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Abstract - Here we present a novel computational signal processing approach for comparing 11 

two signals of equal length and sampling rate, suitable for application across widely varying 12 

areas within the geosciences. By performing a continuous wavelet transform (CWT) followed 13 

by Spearman’s rank correlation coefficient analysis, a graphical depiction of links between 14 

periodicities present in the two signals is generated via two or three dimensional images. In 15 

comparison with alternate approaches, e.g., wavelet coherence, this technique is simpler to 16 

implement and provides far clearer visual identification of the inter-series relationships. In 17 

particular, we report on a Matlab® code which executes this technique, and examples are 18 

given which demonstrate the program application with artificially generated signals of known 19 

periodicity characteristics as well as with acquired geochemical and meteorological datasets. 20 

Continuous Wavelet Transform; Wavelets; Spearman’s Rank Correlation; Periodicity; 21 

Oscillation; De-noising 22 
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1. Introduction 24 

Given the significant increase in computational power over the last decades, signal 25 

processing techniques such as wavelet analysis have become commonplace in their 26 

application within the geosciences. In particular, wavelets are applied, via a process of 27 

convolution, to reveal information on periodicities present in data series, and their stability as 28 

a function of time, in contrast to Fourier transforms, which only probe frequency 29 

characteristics (Welch, 1967; Harris, 1978). The exception here is with the Short Fourier 30 

Transform (e.g., spectrogram), which is applied to reveal spectral frequency variations with 31 

time (Oppenheim et al. 1999). Whereas, a continuous wavelet transform (CWT) operates 32 

over a continuous range of scales, providing potentially more detailed information than the 33 

discretely sampled discrete wavelet or Short Fourier Transform (Torrence and Compo, 1998; 34 

Oppenheim et al. 1999). Hence, wavelets are more suited to investigation of transient or 35 

unstable periodic phenomena. 36 

 37 

Oscillatory behavior is widely manifest in datasets acquired from across the geo and 38 

environmental sciences, for example concerning the 11-year sunspot cycle (e.g. Hoyt and 39 

Schatten, 1997; Frohlich and Lean, 2004), the El Niño Southern Oscillation (Torrence and 40 

Compo, 1998) and the North Atlantic Oscillation (NAO) (Hurrell, 1995). These phenomena 41 

can change significantly in strength and period as a function of time and are an integral part 42 

of climate variability (e.g. Hurrell et al. 2003; Lockwood 2012; Philander 1990). Oscillations 43 

are also present over much shorter timescales of seconds to hours, for example within 44 

geochemical datasets concerning volcanic degassing (Tamburello et al. 2012). The links 45 

between fluctuations present in environmental data series can wax and wane dramatically, 46 

providing a motivation for the application of wavelet analysis. Here we present a 47 

straightforward and new approach to investigating the correlation between oscillations 48 
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present in two or more environmental datasets; this technique is based on CWT analysis 49 

using Matlab® and the Matlab Wavelet Toolbox® followed by Spearman’s rank correlation 50 

coefficient analysis. 51 

 52 

2. Technique Overview 53 

The Matlab® function (available in the auxiliary materials) was written in Matlab® 2010b and 54 

has been tested on the 2008a, 2011b and 2013a versions, with correct operation demonstrated 55 

in each case. The program uses the CWT function (part of the Matlab Wavelet Toolbox®) for 56 

two separate signals. These signals should be normalised prior to processing by this code, 57 

performance is independent of normalisation technique as long as signal amplitude is 58 

preserved, the code normalises through division by the maximum value. This is followed by 59 

linear correlation (using Spearman’s rank correlation coefficient, which accounts for non-60 

linearity and variable amplitude of the wavelet coefficients), to generate a visual 61 

representation of the links between the coefficients generated by the wavelet transforms (e.g. 62 

Fig. 1b, 3d, 4, 5a, 5b). For the examples illustrated in this paper the Morlet wavelet was 63 

applied as the mother wavelet (Morlet et al. 1982; Grinstead et al. 2004): 64 

ሻߟ଴ሺߖ ൌ  ɎିଵȀସ݁௜ఠబఎ݁ିఎమȀଶ.    65 

where ߖ଴ሺߟሻ is the wavelet function, ߟ is a non-dimensional parameter representing a time 66 

component and ߱଴ refers to the wavelets’ non-dimensional frequency. This particular class of 67 

wavelet is implemented here, given its similarity to naturally occurring oscillations manifest 68 

in data series spanning the geosciences (e.g. Torrence and Compo, 1998). This said, the code 69 

could also use non-complex alternates, e.g., Gaussian wavelets from the Matlab Wavelet 70 

Toolbox® if these are judged more suitable for the application in question. Indeed, the Matlab 71 

Wavelet Toolbox® provides a comprehensive overview and visualisation of available mother 72 
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wavelets. In general, wavelet analysis works best with selection of a mother wavelet which 73 

closely resembles the target oscillation.  The CWT itself is defined as (e.g. Grinstead et al. 74 

2004): 75 

௡ܹሺݏሻ ൌ  ටఋ௧௦ σ כߖ௡ᇱݔ ቂሺ݊ᇱ െ ݊ሻ ఋ௧௦ ቃே௡ᇲୀଵ ,     76 

where ݐߜ is a uniform time-step, ݔ௡ is the subject signal, ܹ௡ሺݏሻ represents the changing 77 

wavelet scale on the left-hand-side and similarly as s on the right-hand-side, * is the complex 78 

conjugate, N the maximum scale, and n the points of the time series, (Morlet et al. 1982; 79 

Colestock, 1993; Grinstead et al. 2004). The result is the conjugation of the scaled selected 80 

wavelet with the subject signal and outputs, which demonstrates the stability and power of 81 

any periodic features which match the scaled wavelet. We refer to the extensive literature for 82 

more in-depth descriptions of the CWT (e.g. Morlet et al. 1982; Daubechies, 1990; 83 

Colestock, 1993; Huang et al. 1998; Torrence and Compo, 1998). 84 

 85 

The next step is to correlate the output of the CWT at each scale (௡ܹ௜ሻ using Spearman’s 86 

Rank (ݎ௦) correlation coefficient (Spearman, 1904; Zar, 1972): 87 

௦ሺݎ ௡ܹ௜ሻ ൌ ͳ െ  ଺ σ ௗ೔మሺௐ೙೔ሻ௡ሺ௡మି ଵሻ ,       88 

where ݀ ௜ଶ is the ranked difference between the outputs of each CWT. The code, therefore, 89 

determines the degree of match between oscillations present in the two different signals over 90 

a broad scale range. This is particularly useful where signals are highly variable or ‘noisy’ 91 

and where links are difficult to discern from comparison of the individual standard wavelet 92 

transforms. Likewise, this provides clearer scope for visual identification of links between the 93 

series than alternates such as wavelet coherence (e.g., Grinstead et al. 2004; Cannata et al. 94 

2013) by virtue of generating a single plot whose axes are the scales of the compared 95 
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datasets, rather than two discrete plots of scales vs. time. This approach also requires less 96 

computational power, in addition to the primary benefits of the technique, namely: simplicity 97 

of operation and ease in interpretation. This is a code and display approach, which to the 98 

authors’ knowledge, has not previously been applied or documented in the literature, with the 99 

exception of a brief overview given in Pering et al. (2014). 100 

 101 

3. The  Matlab® Function 102 

In summary, the Matlab function ‘corrplot.m’ is displayed below, including only those 103 

elements related to the production and extraction of data. The full code is available online in 104 

the supplementary materials. The code requires a number of inputs: signals x and y (e.g., the 105 

data series which are to be compared, which must be of identical sampling frequency and 106 

length); wavelet type (e.g., the class of mother wavelet, for example ‘morl’ for Morlet); 107 

scales (e.g., the maximum scale for the CWT - the default setting is to run the CWT in steps 108 

of 1, from 1 up to this value); and finally, the sampling rate of the dataset in Hertz (Hz). The 109 

dominant oscillation(s) in each of the input series are also determined as part of the code, 110 

using Welch’s power spectral density (PSD) method (Welch, 1967), as an additional means 111 

of identifying similarities in the series. Furthermore, an automatic code-interruption error 112 

message is incorporated to avoid analysis above the Nyquist criterion (Nyquist, 2002).  113 

 114 

function [a,b] = corrplot( x,y,wavelet,scales,fs ) 115 

if  scales>((length(x)/2)) 116 

    error('Scales above Nyquist limit') 117 

end 118 

 % Wavelet Transform 119 
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cwt1=cwt(x/max(x),1:scales,wavelet);  120 

cwt2=cwt(y/max(y),1:scales,wavelet); 121 

 % Shift the data 122 

cwt1=ctranspose(cwt1); cwt2=ctranspose(cwt2); 123 

 % Correlate the data 124 

a=corr(cwt1,cwt2,'type','Spearman'); 125 

 % Extract the "best-fit" line 126 

b=diag(a); 127 

% Extract max and min correlation location 128 

   [max_corr,loc_max_corr]=max(b) 129 

[min_corr,loc_min_corr]=min(b) 130 

[M1,N1]=ind2sub(size(b),loc_max_corr);  131 

[M2,N2]=ind2sub(size(b),loc_min_corr);  132 

% Individual coefficients at max and min location  133 

wave_coeff1_max=cwt1(:,M1);  wave_coeff1_min=cwt1(:,M2); 134 

wave_coeff2_max=cwt2(:,M1); wave_coeff2_min=cwt2(:,M2); 135 

% Power spectral densities 136 

[b1,freq1]=pwelch(x/max(x),scales,0,scales,fs); 137 

[b2,freq1]=pwelch(y/max(y),scales,0,scales,fs); 138 
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% Xcorr lag plot 139 

    cwt1=ctranspose(cwt1); 140 

    cwt2=ctranspose(cwt2); 141 

for ls=1:scales; 142 

      s1=cwt1(ls,:); 143 

      s2=cwt2(ls,:); 144 

      maxlags=scales/2; 145 

      lag_corr=xcorr(s1,s2,maxlags, 'coeff'); 146 

      c(ls,:)=horzcat(lag_corr); 147 

end 148 

    c=ctranspose(c); 149 

The code generates the following outputs: of which, the first, fourth and sixth can be exported 150 

to the Matlab® workspace: 151 

i) a correlation image with colour scale; 152 

ii) power spectral densities of signals ‘x’ and ‘y’;  153 

iii) a 3D visualisation of the correlation image; 154 

iv) correlation coefficients along the 1:1 line in the correlation image; 155 

v) plots of the wavelet coefficients, which correspond to the points of maximum 156 

positive and negative correlations, along with 1:1 line; 157 
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vi) a plot with colour scale showing the correlation coefficients of the wavelet 158 

coefficients at each individual scale, over a defined range of lags. 159 

4. Example applications 160 

Firstly, we present an example application of the code on a pair of synthetic signals to 161 

illustrate this approach for establishing the presence of common periodicities. Fig. 1a shows 162 

these signals: two sinusoids of period 125 s, with noise added, using a normally distributed 163 

random number generator. The generated 2D correlation image (Fig 1b) shows a clear 164 

positive correlation between ≈ 75 – 150 s, with a peak value > 0.8, and the dominant series 165 

frequencies are further manifest in the Welch’s PSD curves in Figs. 1c and 1d showing a 166 

clear peak at 125 s (0.008 Hz) in each case. The correlation plot also demonstrates that there 167 

are no other sources of significant correlation on any other timescales. For reference, a 168 

correlation image showing perfect correlations across all scales is presented in Fig 2. 169 

Probability values for observed correlations can be easily estimated using in-built Matlab® 170 

algorithms, see Kendall (1970), Best and Roberts (1975), Ramsey (1989), and references 171 

therein for additional information. 172 

 173 

The 1:1 line is included in Figs. 1b and 2 to highlight the region in which one would expect 174 

relationships to occur e.g., where periods are common to both series. Fig. 3a shows the 175 

coefficient profile along this line, auto-generated by ‘corrplot.m’ from the correlation image 176 

(Fig. 1b): revealing the scales at which correlation is manifested in this case. It is then for the 177 

user to investigate the cause of such links, e.g., through analysis of whether the series are in 178 

or out of phase or shifted in phase relative to one another. To expedite this, the code also 179 

extracts the wavelet coefficient time series for the scales along the 1:1 line which present the 180 

strongest points of maximum and minimum correlation; these outputs are shown in Figs. 3b 181 

and 3c, respectively, for our sample synthetic data. In this case, the in-phase nature of the two 182 
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125 s period sinusoids is clearly manifested in Fig. 3a. For series which are out of phase, the 183 

lag could be determined by visual inspection of these two wavelet coefficient time series. As 184 

an additional aid, the code outputs the cross-correlation coefficient at each wavelet 185 

coefficient scale over the maximum possible range of lags. The code produces an image (e.g., 186 

Fig. 4) which clearly indicates the maximum or minimum lag between series at each scale. 187 

This is of particular use when the signals are not perfectly in phase or antiphase. This section 188 

of the code is illustrated on a cosinusoidal (s1) and sinusoidal (s2) signal (Fig. 4a), both 189 

generated with the same frequency of 90 s, amplitude, and with added random noise. The 190 

possible lags can be identified in Fig. 4b clearly corresponding to the known frequency value. 191 

These particular functions are of particular use for investigating the links and lags between 192 

oscillations and periodicity in natural contexts, where raw signals can demonstrate 193 

considerable temporal variability.  194 

 195 

We also applied the ‘corrplot.m’ code to measurements of temperatures and relative humidity 196 

collected hourly from the Department of Geography, University of Sheffield automatic 197 

weather station during June, July and August 2013. The raw data are presented in Fig. 5a and 198 

the resulting correlation image is shown in Fig. 5b, facilitating straightforward identification 199 

of the links present between the two data series. As expected, strong relationships are present 200 

at periods >200 hours (e.g., >8 days), with peak correlation values at ≈ 600-800 hours (e.g., ≈ 201 

25-33 days). This demonstrates that our technique clearly resolves the inter-series links 202 

related to synoptic meteorological changes occurring on timescales of weeks. Furthermore, a 203 

strong link, of rs = -0.94 at ≈24 hours is evident, capturing the relationships between changes 204 

in temperature and humidity over the diurnal cycle. 205 

 206 

For comparison, the continuous wavelet transform plots of these two series are presented in 207 
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Figs. 5c and 5d. The cross wavelet coherence and the cross wavelet spectrum are also shown 208 

in Figs 5e and 5f, respectively, as generated from the Matlab® wavelet coherence function 209 

‘wcoher’. Relative to visual inter-comparison of the wavelet plots, or inspection of either of 210 

the other two technique outputs, the correlation plot (Fig. 5b) provides scope for far clearer 211 

and more intuitive visualisation of the inter-series links, e.g., illustrating the key benefit of the 212 

approach over alternates. 213 

 214 

Finally, we present the application of our code on volcanic gas signals: Hydrogen Sulphide 215 

(H2S) and Carbon Monoxide (CO) concentration time series, acquired using a ‘Multi-GAS’ 216 

sensor (Shinohara, 2005; Aiuppa et al., 2005) placed in the plume of the North East Crater of 217 

Mount Etna (Sicily, Italy). Fig. 6a shows the correlation image generated. The most 218 

significant features are positive links between the datasets at ≈300-400 s, ≈500-700s, and at > 219 

900 s. These are similar to the periodicities in sulphur dioxide SO2 emission rates reported by 220 

Tamburello et al. (2012) indicating that a variety of volcanic gases fluctuate rapidly in their 221 

fluxes, with similar periodicity characteristics. In addition, several weak negative correlation 222 

areas also appear at ≈100-300 s, ≈400-500 s, and ≈700-900 s, revealing points worthy of 223 

further investigation. This technique is particularly useful on data such as these as links 224 

between the series are resolvable, even where sensors might have differing response 225 

characteristics (Aiuppa et al. 2005).  In Fig. 6b, this correlation image is displayed in 3D. 226 

5. Summary and Conclusions 227 

Here, we have presented a new use of CWT analysis combined with correlation to determine 228 

the similarity between oscillations present in two separate signals. This paper reports on a 229 

straightforward to implement Matlab® code, which executes this approach, providing a more 230 

readily interpretable visualisation of these links than available from existing alternate 231 

techniques, and the coupled capacity to resolve connections between noisy and transient 232 
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signals. A number of example applications have been presented, via the analysis of synthetic 233 

signals and those acquired from various disciplines within the geosciences, which 234 

demonstrate the above benefits. 235 
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Figure 1 – An example application of the code on synthetic signals showing: a) the signals 308 

themselves (two sinusoids of period 125 s with noise added); b) the correlation image 309 

generated by the code, with the 1:1 line marked in white, indicating where mutual oscillations 310 

are present; c) and d) Welch’s power spectral densities of the two series, which show the 311 

dominant oscillation at 125 s in each case.  312 

Figure 2 – A sample correlation image for perfect correlation over all scales. 313 

Figure 3 – Three plots auto-generated by the code: a) correlation coefficients along the 314 

diagonal 1:1 line extracted from the correlation image in Fig.1b, showing the scales at which 315 

correlation is manifested; the wavelet coefficient time series corresponding to scales of 316 

maximum b) and minimum c) correlation coefficients in a). The latter plots allow the user to 317 

investigate temporal lags between the series, in this case confirming that the two series have a 318 

mutual in phase oscillation at 125 s. 319 
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Figure 4 – An example application of the code on: a) a cosinusoid (s1) and sinusoid (s2), out 320 

of phase with each other, but with matching period of 90 s and added random noise. In b) the 321 

last auto-generated plot by the code shows the correlation coefficients at the given lag value 322 

and wavelet coefficient scale. The latter plot is of particular use for determining lags, in 323 

addition to those in Fig. 3, and also when signals are not in perfect phase or antiphase. 324 

Figure 5 – An example application of our code on temperature and relative humidity 325 

measurements, acquired hourly at the automatic weather station of the Department of 326 

Geography, at the University of Sheffield, showing: a) the raw data; b) the correlation plot, 327 

revealing positive correlation on scales > 200 hours indicative of synoptic meteorological 328 

trends and negative correlation on scales of a day in line with diurnal changes; c) and d) 329 

continuous wavelet transforms for the two series and e) and f) the cross wavelet coherence 330 

and cross wavelet spectrum plots for the data, indicating that the approach presented here 331 

provides more intuitive and straightforward visual identification of the inter-series links, than 332 

available from these alternatives. 333 

Figure 6 – Output from the code, applied to data concerning Hydrogen Sulphide and Carbon 334 

Monoxide emissions from the North East Crater of Mount Etna, showing: a) the 2D 335 

correlation image and b) the 3D correlation image. 336 
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