems sharing convex

constraintsI

Paul Trodden∗

Department of Automatic Control & Systems Engineering

University of Sheffield, Sheffield S1 3JD, UK

Abstract

A distributed MPC approach for linear uncertain systems sharing convex constraints is presented. The systems, which are dynamically

decoupled but share constraints on state and/or inputs, optimize once, in parallel, at each time step and exchange plans with neighbours

thereafter. Coupled constraint satisfaction is guaranteed, despite the simultaneous decision making, by extra constraint tightening in

each local problem. Necessary and sufficient conditions are given on the margins for coupled constraint satisfaction, and a simple

on-line scheme for selecting margins is proposed that satisfies the conditions. Robust feasibility and stability of the overall system

are guaranteed by use of the tube MPC concept in conjunction with the extra coupled constraint tightening.

Keywords: control of constrained systems; predictive control; decentralization; time-invariant

1. Introduction

Providing optimal control and decision-making to a system

is very desirable. For such purposes, model predictive control

(MPC) [1] has achieved more widespread adoption and greater

impact in industry than any other modern control technology;

for example, MPC has largely replaced traditional PID loops as

the controller of choice in the process control industry [2]. The

popularity of MPC is not restricted to industry, and significant

advances have been made by academic researchers on theoretical

properties such as stability and robustness [3].

When the system to be controlled is large in scale, or phys-

ically or organizationally disjoint, centralized MPC may be

impractical or undesirable for reasons of computation, communi-

cation and the single point of failure. Completely decentralized

MPC, on the other hand, in which subsystem controllers make

decisions independently and without coordination, can result

in poor performance and even instability [4]. Thus, attention

has focused on distributed MPC [5], wherein controllers share

information. The challenge is then how should computation

and communication be used to coordinate actions and achieve

system-wide feasibility, stability and optimality.

Many approaches to distributed MPC have now been pro-

posed, and comprehensive surveys are given in [6, 7]. Algo-

rithms are broadly divisible according to the classes of system

to which they apply [5]: for instance, linear versus nonlin-

ear dynamics; coupling via the dynamics versus coupled via

constraints. The focus of this paper is on systems comprising

multiple, dynamically-decoupled subsystems, each with linear
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time-invariant dynamics. The subsystems, which are subject to

bounded, persistent disturbances, are coupled via shared con-

straints on states and/or inputs. The presence of such constraints

has been identified as a key open research problem for DMPC [2].

One of the main difficulties is in determining the set of condi-

tions under which coupled constraint satisfaction is ensured

despite the decision-making of independent controllers. Algo-

rithms are either hierarchical or distributed (i.e., with or without

a supervisory, coordinating agent), iterative or non-iterative, and

sequential or parallel in the timing of updates [5].

Iterative distributed approaches include those based on pri-

mal decomposition, in which controllers share information, and

bargain or coordinate with local neighbours [8–10]; dual de-

composition approaches where iteration is to primal feasibility

(satisfaction of coupled constraints) [11–13]; and, a coopera-

tive scheme wherein distributed control agents augment their

decision spaces to include the inputs subject to shared con-

straints [14].

Distributed approaches that do not rely on iteration and ne-

gotiation to achieve feasible solutions at each time step lead to

lower levels of communication, yet the problem of guaranteeing

feasibility is more challenging. Most approaches use serial or

sequential, rather than parallel, updates. For example, Richards

and How [15] proposed a sequential approach to robust DMPC

for subsystems sharing constraints, using constraint tightening

and disturbance feedback to guarantee robust feasibility. The

subsystem controllers optimize in a fixed sequence within each

sampling interval, transmitted new plans as they become avail-

able. An extension of the approach has been proposed for non-

linear subsystems [16]. In [17], a single-update robust DMPC

approach was proposed. Based on tube-based robust MPC [18],

each subsystem controller designs a tube, rather than a single

trajectory, of predicted states, and employs a local feedback con-
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troller to maintain the state within the tube for any realization

of the disturbance. Similar to [15], constraint tightening is used

to guarantee feasibility in the presence of uncertainty; however,

the sequence dependency and the need for all subsystems to

optimize at each time step is removed, leading to a scheme with

low and flexible levels of communication [17]. Both approaches,

however, have limitations imposed by their sequential/serial na-

ture: [15] requires sufficient time within a sampling interval for

the entire sequence of optimization problems to be solved. On

the other hand, [17] permits only one (or, strictly, non-coupled)

subsystems to optimize at each time step, which can lead to poor

performance.

The feasible parallel-update DMPC proposed in this paper

avoids these limitations by permitting the simultaneous optimiz-

ing of subsystems’ plans at each time step while maintaining

robust feasibility and stability. The advantage of low and flex-

ible communication is retained, since no inter-agent iteration

or negotiation is required, and any number of subsystems may

optimize at a time step. The approach is a significant extension

of [15, 17], in that the reliance on sequential or serial updat-

ing is removed. Subsystems maintain satisfaction of convex

coupled constraints on states and/or inputs, despite optimizing

simultaneously, by tightening their local representations of the

coupled constraints. Comparable approaches include the tube-

based schemes recently proposed by Farina and Scattolini [19]

and Riverso and Ferrari-Trecate [20] for dynamically-coupled,

deterministic subsystems sharing constraints. These also achieve

coupled constraint satisfaction despite parallel updating: in the

former, predicted state and input trajectories are constrained to

lie within time-invariant neighbourhoods around known-feasible

references, and coupled constraints are tightened accordingly.

In the latter, the tube MPC concept is applied twice, leading to

a double tightening of constraints. Other approaches include

those iterative methods that maintain primal feasibility across

iterates [9, 14, 21] and, therefore, can be terminated after a sin-

gle iteration. However, in none of these papers is an explicit

mechanism given for selecting the margins by which coupled

constraints are tightened. A key contribution of this paper is that

a simple and explicit scheme is proposed for the on-line calcu-

lation of margins by which to tighten coupled constraints. The

margins are time-varying, both with sampling time and along the

prediction horizon, and are calculated from information transmit-

ted between controllers at the previous time step. Necessary and

sufficient conditions are given on the size of margins for robust

coupled constraint satisfaction. Moreover, robust feasibility and

stability of the closed-loop system is established for any number

of subsystems optimizing simultaneously at each time step.

The paper is organized as follows. The problem is stated in

Section 2. This is followed by a review of single-update tube

DMPC [17] in Section 3. In Section 4, the necessary and suffi-

cient margins for simultaneous coupled constraint satisfaction

are developed, followed by the presentation of the proposed

feasible parallel-update DMPC in Section 5. The approach is

demonstrated by numerical examples in Section 6. Finally, Sec-

tion 7 concludes the paper.

Notation and conventions:. The non-negative and positive reals

(integers) are denoted, respectively, R0+ and R+ (N0+ and N+).

Given a, b ∈ N0+, with b > a, N[a,b] , {a, a + 1, . . . , b − 1, b}.

Nb denotes N[0,b]. The cardinality of a finite setA is n(A). For

xi ∈ R
n, i ∈ N[a,b], with b > a, (xi)i∈N[a,b]

means (xa, xa+1, . . . ,

xb−1, xb) ∈ R
(b−a)n. x(−i) means (x1, . . . , xi−1, xi+1, . . . , xn). For

a, b ∈ Rn, a ≤ b applies element by element. For X,Y ⊂ R
n, the

Minkowski sum is X ⊕ Y , {x + y : x ∈ X, y ∈ Y}; for Y ⊂ X,

the Pontryagin difference is X ⊖ Y , {x ∈ Rn : Y + x ⊂ X}. For

X ⊂ R
n and a ∈ Rn, X ⊕ a means X ⊕ {a}. AX denotes the image

of a set X ⊂ R
n under the linear mapping A : Rn 7→ R

p, and is

given by {Ax : x ∈ X}. A polyhedron is the intersection of a

finite number of halfspaces, which is convex, and a polytope is a

closed and bounded polyhedron, and is also convex. For X ⊂ R
n,

the support function is h(X, y) , sup{y⊤x : x ∈ X} for y ∈ Rn. A

set X ⊂ R
n is positively invariant (PI) for a system x+ = f (x) if

and only if for all x ∈ X it holds that f (x) ∈ X. A set X ⊂ R
n is

robust positively invariant (RPI) for a system x+ = f (x,w) if and

only if for all x ∈ X and all w ∈W it holds that f (x,w) ∈ X. The

notation x(k + j|k) indicates a prediction of x for j steps ahead

from k.

2. Problem statement

2.1. System dynamics

Consider a set of dynamically decoupled subsystems, I =

{1, . . . ,Ni}. A subsystem i ∈ I has the linear time-invariant,

discrete-time dynamics

x+i = Aixi + Biui + wi, (1)

where xi ∈ R
ni , ui ∈ R

mi , wi ∈ R
ni are, respectively, its state,

control input and disturbance. x+
i

is the successor state. The

existence of a stabilizing control law Ki for each (Ai, Bi) is

assured by the following assumption.

Assumption 1. For each i ∈ I,
(

Ai, Bi

)

is stabilizable, and the

state xi is known exactly by the controller for i at each sampling

instant.

2.2. Local constraints

The state and input of each subsystem i ∈ I are subject to

local constraints

xi ∈ Xi, ui ∈ Ui,

while the disturbance wi is unknown a priori but lies in a set Wi.

Assumption 2. For each i ∈ I, Xi is closed and convex, Ui is

compact and convex, and each contains the origin in its interior.

Wi ⊂ Xi is compact and convex, and contains the origin (but not

necessarily in its interior).
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2.3. Shared constraints

Coupling between subsystems exists in the form of a set

of shared constraints, C = {1, . . . ,Nc}. A shared constraint

c ∈ C involves a subset of subsystems, Ic ⊆ I, and acts on the

collection of coupling outputs of those subsystems as follows.

zc , (zci)i∈Ic
∈ Zc where zci = Ecixi + Fciui,∀i ∈ Ic. (2)

Here, zci ∈ R
rci and zc ∈ R

rc where rc =
∑

i∈Ic
rci. This is a gen-

eral form of coupling constraint: a constraint c permits coupling

between the states and/or inputs of any subset of subsystems.

Assumption 3. For each c ∈ C, Zc is a closed, convex polyhe-

dron, containing the origin in its interior.

It follows that Zc may be represented by Mc linear inequalities:

Zc = Zc(qc) , {z ∈ Rrc : p⊤cmz ≤ qcm,∀m ∈ N[1,Mc]} (3)

where pcm ∈ R
rc , qcm ∈ R+, for all m ∈ N[1,Mc]. The matrix and

vector that collect pcm and qcm, respectively, are Pc ∈ R
Mc×rc and

qc = (qc1, qc2, . . . , qcMc
) ∈ R

Mc

+ , so that (3) may also be written

as Zc = {z ∈ R
rc : Pcz ≤ qc}.

2.4. Coupling structure

The following definitions identify structure in the coupling

between subsystems, and are used to determine what informa-

tion a local subsystem controller needs. By construction, Ic =
{

i ∈ I : (Eci, Fci) , 0
}

, and the subset of constraints in which

subsystem i ∈ I is involved is Ci =
{

c ∈ C : (Eci, Fci) , 0
}

.

Then, the set of other subsystems sharing constraints with a

subsystem i is Qi =
(⋃

c∈Ci
Ic

)

\ {i}.

2.5. Control objective

The control objective is to regulate the state of each subsys-

tem to the origin while satisfying all constraints and minimizing

the infinite-horizon, system-wide cost function

∞∑

k=0

∑

i∈I

li
(

xi(k), ui(k)
)

, (4)

where li : R
ni×mi 7→ R0+, li(xi, ui) ≥ k‖(xi, ui)‖ for some k > 0

and li(0, 0) = 0.

3. Overview of single-update tube MPC

The single-update tube DMPC approach [17] is based on

the “tube MPC” concept [18], wherein the controller designs

a sequence of disturbance-invariant state sets for the system to

follow. The sets are centered on the nominal trajectory; that is,

the state predictions obtained by applying the optimized con-

trol sequence to the disturbance-free dynamics. In a distributed

setting, each subsystem controller designs a tube for its local

subsystem to follow. Use of a local feedback controller Ki along-

side the implicit MPC control law then guarantees that each

subsystem state remains within its tube, despite the action of

the disturbance wi, and without the need to re-optimize at every

time step (as is done in conventional MPC and DMPC). There-

fore, by permitting only a single subsystem to optimize at each

time step, and subsequently communicating to other subsys-

tems information about its new tube, robust coupled constraint

satisfaction, feasibility and stability are guaranteed [17]. The re-

mainder of this section more formally describes, and introduces

key assumptions and definitions used later in the paper.

3.1. Distributed optimal control problem

With subsystem i at a state xi(k) at time k, the distributed

optimal control problem (DOCP-i) is

J0
i

(

xi(k), z∗i (k)
)

= min
ui(k)

{

Ji

(

ui(k)
)

: ui(k) ∈ Ui

(

xi(k), z∗i (k)
)}

. (5)

The vector z∗
i
(k) denotes coupling output information from other

subsystems needed by i to solve its problem at time k, and is

described later; it is included as an index to the optimal cost

J0
i

and feasible set Ui to highlight the dependency of each on

the coupling outputs of other subsystems, and the coupling be-

tween DOCPs. The decision variable ui(k) contains the initial

state prediction, x̄i(k|k), and the sequence of future controls,
{

ūi(k|k), ūi(k + 1|k), . . . , ūi(k + N − 1|k)
}

. The cost function is a

finite-horizon approximation to the infinite-horizon, local cost

in (4):

Ji

(

ui(k)
)

, Fi

(

x̄i(k + N |k)
)

+

N−1∑

j=0

li
(

x̄i(k + j|k), ūi(k + j|k)
)

,

where Fi : R
ni 7→ R0+. The feasible set Ui

(

xi(k), z∗
i
(k)
)

is de-

fined by the following constraints for all j ∈ NN−1.

xi(k) − x̄i(k|k) ∈ Ri, (6a)

x̄i(k + j + 1|k) = Ai x̄i(k + j|k) + Biūi(k + j|k), (6b)

x̄i(k + j|k) ∈ Xi ⊖ Ri, (6c)

ūi(k + j|k) ∈ Ui ⊖ Si, (6d)

x̄i(k + N|k) ∈ Xf
i , (6e)

z̄ci(k + j|k) = Eci x̄i(k + j|k) + Fciūi(k + j|k),∀c ∈ Ci,

(6f)
(

z̄ci(k + j|k), z̄∗c(−i)(k + j)
)

∈ Zc ⊖ Tc,∀c ∈ Ci. (6g)

The details of this feasible set are now described. Ri in (6a)

is an RPI set for the uncertain subsystem i under the local

feedback law ui = Kixi, i.e., for the closed-loop dynamics

x+
i
= (Ai + BiKi)xi + wi. Note the existence of Ri is assured

by Assumptions 1 and 2. In this paper, we assume the following.

Assumption 4. For each i ∈ I, Ri is a polytope with 0 ∈ Ri.

Note that this assumption is not restrictive, and tools and meth-

ods are available for computing polytopic invariant sets—or ap-

proximations to them—and corresponding control laws, e.g. [22–

24]. To minimize conservativeness, it is desirable that Ri be

chosen as small as possible [18].

Constraint (6b) is the nominal subsystem dynamics. In (6c),

(6d) and (6g), the constraint sets are tightened by margins for

robustness, by taking the Pontryagin difference between sets Xi,
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Ui, Zc and, respectively, sets Ri, Si , KiRi, Tc ,
∏

i∈Ic
EciRi ⊕

FciSi, for c ∈ Ci. (Note that, by Assumption 4 and linearity, Si

and Tc are polytopic and contain the origin [25]). The following

assumption limits the size of these tightening sets, and is mild

for most applications.

Assumption 5. For each i ∈ I, Ri ⊂ Xi, Si ⊂ Ui and Tc ⊂

Zc,∀c ∈ C.

The terminal set Xf
i

in (6e) is a PI set for the nominal subsys-

tem dynamics under the local terminal control law ui = κ
f
i
(xi),

i.e., for the closed-loop dynamics x+
i
= Aixi + Biκ

f
i
(xi).

Assumption 6. For each i ∈ I, Xf
i

is a polytope with 0 ∈ Xf
i
,

and Xf
i
⊆ Xi ⊖ Ri, κ

f
i
(Xf

i
) ⊆ Ui ⊖ KiRi, and

∏

i∈Ic

(

EciX
f
i
⊕

Fciκ
f
i
(Xf

i
)
)

⊆ Zc ⊖ Tc for c ∈ Ci.

The terminal set is used in conjunction with the terminal cost Fi,

under the following assumption. Note that Assumptions 6 and 7

are common, and correspond to A1–A4 in [3].

Assumption 7. For each i ∈ I, Fi

(

Aixi + Biκ
f
i
(xi)
)

− Fi(xi) ≤

−li
(

xi, κ
f
i
(xi)
)

,∀xi ∈ X
f
i
.

Finally, as previously mentioned, the feasible setUi depends

not only on the sampled local state xi(k) but also on the cou-

pling outputs of subsystems sharing constraints with i. In (6g),

z̄∗
c(−i)

(k + j) denotes the collection of coupling outputs at pre-

diction step j from subsystems sharing constraint c ∈ Ci with

subsystem i, i.e., the collection of z̄∗cq(k + j) over q ∈ Pc. (Alter-

natively viewed, the minus subscript notation means all elements

of z̄∗c(·) excluding z̄∗
ci

(·).) Then z∗
i
(k) is defined as the collection

of z̄∗
c(−i)

(k + j) over all j ∈ NN−1 and c ∈ Ci. How this informa-

tion is obtained is described later. First, the tube DMPC control

law and algorithm are outlined.

3.2. The tube DMPC control law and single-update algorithm

With subsystem i at state xi(k) at time k, assume that a

feasible (but not necessarily optimal) solution to DOCP-i is

available, i.e.,

u∗i (k) ,
{

x̄∗i (k|k), ū∗i (k|k), ū∗i (k + 1|k), . . . , ū∗i (k + N − 1|k)
}

.

Then the control applied to a subsystem i is

u∗i (k) = ū∗i (k|k) + Ki

(

xi(k) − x̄∗i (k|k)
)

. (7)

By construction, all constraints are satisfied at time k: xi(k) ∈

x̄∗
i
(k|k)⊕Ri ⊂ Xi, u∗

i
(k) ∈ ū∗

i
(k|k)⊕Si ⊂ Ui and z∗c(k) ∈ z̄∗c⊕Tc ⊂

Zc. Subsequently, using the control (7), the state of subsystem i

evolves as x∗
i
(k+1) ∈ Ai x̄

∗
i
(k|k)+Biū

∗
i
(k|k)⊕(Ai+BiKi)Ri⊕Wi =

x̄∗
i
(k + 1|k) ⊕ (Ai + BiKi)Ri ⊕Wi ⊆ x̄∗

i
(k + 1|k) ⊕ Ri, and, since

x̄∗
i
(k + 1|k) ⊕ Ri ⊂ Xi and ū∗

i
(k + 1|k) ⊕ Si ⊂ Ui, local state and

input constraints remain satisfied at time k + 1, regardless of

disturbances. Moreover, z∗c(k + 1) ∈ z̄∗c(k + 1|k) ⊕ Tc ⊂ Zc, so

coupled constraints are also satisfied. Therefore, it is simple to

show that a feasible solution to each DOCP-i can be constructed

without solving any optimization problem at time k + 1:

ũi(k + 1) ,
{

x̄∗i (k + 1|k), ū∗i (k + 1|k), . . . ,

ū∗i (k + N − 1|k), κfi (x̄∗i (k + N|k))
}

. (8)

Moreover, no information exchange is needed to construct these

solutions at time k + 1. This suggests the following scheme,

used in [17]: a single subsystem, say i, (or, strictly, a set of

subsystems not sharing any constraints) optimizes at time k + 1,

solving its DOCP-i to obtain a solution u0
i
(k+1) (not necessarily

equal to ũi(k + 1)) given xi(k + 1) and the coupling information

z∗
i
(k + 1), which is constructed from z∗(k). All other subsystems

renew existing feasible plans from time k via (8). The optimizing

subsystem i communicates its new plan to coupled subsystems

q ∈ Qi. At time k, therefore, the coupling information z∗
i
(k)

needed by i is the collection of z̄∗cq(k+ j|k̂q) over all j ∈ NN−1, q ∈

Pc, c ∈ Ci, where k̂q is the time at which subsystem q last

updated by optimization.

When the system is controlled according to this algorithm,

robust coupled constraint satisfaction, feasibility and stability of

the closed-loop system is guaranteed [17].

3.3. Centralized optimal control problem

For later use, we define the corresponding centralized opti-

mal control problem (COCP). For the system at a state x(k) =
(

xi(k)
)

i∈I at time k:

J0(x(k)
)

= min
u(k)

{
∑

i∈I

Ji

(

ui(k)
)

: u(k) ∈ U
(

x(k)
)

}

(9)

where u(k) ,
(

ui(k)
)

i∈I, and the feasible setU
(

x(k)
)

is defined

by (6a)–(6f) for all i ∈ I and the coupling constraint

z̄c(k + j|k) ∈ Zc ⊖ Tc,∀c ∈ C, j ∈ NN−1.

The next result, which is adapted from Theorem 3.1 in [17],

follows from construction of the constraint sets, and states that

each and every subsystem i has a feasible solution to its DOCP-i

if and only if the collection of these individual solutions is a

feasible solution to the COCP.

Lemma 1.
(

u∗
i
(k)
)

i∈I ∈ U
(

x(k)
)

⇐⇒ u∗
i
(k) ∈ Ui

(

xi(k), z∗
i
(k)
)

,

for all i ∈ I, where, for each i ∈ I, z∗
i
(k) is the collection of

z̄∗cq(k+ j) (obtained from u∗q(k)) over all j ∈ NN−1, q ∈ Ic, c ∈ Ci.

4. A tightening procedure for parallel coupled constraint

satisfaction

The key to the robust coupled constraint satisfaction of [17]

is the single-update restriction. With the system at a state
(

xi(k)
)

i∈I, and, supposing a feasible solution u∗
i
(k) exists to each

DOCP-i, it is clear that the coupled constraints are satisfied,

since (6g) holds for each i, with
(

z̄∗
ci

(k), z̄∗
c(−i)

(k)
)

∈ Zc ⊖ Tc. If,

then, a single subsystem i ∈ I optimizes for some u0
i
(k) , u∗(k),

then (6g) ensures coupled constraint satisfaction is maintained.

However, if two subsystems p and q that share some constraint

c were to optimize simultaneously, then coupled constraint sat-

isfaction is not guaranteed. This is because although solving

DOCP-p and DOCP-q independently, obtaining u0
p(k) and u0

q(k)

respectively, will satisfy the individual constraints

(

z̄0
cp(k + j|k), z̄∗cq(k + j), z̄∗c(−(p,q))(k + j)

)

∈ Zc ⊖ Tc
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in DOCP-p, where z̄∗
c(−(p,q))

(·) ,
(

z̄∗
ci

(·)
)

i∈Ic\{p,q}
, and

(

z̄0
cq(k + j|k), z̄∗cp(k + j), z̄∗c(−(p,q))(k + j)

)

∈ Zc ⊖ Tc

in DOCP-q, at all steps j ∈ NN−1, it will not necessarily lead to

satisfaction of

(

z̄0
cp(k + j|k), z̄0

cq(k + j|k), z̄∗c(−(p,q))(k + j)
)

∈ Zc ⊖ Tc.

In this paper, the single-update restriction is lifted, and any

number of subsystems, a subset Iopt ⊆ I, is permitted to op-

timize simultaneously at a time step. The development that

permits this is the systematic tightening of (6g) in the distributed

optimal control problem, restricting the feasible region for i

so that two or more coupled subsystems can optimize simul-

taneously. The modified DOCP is defined in the next section;

subsequently, a systematic procedure for determining the modi-

fied coupled constraint is developed.

4.1. Modified coupled constraint and distributed optimal control

problem

The modified distributed optimal control problem (MDOCP-

i) for subsystem i at state xi(k) is

J̃0
i

(

xi(k), z∗i (k)
)

= min
ui(k)

{

Ji

(

ui(k)
)

: ui(k) ∈ Ũi

(

xi(k), z∗i (k)
)}

(10)

where Ũi(xi, z
∗
i
) is defined by (6a)–(6f) and the constraint

(

z̄ci(k + j|k), z̄∗c(−i)(k + j)
)

∈ Z̃ci( j). (11)

The set Z̃ci( j) replaces the set Zc ⊖ Tc in the problem, and is

permitted to vary over the horizon. We require the following

assumption.

Assumption 8. For each i ∈ I, c ∈ Ci and j ∈ NN−1, the set

Z̃ci( j) ⊆ Zc ⊖ Tc is a closed polyhedron.

To construct Z̃ci( j), we use the same Mc normal vectors

that define, in (3), the original coupled constraint set Zc, but a

different right-hand side:

Z̃ci( j) , Zc

(

q̃ci( j)
)

= {z ∈ Rrc : Pcz ≤ q̃ci( j)}, (12)

where q̃ci( j) ∈ RMc . Then specification of Z̃ci( j) is reduced to the

problem of specifying q̃ci( j), and this is our aim in this Section.

We derive the following conditions on q̃ci( j): first, a lower bound

to guarantee at all times the existence of feasible solution to each

subsystem’s MDOCP; second, an upper bound that ensures the

collection of solutions, across optimizing subsystems, satisfies

all coupled constraints.

In what follows, to make clear the dependence of the feasible

set for problem MDOCP-i on q̃ci( j), we write Ũi

(

xi(k), z∗
i
(k),

q̃i(k)), where q̃i(k) is the collection of q̃ci( j) over c ∈ Ci and

j ∈ NN−1 for subsystem i. The following lemma, which holds

because the only difference between to DOCP-i and MDOCP-i

is tighter coupling constraints in the latter, will be useful in later

results.

Lemma 2. Given xi(k) and z∗
i
(k) =

(

z̄∗
c(−i)

(k + j)
)

c∈Ci, j∈NN−1

such thatUi

(

xi(k), z∗
i
(k)
)

is non-empty, Ũi

(

xi(k), z∗
i
(k), q̃i(k)

)

⊆

Ui

(

xi(k), z∗
i
(k)
)

.

4.2. Lower bound on q̃ci( j) to ensure existence of a feasible

solution to MDOCP-i

The consequence of Lemma 2 is that a solution to MDOCP-i

is also a feasible solution to DOCP-i. The result in this subsec-

tion establishes conditions under which the opposite statement

is true: given a solution to DOCP-i, it is also a feasible solution

to MDOCP-i. In particular, a lower bound on q̃ci( j) is given, so

that the modified coupled constraint set (12) is not tightened so

much that an existing feasible solution is excluded.

Proposition 1. Suppose that, for a subsystem i ∈ I with state

xi(k) at time k, there exists a u∗
i
(k) ∈ Ui

(

xi(k), z∗
i
(k)
)

, where z∗
i
(k)

is the collection of z̄∗cq(k + j) over all j ∈ NN−1, q ∈ Ic, c ∈ Ci.

Then u∗
i
(k) ∈ Ũi

(

xi(k), z∗
i
(k), q̃i(k)

)

if and only if

q̃ci( j) ≥ Pcz̄∗c(k + j), (13)

for all j ∈ NN−1, c ∈ Ci, where z̄∗c(k + j) =
(

z̄∗cr(k + j)
)

r∈Ic
.

Proof. The solution u∗
i
(k) ∈ Ui

(

xi(k), z∗
i
(k)
)

satisfies all con-

straints (6) by construction, and hence u∗
i
(k) satisfies (6a)–(6f) in

MDOCP-i. Therefore, to prove that u∗
i
(k) ∈ Ũi

(

xi(k), z∗
i
(k), q̃i(k)

)

it is necessary and sufficient to show that u∗
i
(k) satisfies the re-

maining constraint in MDOCP-i, (11).

The coupling constraints (6g) in DOCP-i, satisfied by con-

struction, have

(

z̄∗ci(k + j|k), z̄∗c(−i)(k + j)
)

= z̄∗c(k + j) ∈ Zc(qc) ⊖ Tc

for all j ∈ NN−1, c ∈ Ci. Satisfaction of (6g) by the same z̄∗c(·)

means z̄∗c(k + j) ∈ Z̃ci( j) for j ∈ NN−1, c ∈ Ci. Rewriting this

condition in terms of support functions,

z̄∗c(k+ j) ∈ Z̃ci( j) ⇐⇒ v⊤z̄∗c(k+ j) ≤ h
(

Z̃ci( j), v
)

,∀v ∈ Rrc ,

and j ∈ NN−1, c ∈ C. Given the polyhedral description of Z̃ci( j)

in (12) as Zc

(

q̃ci( j)
)

, it is necessary and sufficient to evaluate

these support function inequalities at v = pcm,m = 1 . . .Mc, thus

h
(

Zc

(

q̃ci( j)
)

, pcm

)

≥ p⊤cmz̄∗c(k + j),m = 1 . . .Mc.

Finally, by definition of the support function, h
(

Zc

(

q̃ci( j)
)

, pcm

)

≤

q̃ci( j), and so q̃ci( j) ≥ Pcz̄∗c(k).

4.3. Upper bound on q̃ci( j) to ensure system-wide coupled con-

straint satisfaction

Now we consider the situation where a subset of subsystems,

say Iopt(k), solve their MDOCPs simultaneously at time k, while

all remaining subsystems continue to follow plans from a previ-

ous time step (renewed via (8)). Given that a constraint c ∈ C

involves the set Ic ⊆ I of subsystems (a total number n(Ic)),

Iopt(k) contains some subset I
opt
c (k) , Iopt(k) ∩ Ic of the sub-

systems sharing constraint c, a total number n
(

I
opt
c (k)

)

≤ n(Ic).

A necessary condition for maintaining feasibility of the overall

system is

((

z̄ci(k + j|k)
)

i∈I
opt
c (k)

︸                  ︷︷                  ︸

optimizing

,
(

z̄∗cr(k + j)
)

r∈Ic\I
opt
c (k)

︸                   ︷︷                   ︸

non-optimizing

)

∈ Zc(qc) ⊖ Tc,

∀ j ∈ NN−1, c ∈ C. (14)
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That is, the coupling outputs of all the optimizing subsystems,

when taken together and with those of non-optimizing subsys-

tems, must satisfy the coupling constraints.

The result in this subsection establishes conditions under

which satisfaction of (14) is guaranteed for any choice of Iopt(k).

In particular, an upper bound on q̃ci( j) in (12) is developed,

which limits the maximum size of the coupled constraint set in

each MDOCP-i. Alternatively viewed, the result corresponds

to a minimum amount by which the original coupled constraint

set must be tightened in order to guarantee coupled constraint

satisfaction when the MDOCP-i problems are solved simultane-

ously.

Proposition 2. Suppose that, for each subsystem i ∈ Iwith state

xi(k) at time k, there exists a u∗
i
(k) ∈ Ui

(

xi(k), z∗
i
(k)
)

, where z∗
i
(k)

is the collection of z̄∗cq(k + j) over all j ∈ NN−1, q ∈ Ic, c ∈ Ci.

Further suppose that u0
i
(k) ∈ Ũi

(

xi(k), z∗
i
(k), q̃i(k)

)

, for all i ∈

Iopt(k) ⊆ I. Then

((

z̄0
ci(k+ j|k)

)

i∈I
opt
c (k),
(

z̄∗cr(k+ j)
)

r∈Ic\I
opt
c (k)

)

∈ Zc(qc)⊖Tc, (15)

for all j ∈ NN−1, c ∈ C, if

∑

i∈I
opt
c (k)

q̃ci( j) ≤ qc − tc + (N
opt
c − 1)Pcz̄∗c(k + j), (16)

where tc =
[

h(Tc, pc1), h(Tc, pc2), . . . , h(Tc, pcMc
)
]⊤

.

Proof. Consider u0
i
(k) ∈ Ũi

(

xi(k), z∗
i
(k), q̃i

)

for i ∈ Iopt(k). This

satisfies (6a)–(6f) and (11) by construction. In particular, con-

straint (11) has

(

z̄0
ci(k + j|k), z̄∗c(−i)(k + j)

)

∈ Zc

(

q̃ci( j)
)

for all j ∈ NN−1, c ∈ Ci. Summing both sides of this constraint,

via Minkowski addition, over all i ∈ I
opt
c (k),

∑

i∈I
opt
c (k)

(

z̄0
ci(k + j|k), z̄∗c(−i)(k + j)

)

∈
⊕

i∈I
opt
c (k)

Zc

(

q̃ci( j)
)

.

Expanding the summation and noting that z̄∗c(k + j) =
(

z̄∗
ci

(k +

j)
)

i∈Ic
,

((

z̄0
ci(k + j|k)

)

i∈I
opt
c (k),
(

z̄∗cr(k + j)
)

r∈Ic\I
opt
c (k)

)

+
(

n
(

I
opt
c (k)

)

− 1
)

z̄∗c(k + j) ∈
⊕

i∈I
opt
c (k)

Zc

(

q̃ci( j)
)

.

Written in terms of support functions,

v⊤
((

z̄0
ci(k + j|k)

)

i∈I
opt
c (k),
(

z̄∗cr(k + j)
)

r∈Ic\I
opt
c (k)

)

≤ −
(

n
(

I
opt
c (k)

)

−1
)

v⊤z̄∗c(k+ j)+
∑

i∈I
opt
c (k)

h
(

Zc

(

q̃ci( j)
)

, v
)

,

for all j ∈ NN−1, c ∈ C and v ∈ Rnc . Likewise, writing (15) in

terms of support functions,

v⊤
((

z̄0
ci(k + j|k)

)

i∈I
opt
c (k),
(

z̄∗cr(k + j)
)

r∈Ic\I
opt
c (k)

)

≤ h
(

Zc(qc), v
)

− h
(

Tc, v
)

,

for j ∈ NN−1, c ∈ C and v ∈ Rnc . It is necessary and sufficient

to evaluate these support function inequalities at v = pcm,m =

1 . . .Mc. Comparing these expressions, it follows that (15) is

satisfied if

−
(

n
(

I
opt
c (k)

)

− 1
)

p⊤cmz̄∗c(k + j) +
∑

i∈I
opt
c (k)

h
(

Zc

(

q̃ci( j)
)

, pcm

)

≤ h
(

Zc(qc), pcm

)

− h
(

Tc, pcm

)

.

for m = 1 . . .Mc, c ∈ C, j ∈ NN−1. Therefore, noting that

h
(

Zc(qc), pcm

)

= qcm and h
(

Zc

(

q̃ci( j)
)

, pcm

)

≤ q̃cim( j),

∑

i∈I
opt
c (k)

q̃ci( j) ≤ qc − tc + (N
opt
c − 1)Pcz̄∗c(k + j),

where tc ,
[

h(Tc, pc1), h(Tc, pc2), . . . , h(Tc, pcMc
)
]⊤
.

Remark 1. The bounds (13) and (16) have interpretations in

terms of the slackness of the coupled constraints. The mth com-

ponent of qc − tc − Pcz̄∗c(k + j) is equal to the slack remaining in

constraint c, at prediction step j, in the direction pcm, given the

known coupling outputs z̄∗cr(k+ j) of each r ∈ Ic. Rewriting (16),

∑

i∈I
opt
c (k)

(

q̃ci( j) − Pcz̄∗c(k + j)
)

≤ qc − tc − Pcz̄∗c(k + j),

which states that the total space allowed to simultaneously opti-

mizing subsystems sharing constraint c, in direction pcm, should

not exceed the slack remaining in that direction. The lower

bound (13) ensures that the solution u∗
i
(k) remains a feasible

choice for each optimizing subsystem i ∈ Iopt(k), by not per-

mitting the feasible region to shrink so much that this point is

excluded. Note that if no slack remains in direction pcm of con-

straint c, then q̃cim( j) = qcm − tcm: no tightening is permitted in

that direction.

4.4. Main result

The main result of this Section draws together the previous

results, establishing conditions under which solving MDOCPs

in parallel leads to guaranteed system-wide feasibility.

Theorem 1. Suppose that, for each subsystem i ∈ I with state

xi(k) at time k, there exists a u∗
i
(k) ∈ Ui

(

xi(k), z∗
i
(k)
)

, where

z∗
i
(k) is the collection of z̄∗cq(k + j) over all j ∈ NN−1, q ∈

Ic, c ∈ Ci. Then, for all i ∈ Iopt and any Iopt ⊆ I, if q̃i

satisfies (13) and (16), (i) Ũi

(

xi(k), z∗
i
(k), q̃i

)

is non-empty and

contains u∗
i
(k); (ii) for any us

i
(k) ∈ Ũi

(

xi(k), z∗
i
(k), q̃i

)

, the col-

lection of
{

us
i
(k)
}

i∈Iopt(k) together with
{

u∗r (k)
}

r<Iopt(k) satisfy all

local and coupling constraints:

((

us
i (k)
)

i∈Iopt(k),
(

u∗r (k)
)

r<Iopt(k)

)

∈ U
(

x(k)
)

.

Proof. (i) Existence follows from Proposition 1: for all i ∈

Iopt(k), and any Iopt(k) ⊆ I, if q̃ci( j) ≥ Pcz̄∗c(k + j),∀c ∈ Ci, j ∈

NN−1 in the MDOCP-i, then there exists a feasible solution,

namely u0
i
(k) = u∗

i
(k), to MDOCP-i. Part (ii) follows directly

from Lemma 2 and Proposition 2.
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The implication is that any subset of subsystems may opti-

mize simultaneously, and (i) a feasible solution to each problem

is guaranteed to exist, (ii) all coupled constraints remain satis-

fied, if the coupled constraint set in subsystems i’s MDOCP is

chosen as Zc

(

q̃ci( j)
)

, with q̃ci( j) satisfying (13) and (16). Theo-

rem 1 assumes the existence and availability of such q̃ci( j), but

the question remains of whether such q̃ci( j) can be found easily.

The upper bound (16) in particular is a coupled constraint, and

therefore implies some coordination is required to determine

individual q̃ci( j) for each i ∈ I
opt
c (k). The following result con-

firms that suitable q̃ci( j) always exist, and suggests a simple

scheme for choosing them.

Proposition 3. For i ∈ Iopt(k) ⊆ I, the choice

q̃ci( j) =
qc − tc + (βci − 1)Pcz̄∗c(k + j)

βci

, (17)

for j ∈ NN−1, c ∈ Ci, satisfies (13) and (16) for all βci ≥

n
(

I
opt
c (k)

)

≥ 1 and z̄∗c(k + j) ∈ Zc(qc) − Tc.

Proof. Suppose that z̄∗c(k + j) ∈ Zc(qc) − Tc,∀ j ∈ NN−1, c ∈ C

at time k, and consider some subset of subsystems Iopt(k) ⊆ I

so that Nopt(k) ≥ 1. By construction, n
(

I
opt
c (k)

)

≥ 1 for all

c ∈
⋃

i∈Iopt(k) Ci. For i ∈ Iopt(k), let q̃ci( j) be given by (17), with

some βci ≥ n
(

I
opt
c (k)

)

, for all j ∈ NN−1, c ∈ Ci. Then, because

z̄∗c(k + j) ∈ Zc(qc) − Tc iff Pcz̄∗c(k + j) ≤ qc − tc,

q̃ci( j) =
qc − tc + (βci − 1)Pcz̄∗c(k + j)

βci

≥
Pcz̄∗c(k + j) + (βci − 1)Pcz̄∗c(k + j)

βci

= Pcz̄∗c(k + j)

hence satisfaction of (13). To show (16), for each c ∈
⋃

i∈Iopt(k) Ci,

sum (17) over I
opt
c :

∑

i∈I
opt
c (k)

q̃ci( j) =
∑

i∈I
opt
c (k)

qc − tc + (βci − 1)Pcz̄∗c(k + j)

βci

=
∑

i∈I
opt
c (k)

qc − tc

βci

+
∑

i∈I
opt
c (k)

(βci − 1)Pcz̄∗c(k + j)

βci

.

Because βci ≥ n
(

I
opt
c (k)

)

≥ 1,∀c, i, then
∑

i∈I
opt
c (k)

qc−tc
βci
≤ qc − tc.

Likewise,
∑

i∈I
opt
c (k)

(βci−1)Pc z̄∗c(k+ j)

βci
≤
(

n
(

I
opt
c (k)

)

− 1
)

PC z̄∗c(k + j)

for all βci ≥ n
(

I
opt
c (k)

)

≥ 1. Hence (16) is satisfied.

Here a larger βci corresponds to more tightening of the cou-

pling constraint set in MDOCP-i: as βci → ∞ then q̃ci( j) →

Pcz̄∗c(k + j), i.e., Zc

(

q̃ci( j)
)

→
{

z̄∗c(k + j)
}

. In practice, it is de-

sirable to have q̃ci( j) as close as possible to the original size of

the constraint set, after tightening for robustness to disturbances,

i.e., (qc − tc). This suggests small βci; however, βci is lower-

bounded as βci ≥ n
(

I
opt
c (k)

)

, where the latter is the number of

optimizing subsystems sharing constraint c, implying a practi-

cal lower limit on the amount of tightening required to ensure

robustness to simultaneous decision making. Note that if the op-

timizing set, Iopt(k), is selected so that no two subsystems within

it are coupled, then n
(

I
opt
c (k)

)

= 1 for all c and q̃ci(k) = qc − tc if

βci is chosen equal to 1: then MDOCP-i becomes identical to the

DOCP-i. For any other choice of Iopt(k), so that n
(

I
opt
c (k)

)

≥ 2

for some c, optimizing subsystems share the slack remaining in

the constraint evenly.

5. Feasible parallel-update distributed MPC

In this section, the main distributed MPC algorithm is pre-

sented, including a distributed algorithm for the initialization

step, with guaranteed convergence to a feasible solution. Finally,

robust feasibility and stability results are established.

5.1. Feasible parallel-update distributed MPC algorithm

The revised DOCP, with on-line computation of q̃ci( j), is

used in the following algorithm.

Algorithm 1 (Feasible parallel-update DMPC for subsystem i).

Offline: Compute Ki and κf
i
, sets Ri, Si, Tc, Xf

i
. Tighten lo-

cal constraint sets Xi, Ui and determine the vector, tc, of support

functions to Tc.

Online:

1. Set k = 0. Obtain an initial feasible solution using Algo-

rithm 2.

2. Sample current state xi(k).

3. Update plan:

If i ∈ Iopt(k)

(a) Extract z̄∗c(k + j),∀c ∈ Ci, j ∈ NN−1, from z∗
i
(k).

(b) Set q̃ci( j) =
qc − tc + (βci − 1)Pcz̄∗c(k + j)

βci

, ∀c ∈ Ci,

j ∈ NN−1, with βci ≥ n
(

I
opt
c (k)

)

.

(c) Obtain u0
i
(k) as solution to MDOCP-i.

(d) Transmit coupling information z̄0
ci

(k+ j|k), j ∈ NN−1,

to coupled q ∈ Qi.

(e) Set u∗
i
(k) = u0

i
(k).

Else renew current plan via (8): u∗
i
(k) = ũi(k).

4. Build z∗
i
(k + 1), via (18), using new information received

from coupled updating subsystems q ∈ Qi ∩ I
opt(k) and

previous information from coupled non-updating subsys-

tems r ∈ Qi \ I
opt(k).

5. Apply ui(k) = ū∗
i
(k|k) + Ki

(

xi(k) − x̄∗
i
(k|k)
)

. Wait one time

step, increment k, go to step 2.

Details of Algorithm 1 are now described. The algorithm

begins with the off-line computation of feedback laws and con-

straint sets. Following this, Algorithm 2, which will be described

in Section 5.2, is employed at the initial k = 0 step. At a subse-

quent time step k, a subset of subsystems, Iopt(k), the choice of

which is unrestricted, optimize plans by solving their respective

MDOCPs. Subsystems not in Iopt(k) renew their current plans

via (8). The on-line calculation of q̃ci( j) for use in the MDOCP-i

requires knowledge of qc, tc, Pc, z̄∗c(·), n
(

I
opt
c (k)

)

. The former

three are computed off-line, while z̄∗c(·) contains coupling out-

put information transmitted by other subsystems, as described

below. The final term, n
(

I
opt
c (k)

)

, is the number of subsystems

sharing constraint c and updating at time k. While it could be

7



assumed that each subsystem knows how many other coupled

subsystems will optimize at time k, this assumption may be too

strong and inflexible in some cases. Instead, it is sufficient to

set βci = n(Ic)—where this is the total number of subsystems

sharing constraint c—and since n(Ic) ≥ n
(

I
opt
c (k)

)

by defini-

tion, then this allows all subsystems to optimize in parallel, at

any time step, without the need for further communication or

a-priori arrangement. Though such an approach may add un-

necessary tightening, hence conservatism, in many applications

sparsity exists in the coupling constraints (a constraint c does not

couple all subsystems) and n(Ic) may be significantly smaller

than the number of subsystems.

Following optimization, subsystems i ∈ Iopt exchange infor-

mation with coupled neighbours, as per step 3d. The received

information is used, in step 4, to build the coupling information

z∗
i
(k + 1) for use at the next time step, k + 1. For subsystem i

considering the coupling output of subsystem r, this is done as

z̄∗cr(k + j) =






z̄0
cr(k + j|k), r = i

z̄0
cr(k + j|k), r ∈ Qi ∩ I

opt(k),

z̄0
cr(k + j|k̂r), r ∈ Qi \ I

opt(k),

(18)

for j ∈ N[1:N], where k̂r is the last time at which subsystem r

solved its MDOCP.

5.2. A distributed algorithm for initialization

The following algorithm is employed as the initialization

step of Algorithm 1. For clarity of notation, we denote the

original coupled constraint set Zc(qc) ⊖ Tc, i.e., that in (6g), as

Z̄c.

Algorithm 2 (Initialization for a subsystem i).

1. For all c ∈ Ci, obtain Z̄
i
c as the projection of set Z̄c onto

the subspace R
rci .

2. Measure xi(0), set p = 0, and obtain u
[p]

i
as solution to

min
ui

Ji(ui)

subject to (6a)–(6f), z̄ci( j) ∈ Z̄i
c,∀ j ∈ NN−1, c ∈ Ci.

(19)

3. Transmit coupling information z̄
[p]

ci
( j), j ∈ NN−1 to cou-

pled subsystems q ∈ Qi.

4. If (6g) is satisfied by z̄
[p]

ci
( j) together with z̄

[p]

c(−i)
( j),∀ j ∈

NN−1, c ∈ Ci, terminate.

Else

(a) Obtain u
[p+]

i
as solution to

Di

(

u
[p+]

i
,u

[p]

−i

)

= min
ui

N−1∑

j=0

∑

c∈Ci

1

n(Ic)
d

((

z̄ci( j), z̄
[p]

c(−i)
( j)
)

, Z̄c

)

subject to (6a)–(6f) (20)

(b) Set u
[p+1]

i
= wiu

[p+]

i
+ (1−wi)u

[p]

i
, where wi > 0 and

∑

i∈I wi = 1.

(c) Increment p and go to step 3.

In this algorithm, subsystems begin by decoupling the cou-

pled constraint sets, via a projection onto the subspace corre-

sponding to the local subsystem’s coupling outputs. Conse-

quently, the subsystems obtain initial solutions satisfying local

constraints, but not necessarily coupled constraints. To work

towards coupled constraint satisfaction, the subsystems follow

the iterative procedure of steps 3 and 4. The following result,

the proof of which may be found in Appendix A, establishes

convergence to an initial feasible solution satisfying all coupled

constraints.

Proposition 4. (Convergence of Algorithm 2) Suppose that

U
(

x(0)
)

, ∅ and let
{

u
[p]

i

}

be the sequence generated, for each

i ∈ I, by Algorithm 2. Then, for all i ∈ I, (i) problem (19) is

feasible; (ii) problem (20) is feasible at every iteration p; (iii)

the cost function D
(

u[p]
)

, where

D (u) ,

N−1∑

j=0

∑

c∈C

d

((

z̄c( j), Z̄c

))

and u =
(

u1, . . . ,uNi

)

, is non-increasing with iteration p; (iv)

the cost sequence
{

D
(

u[p]
)}

converges to 0 and the solutions

{up} converge to the feasible setU (x(0)).

Remark 2. The optimality of obtained solutions, and hence

closed-loop performance of the proposed DMPC, with respect to

the system-wide objective and tube-based CMPC, will depend

on (i) the optimality of the solutions obtained at initialization,

and (ii) the size and description of the coupled constraint sets

following the on-line extra tightening. The former is influenced

by the weights wi, i ∈ I, and has been well studied in the litera-

ture. The latter depends on the βci parameter used in (17), and is

a topic of current research.

5.3. Robust feasibility and stability

The remainder of this section shows that system-wide robust

feasibility and stability are guaranteed for any update sequence

{Iopt(k)}.

Theorem 2 (Robust feasibility and stability). Suppose that, for

each i ∈ I, u∗
i
(k) exists and is a feasible (but not necessarily

optimal) solution to DOCP-i at time k. Consider some optimiz-

ing set of subsystems, Iopt(k) ⊆ I. Then, (i) u∗
i
(k) is a feasible

solution to MDOCP-i for i ∈ Iopt(k); (ii) any feasible (but not

necessarily optimal) solution, u0
i
(k), to problem MDOCP-i for

each i ∈ Iopt(k) satisfies

((

u0
i (k)
)

i∈Iopt ,
(

u∗r (k)
)

r<Iopt

)

∈ U (x(k)) ;

(iii) for all xi(k + 1) ∈ Aixi(k) + Biui(k) ⊕Wi, where

ui(k) =






ū0
i
(k|k) + Ki

(

xi(k) − x̄0
i
(k|k)
)

i ∈ Iopt(k)

ū∗
i
(k|k) + Ki

(

xi(k) − x̄∗
i
(k|k)
)

i < Iopt(k),
(21)

the candidate solution ũi(k + 1) is a feasible solution to DOCP-i

for all i ∈ I, and MDOCP-i for all i ∈ Iopt(k+ 1) ⊆ I; (iv) each

cost function is monotonically decreasing:

Ji

(

u∗i (k + 1)
)

≤ Ji

(

u∗i (k)
)

− li
(

x̄∗i (k|k), ū∗i (k|k)
)

,

8



where u∗
i
(k + 1) is the solution adopted by i at time k + 1. Sub-

sequently, (v) the closed-loop system controlled by Algorithm 1

is robustly feasible and xi(k)→ Ri and ui(k)→ KiRi as k → ∞,

for each i ∈ I, for any choice of update sequence
{

Iopt(k)
}

k≥0.

Proof. Parts (i) and (ii) follow directly from Theorem 1. For part

(iii), since u∗
i
(k) ∈ Ui

(

xi(k), z∗
i
(k)
)

,∀i, then
(

u∗
i
(k)
)

i∈I ∈ U
(

x(k)
)

(Lemma 1). From [17], it follows that

ũi(k + 1) ∈ Ui

(

xi(k + 1), z∗i (k + 1)
)

,∀i ∈ I,
(

ũi(k + 1)
)

i∈I ∈ U
(

x(k + 1)
)

.

and from Theorem 1 that ũi(k+1) ∈ Ũi

(

xi(k+1), z∗
i
(k+1), q̃i(k+

1)
)

, ∀i ∈ Iopt(k + 1) ⊆ I. For (iv), given u∗
i
(k), with cost

Ji

(

u∗i (k)
)

= Fi

(

x̄∗i (k + N |k)
)

+

N−1∑

j=0

li
(

x̄∗i (k + j|k), ū∗i (k + j|k)
)

the solution ũi(k + 1) is a feasible solution at k + 1, with cost

Ji

(

ũi(k + 1)
)

= Fi

(

Ai x̄
∗
i (k + N |k) + Biκ

f
i

(

x̄∗i (k + N|k)
))

+ li
(

x̄∗i (k + N |k), κfi
(

x̄∗i (k + N |k)
))

+

N−1∑

j=1

li
(

x̄∗i (k + j|k), ū∗i (k + j|k)
)

≤ Ji

(

u∗i (k)
)

,

where the inequality follows from Assumption 7. Furthermore,

an optimizing subsystem i ∈ Iopt(k + 1) at step k + 1 obtains a

solution u0
i
(k + 1), with cost Ji

(

u0
i
(k + 1)

)

≤ Ji

(

ũi(k + 1)
)

. All

r < Iopt adopt ũ(k+ 1), cost Jr

(

ũr(k+ 1)
)

. Thus, Ji

(

u∗
i
(k+ 1)

)

≤

Ji

(

ũi(k + 1)
)

, where u∗
i
(k + 1) is the adopted solution.

Part (v) follows by recursion: an initial feasible collection

u∗
i
(0) ∈ Ui

(

xi(0), z∗
i
(0)
)

implies all subsequent optimizations

are feasible, and
(

u∗
i
(k)
)

i∈I ∈ U
(

x(k)
)

regardless of update

sequence
{

Iopt(k)
}

k≥0. Convergence of each xi(k) to Ri and

ui(k)→ KiRi follows from the monotonicity of J and the stan-

dard arguments [3].

6. Numerical example

Consider four identical point masses with

Ai =

[

1 1

0 1

]

, Bi =

[

0.5

1

]

,

and local constraint sets Xi =
{

xi ∈ R
2 : −[10, 5]⊤ ≤ xi ≤

[10, 5]⊤
}

, Ui =
{

ui ∈ R : −1 ≤ ui ≤ 1
}

. A single coupled

constraint restricts the local control inputs across all subsystems

to a value less than the sum of the local limits:

zi =
[

0 0
]

xi + 1ui,

4∑

i=1

|zi| ≤ 2.5

The local objectives are li
(

xi, ui

)

= x⊤
i

Qixi + u⊤
i

Riui, with Qi,

Ri to be defined, and a zero terminal cost. The disturbance

Table 1: Comparison of DMPC schemes.

SU-DMPC S-DMPC P-DMPC FP-DMPC CMPC

Updates Single All All All All

Timing – Sequential Parallel Parallel –

Exchanges

per step

1 Ni Ni Ni 2Ni

set is Wi =
{

wi ∈ R
2 : ‖wi‖∞ ≤ 0.05

}

. For simplicity, the

local controller is nilpotent, i.e., Ki = −[1 1.5], the terminal

law is κf
i
= Ki, and together with Xf

i
= {0}, robust asymptotic

convergence to Ri = Wi ⊕ (Ai + BiKi)Wi is assured. Initial

conditions are xi =
[

5,−2
]⊤
,∀i, and the prediction horizon is

N = 8.

Five different control schemes are used:

1. ‘SU-DMPC’: single-update DMPC [17], wherein a single,

different subsystem optimizes per time step;

2. ‘S-DMPC’: sequential DMPC, similar to [15], wherein all

optimize within a time step, in a sequence. Feasibility is

guaranteed by each subsystem sharing its new plan before

the next-in-line subsystem updates;

3. ‘P-DMPC’: parallel DMPC, wherein all optimize in paral-

lel, but with no extra tightening of coupled constraints;

4. ‘FP-DMPC’: the proposed feasible-parallel DMPC;

5. ‘CMPC’: centralized MPC.

To allow direct comparisons, each of the distributed controllers

is initialized using Algorithm 2, even though the published SU-

DMPC and S-DMPC schemes, [17] and [15] respectively, as-

sume a centralized initialization. Note that for each scheme,

a subsystem shares its new plan immediately after updating.

Owing to the different updating arrangements (parallel versus

sequential; single versus all), this leads to different levels of

communication, as shown in Table 1.

Figure 1 shows, for Qi = I, Ri = 1, the total control effort

used at each time step. The in-parallel optimizations of P-DMPC

lead to a sustained constraint violation. All other schemes satisfy

the coupled constraint, and FP-DMPC can be seen to use the

full range. Note that although S-DMPC and FP-DMPC are

apparently similar, there is more variation in the individual ui

for the former, which is not perceptable in the figure.

Table 2 shows the closed-loop costs obtained for each con-

troller. Two scenarios are shown: scenario 1, with identical cost

matrices Qi = I, Ri = 1, and scenario 2, with differing costs,

Qi = iI, Ri = 1/i. In each scenario, P-DMPC obtains the low-

est cost, lower even than CMPC, but only because the coupled

constraint is violated by the parallel decision making (Fig. 1).

SU-DMPC performs the worst, owing to its restrictive, single-

update nature. Remarkably, FP-DMPC performs best among

the DMPC controllers, out-performing even S-DMPC, which

has sharing of up-to-date plans within a time step. S-DMPC

leads to inequitable sharing of the control effort; the leading

subsystems in the update sequence use more of the available

control, leaving less for subsystems later in the sequence. The

extra tightening in FP-DMPC not only guarantees feasibility, but

in this example discourages “greedy” behaviour by restricting

the control available to each subsystem.
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Figure 1: Total control effort of the four point masses.

Table 2: Comparison of closed-loop costs. The asterisk denotes costs obtained

while violating coupling constraints.

Scenario SU-DMPC S-DMPC P-DMPC FP-DMPC CMPC

1 198.39 192.49 189.06∗ 192.04 191.99

2 484.24 475.41 458.81∗ 470.57 467.67

7. Conclusions

A distributed MPC approach has been presented for uncer-

tain linear, dynamically decoupled subsystems sharing convex

constraints. The distributed controllers optimize in parallel at

each time step, and no iteration is required. Robust feasibility

and stability in the presence of additive, bounded disturbances

is guaranteed. Extra constraint tightening in local optimiza-

tion problems guarantees robust coupled constraint satisfaction,

despite the local optimization problems being solved in paral-

lel. The proposed method has been demonstrated by numerical

examples.

Appendix A. Proof of Proposition 4

For (i) and (ii), by construction,
∏

i∈I
ˆ̂
Ui ⊃

∏

i∈I Ûi ⊃

U, where Ûi and
ˆ̂
Ui are subsystem i’s feasible sets for the

problems (19) and (20), respectively, and for brevity the initial-

state dependence of each of these sets has been omitted. Non-

emptiness ofU implies non-emptiness of Ûi and
ˆ̂
Ui for all i ∈ I.

For (iii), consider some iteration p, at which some subsystem

i ∈ I has u
[p]

i
, with cost

Di

(

u
[p]

i
,u

[p]

−i

)

=

N−1∑

j=0

∑

c∈Ci

1

n(Ic)
d

((

z̄
[p]

ci
( j), z̄

[p]

c(−i)
( j)
)

, Z̄c

)

Then there exists a solution u
[p+]

i
to problem (20), with cost

Di

(

u
[p+]

i
,u

[p]

−i

)

=

N−1∑

j=0

∑

c∈Ci

1

n(Ic)
d

((

z̄
[p+]

ci
( j), z̄

[p]

c(−i)
( j)
)

, Z̄c

)

≤ Di

(

ui,u
[p]

−i

)

,∀ui ∈
ˆ̂
Ui.

(A.1)

The subsystem i ∈ I adopts the solution u
[p+1]

i
= wiu

[p+]

i
+ (1 −

wi)u
[p]

i
, where wi ∈ (0, 1), with cost

Di

(

u
[p+1]

i
,u

[p]

i

)

=

N−1∑

j=0

∑

c∈Ci

1

n(Ic)
d

((

z̄
[p+1]

ci
( j), z̄

[p]

c(−i)
( j)
)

, Z̄c

)

By linearity,
(

z̄
[p+1]

ci
( j), z̄

[p]

c(−i)
( j)
)

= wi

(

z̄
[p+]

ci
( j), z̄

[p]

c(−i)
( j)
)

+ (1 −

wi)
(

z̄
[p]

ci
( j), z̄

[p]

c(−i)
( j)
)

. It follows that

0 ≤ Di

(

u
[p+1]

i
,u

[p]

−i

)

≤ Di

(

u
[p]

i
,u

[p]

−i

)

. (A.2)

for any i ∈ I. Therefore, for any i ∈ I, the cost Di

(

ui,u
[p]

−i

)

is

non-increasing and bounded below when i iterates from ui =

u
[p]

i
→ u

[p+1]

i
while u

[p]

−i
are held constant. Now consider the

cost when all subsystems iterate from p to p + 1.

Di

(

u
[p+1]

i
,u

[p+1]

i

)

=

N−1∑

j=0

∑

c∈Ci

1

n(Ic)
d

((

z̄
[p+1]

ci
( j), z̄

[p+1]

c(−i)
( j)
)

, Z̄c

)

(A.3)

The summands in (A.3) satisfy

d

((

z̄
[p+1]

ci
( j), z̄

[p+1]

c(−i)
( j)
)

, Z̄c

)

≤ d





∑

l∈Ic

wl

(

z̄
[p+]

cl
( j), z̄

[p]

c(−l)
( j)
)

, Z̄c





+ d





∑

m∈I\Ic

wm

(

z̄
[p]
cm ( j), z̄

[p]

c(−m)
( j)
)

, Z̄c





≤
∑

l∈Ic

wld

((

z̄
[p+]

cl
( j), z̄

[p]

c(−l)
( j)
)

, Z̄c

)

+
∑

m∈I\Ic

wmd

((

z̄
[p]
cm ( j), z̄

[p]

c(−m)
( j)
)

, Z̄c

)

,

(A.4)

because, for all i ∈ I, u
[p+1]

i
= wiu

[p+]

i
+ (1 − wi)u

[p]

i
and so

(

z̄
[p+1]

ci
( j), z̄

[p+1]

c(−i)
( j)
)

=
∑

l∈Ic

wl

(

z̄
[p+]

cl
( j), z̄

[p]

c(−l)
( j)
)

+
∑

m∈I\Ic

wm

(

z̄
[p]
cm ( j), z̄

[p]

c(−m)
( j)
)

.

for all i ∈ I, c ∈ Ci. The first inequality in (A.4) follows from

the triangle inequality, and the second follows from convexity of

d(·, ·). Combining (A.1), (A.3), (A.4)—and using the facts that

d(·, ·) ≥ 0 and
∑

i∈I wi = 1—we conclude that

0 ≤ Di

(

u
[p+1]

i
,u

[p+1]

−i

)

≤ Di

(

u
[p+1]

i
,u

[p]

−i

)

≤ Di

(

u
[p]

i
,u

[p]

−i

)

,∀i ∈ I.

(A.5)

Moreover, by definition of D and Di, D(u) =
∑

i∈I Di(ui,u−i)

and so

0 ≤ D
(

u[p+1]
)

≤ D
((

u
[p+1]

i
,u

[p]

−i

))

≤ D
(

u[p]
)
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where the middle inequalities hold for any i ∈ I.

For (iv), since each Di

(

u
[p]

i
,u

[p]

−i

)

, and D
(

u[p]
)

, are non-

increasing and bounded below, the sequences
{

Di

(

u
[p]

i
,u

[p]

i

)}

and
{

D
(

u[p]
)}

converge to some limits, say D∗
i

and D∗ =
∑

i∈I D∗
i
.

It remains to show that D∗, and each D∗
i
, are equal to zero. For

this, note that (a)U and each
ˆ̂
Ui is convex and compact (closed

and bounded); (b) the cost function D (u) is, by definition, con-

vex for u ∈
∏

i∈I
ˆ̂
Ui \ U and equal to 0 for u ∈ U. Therefore,

the sequence
{

u[p]
}

has at least one accumulation point. Consider

a subsequence of iterations, P ⊂ {1, 2, . . .}, so that
{

u[p′]
}

(where

p′ ∈ P) converges to an accumulation point u∗. By continuity,{

D(u[p′]
}

→ D(u∗) = D∗. By the assumptions on D, its mini-

mum value (0) is attained for u ∈ U. Suppose that D∗ > 0, so

that u∗ < U. It follows that

D(u0) − D(u∗) < 0,∀u= ∈ U.

Taking limits of (A.1) as the iterations p′ ∈ P tend to infinity,

D(u∗i ,u
∗
−i) ≤ D(ui,u

∗
−i),∀ui ∈

ˆ̂
Ui. (A.6)

Inequality (A.6) holds for all i ∈ I. Thus,

D(u∗) ≤ D(u),∀u ∈
∏

i∈I

ˆ̂
Ui.

But 0 = D(u0) ≤ D(u),∀u0 ∈ U,u ∈ R
∑

i m and U ⊂
∏

i∈I
ˆ̂
Ui,

so we have a contradiction. Hence, D∗ = 0 and u∗ ∈ U. Finally,

because u∗ was an arbitrary accumulation point, it follows that

all accumulation points lie inU. Therefore, the whole sequence

{up} converges toU.
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