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ABSTRACT

In this article we study standing kink waves in twisted magnetic tubes. We use the cold plasma and thin tube approximation. We assume
that the plasma density is constant inside and outside the tube. We also assume that the magnetic twist is weak and take the ratio of
the azimuthal and axial component of the magnetic field to be of the order of ratio of the tube radius and tube length. The azimuthal
component of the magnetic field is proportional to the distance from the tube axis inside the tube, and inversely proportional to this
distance outside the tube. Using the method of asymptotic expansions we derived the governing integral equation that determines the
eigenfrequencies and eigenmodes of the tube kink oscillations. In the approximation of a very weak twist, we calculated analytically
the corrections to the frequencies of the fundamental mode and first overtone of a straight magnetic tube related to the presence of
twist. The analytical results are compared with the numerical results obtained using the full set of linear ideal magnetohydrodynamic
equations. We also calculated the ratio of frequencies of the fist overtone and fundamental mode. We found that the magnetic twist
enhances this ratio for moderate values of the density ratio, and reduces this ratio for large values of the density ratio. In general, the
deviation of the frequency ratio from 2 caused by the magnetic twist is comparable to that found in simultaneous observations of the
fundamental mode and first overtone of the coronal loop kink oscillations. Finally, we studied the eigenmode polarization. We found
that, in a particular case of linear polarization, the polarization direction rotates along the tube.

Key words. hydrodynamics – magnetohydrodynamics (MHD) – plasmas – waves

1. Introduction

Since transverse oscillations of coronal magnetic loops were first
detected by TRACE and interpreted as fast standing kink waves
(Aschwanden et al. 1999; Nakariakov et al. 1999), they continue
to enjoy ample attention of solar physicists. In the first theoret-
ical interpretation of this phenomenon a very simple model of
a coronal magnetic loop, which is a straight magnetic tube, was
used (e.g. Ryutov & Ryutova 1976; Edwin & Roberts 1983).
Later, more sophisticated models have been developed. For a re-
view of the theory of coronal loop oscillations, see for example
Ruderman & Erdélyi (2009).

One important problem in the theory of coronal loop kink os-
cillations is the effect of magnetic twist. Twisted magnetic tubes
have been studied for many years in the context of the tube sta-
bility (e.g. Dungey & Loughead 1954; Roberts 1956; Shafranov
1957; Kruskal & Tuck 1958; Parker 1974; Browning & Priest
1983). Twisted magnetic tubes have also been studied in relation
to the magnetohydrodynamic (MHD) wave resonant absorption
(e.g. Sakurai et al. 1991; Goossens & Ruderman 1995; Goossens
et al. 1995, 2011; Ballai & Erdélyi 2002). Wave propagation in
twisted magnetic tubes has been investigated by Bogdan (1984),
Bennett et al. (1999), Erdélyi & Carter (2006), Carter & Erdélyi
(2007, 2008), Erdélyi & Fedun (2007), and Terradas & Goossens
(2012).

To apply this to the coronal loop kink oscillations it is im-
portant to study standing waves in twisted magnetic tubes. An
equilibrium that consists of a straight magnetic tube with purely

axial magnetic field is mirror symmetric with respect to a plane
orthogonal to the magnetic field lines. As a result, the proper-
ties of propagating waves are independent of the propagation
directions. In that case a standing wave can be constructed as a
superposition of two propagating waves with the same frequen-
cies and wave numbers that propagate in the opposite directions.
The situation changes when there is the magnetic twist because it
destroys the mirror symmetry of the equilibrium. For particular
equilibria with the twisted magnetic field it is still possible to ob-
tain a standing wave as a superposition of two propagating waves
with the same frequencies, but now with different wavenumbers
(see e.g. Ruderman 2007, Paper I). However, in general, a so-
lution describing a standing wave in a twisted tube cannot only
be obtained as a superposition of two, but even of a few prop-
agating waves. Hence, the investigation of standing waves in a
twisted magnetic tube is very much different from the investiga-
tion of propagating waves.

In Paper I, we considered standing kink waves in a thin
twisted magnetic tube with a purely axial magnetic field out-
side the tube and azimuthal component of the magnetic field
proportional to the radial distance from the tube axis inside the
tube. Karami & Bahari (2010) numerically studied the effect of
magnetic twist on the resonant damping and the period ratio
of the fundamental harmonic and first overtone in a magnetic
tube. They considered an equilibrium with the azimuthal com-
ponent of the magnetic field proportional to the distance from
the tube axis. Hence, this component magnitude tends to infinity
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when the distance from the tube axis increases. These equilib-
rium configurations can hardly be considered a realistic model
of a coronal loop. Karami & Bahari (2012) investigated the ef-
fect of magnetic twist on the period ratio of the fundamental
harmonic and first overtone in a magnetic tube using the thin
tube and cold plasma approximation. They considered an equi-
librium in which the azimuthal component of the magnetic field
is proportional to the distance from the tube axis in the tube core
and in the surrounding annulus, the proportionality coefficients
being different in the two regions. The magnetic field was purely
axial in the external plasma. Terradas & Goossens (2012) stud-
ied standing kink waves in a magnetic tube with the magnetic
twist confined in an annulus inside the tube.

In the magnetic tube considered in Paper I, the magnetic field
is discontinuous at the tube boundary, which means that there
is a surface current at this boundary. The magnetic field is also
discontinuous at the annulus boundaries in the equilibrium con-
sidered by Karami & Bahari (2012), so there are also surface
currents at these boundaries. In this paper we aim to study kink
oscillation in a magnetic tube with a more realistic equilibrium
magnetic field that is continuous at the tube boundary. We only
consider standing waves. Propagating kink waves in the same
magnetic plasma configuration have been studied by Ruderman
(2015).

The paper is organized as follows. In the next section we de-
scribe the equilibrium state and present the governing equations.
In Sect. 3 we derive the integral equation describing the eigen-
frequencies and eigenfunctions of standing waves. In Sect. 4
we calculate the eigenfrequencies of standing waves. In Sect. 5
we study the polarization of eigenfunctions. Section 6 contains
the summary of the obtained results and our conclusions.

2. Equilibrium state and governing equations

We consider a twisted magnetic tube of radius a and length L ho-
mogeneous in the axial direction. The equilibrium plasma den-
sity is assumed to be constant inside and outside the tube. Hence,
in cylindrical coordinates r, ϕ, z with the z-axis coinciding with
the tube axis, it is given by

ρ =

{
ρi, r < a,
ρe, r > a,

(1)

where ρi and ρe are constant. In what follows we use the sub-
scripts “i” and “e” to distinguish between quantities inside and
outside the tube. However, we drop these indices when it cannot
cause confusion.

The equilibrium magnetic field only depends on r and has
two components, axial, Bz, and azimuthal, Bϕ. In what follows
we use the cold plasma approximation, so the equilibrium mag-
netic field must be force free. This condition reduces to

dB2

dr
= −

2B2
ϕ

r
, (2)

where B2 = B2
z + B2

ϕ. We assume that Bze is constant, Bϕi is pro-
portional to r, Bϕe is inversely proportional to r, and the magnetic
field is continuous at r = a. Then, using Eq. (2), we obtain that
the equilibrium magnetic field is given by

B2
z =

{
B2

0
+ 2A2(a2 − r2), r < a,

B2
0
, r > a,

Bϕ =

{
Ar, r < a.

a2A/r, r > a.
(3)

where A and B0 are positive constants, and we assume that
Bz > 0.

The plasma motion is described by the linearized ideal MHD
equations for cold plasmas,

ρ
∂2ξ

∂t2
=

1

µ0

(∇ × b) × B +
1

µ0

(∇ × B) × b, (4)

b = ∇ × (ξ × B). (5)

Here ξ = (ξr, ξϕ, ξz) is the plasma displacement related to the
plasma velocity u by u = ∂ξ/∂t, b = (br, bϕ, bz) the magnetic
field perturbation, B the background magnetic field, ρ the back-
ground plasma density, and µ0 the magnetic permeability of free
space.

Ruderman (2007) has shown that Eqs. (4) and (5) can be
transformed to

ρ
∂2ξr

∂t2
= −∂P
∂r
+

B

µ0

D‖br −
2Bϕbϕ

rµ0

, (6)

ρ
∂2ξ⊥

∂t2
= −D⊥P +

B

µ0

D‖b⊥ +
br

µ0

[
Bz

rB

d(rBϕ)

dr
−

Bϕ

B

dBz

dr

]
, (7)

br = BD‖ξr, (8)

b⊥ = BD‖ξ⊥ + ξr

[
Bϕ

rB

d(rBz)

dr
− Bz

B

dBϕ

dr

]
, (9)

P = −
Bϕ

µ0

∂(ξrBϕ)

∂r
− Bz

rµ0

∂(rξrBz)

∂r
− B2

µ0

D⊥ξ⊥. (10)

Here P = (Bϕbϕ+Bzbz)/µ0 is the magnetic pressure perturbation,
ξ⊥ = (Bzξϕ − Bϕξz)/B, and b⊥ = (Bzbϕ − Bϕbz)/B. The operators
D⊥ and D‖ are determined by

D⊥ =
Bz

rB

∂

∂ϕ
−

Bϕ

B

∂

∂z
, D‖ =

Bϕ

rB

∂

∂ϕ
+

Bz

B

∂

∂z
· (11)

We note that the component of the plasma displacement that is
parallel to the equilibrium magnetic field, ξ‖ = (Bϕξϕ + Bzξz)/B,
is equal to zero in the cold plasma approximation.

Equations (6)–(10) have to be supplemented with the kine-
matic and dynamic boundary conditions at the tube boundary.
The kinematic boundary condition states that the radial plasma
displacement has to be continuous,

ξri = ξre at r = a. (12)

Because both the plasma displacement in the radial direction and
the azimuthal magnetic field are continuous at the tube boundary,
the dynamic boundary condition reduces to

Pi = Pe at r = a. (13)

The magnetic field lines are assumed to be frozen in the dense
photospheric plasma. This means that the plasma displacement
satisfies the boundary conditions

ξr = 0, ξ⊥ = 0 at z = 0, L. (14)

Finally, all perturbations have to vanish as r → ∞. Equa-
tions (6)–(10) together with the boundary conditions (12)−(14)
are used in the next section to derive the integral equation gov-
erning kink oscillations of the magnetic tube.

3. Derivation of equation for radial displacement

In this section we derive the governing equation for standing
kink waves. Since we only consider kink oscillations, we take
all variables proportional to eimϕ, where m = ±1. In what follows
we assume that the tube is thin, a/L≪ ǫ. In accordance with this
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we introduce the scaled variable in the z-direction, Z = ǫz. The
unscaled variable is r. The characteristic scale of variation in the
radial direction is a, so the characteristic time corresponding to
the radial direction is the Alfvénic time is a/VA. On the other
hand, the oscillation period is of the order of L/VA = ǫ

−1a/VA,
and it is also the characteristic time in the direction of the scaled
variables z. In accordance with this we introduce the scaled time
T = ǫt. To satisfy the Shafranov-Kruskal stability criterion (e.g.
Roberts 1956; Shafranov 1957; Kruskal & Tuck 1958), similar to

Paper I, we assume that A = ǫÃ with Ã � B0/a. This assumption
also agrees well with observations showing that the azimuthal
component of magnetic field in coronal magnetic loops is much
smaller than the axial component. We only consider eigenmodes
of the kink oscillations. Hence we take perturbations of all vari-
ables proportional to exp(−iΩT ).

Now, eliminating br and b⊥ from Eqs. (6)−(10) we reduce
this system of equations to equations for ξr, ξ⊥ and P:

(
Ω2−W

2
)
ξr +

2B̃ϕ

rµ0ρ

∂(B̃ϕξr)

∂r
=
ǫ−2

ρ

∂P

∂r
+

2BB̃ϕ

rµ0ρ

∂ξ⊥

∂Z
+ O(ǫ2), (15)

(
Ω2 −W

2
)
ξ⊥ =

iǫ−2

ρ
FP −

2iB̃ϕ

r
√
µ0ρ

Wξr + O(ǫ2), (16)

P = −
B2

rµ0

∂(rξr)

∂r
+

2ǫ2B̃2
ϕ

rµ0

ξr −
iB2

µ0

Fξ⊥. (17)

Here B̃ϕ = ǫ
−1Bϕ,

W =
1
√
µ0ρ

⎛⎜⎜⎜⎜⎜⎝
mB̃ϕ

r
− iB0

∂

∂Z

⎞⎟⎟⎟⎟⎟⎠ , F =
mBz

rB
+

iǫ2 B̃ϕ

B0

∂

∂Z
· (18)

Substituting the expression for P given by Eq. (17) in Eq. (16)
we obtain

F

[
Fξ⊥ −

i

r

∂(rξr)

∂r

]
= ǫ2
µ0ρ

B2
0

(
Ω2 −W

2
)
ξ⊥ + ǫ

2
2B̃ϕ

rB0

∂ξr

∂Z
+O(ǫ4).

(19)

We consider this equation as an equation for ξ⊥ and look for the
solution in the form of the series expansion with respect to ǫ2,

ξ⊥ = ξ
(0)
⊥ + ǫ

2ξ
(1)
⊥ + . . . (20)

After calculating the solution to Eq. (19) we substitute it in
Eq. (17) to obtain the expression for P in terms of ξr. Substituting
this expression and expression for ξ⊥ in Eq. (15) we obtain the
equation for ξr. Then we express P in terms of ξr. We carry out
this procedure separately in the internal (r < a) and external
(r > a) region.

3.1. Solution inside the tube

Using Eqs. (1) and (3) we write Eqs. (15), (17) and (19) in the
internal region as

(
Ω2 −W

2
i

)
ξr+

2Ã2

µ0ρi

∂(rξr)

∂r
=
ǫ−2

ρi

dP

dr
+

2B0Ã

µ0ρi

∂ξ⊥

∂Z
+ O(ǫ2), (21)

P = −
B2

i

rµ0

∂(rξr)

∂r
+

2ǫ2rÃ2

µ0

ξr −
iB2

i

µ0

Fiξ⊥ + O(ǫ4), (22)

Fi

[
Fiξ⊥ −

i

r

∂(rξr)

∂r

]
= ǫ2
µ0ρi

B2
0

(
Ω2 −W

2
i

)
ξ⊥

+ ǫ2
2Ã

B0

∂ξr

∂Z
+ O(ǫ4), (23)

where

Wi =
1
√
µ0ρi

(
mÃ − iB0

∂

∂Z

)
, Fi =

mBzi

rBi

+
iǫ2rÃ

B0

∂

∂Z
· (24)

In what follows we also use the expansions

Bzi = B0 + ǫ
2Ã2 a2 − r2

B0

+ O(ǫ4),

Bi = B0 + ǫ
2Ã2 2a2 − r2

2B0

+ O(ǫ4).

(25)

In the first-order approximation we collect terms of the order of
unity in Eq. (23). As a result we obtain

ξ
(0)
⊥ =

i

m

d(rξr)

dr
· (26)

In the next-order approximation, we collect terms of the order of
ǫ2 in Eq. (23). Then, using Eqs. (24)−(26) we obtain

ξ
(1)
⊥ = imr2

⎛⎜⎜⎜⎜⎝
∂2

∂Z2
+

imÃ

B0

∂

∂Z

+
2µ0ρiΩ

2 − Ã2

2B2
0

⎞⎟⎟⎟⎟⎠
∂(rξr)

∂r
+

2r2Ã

B0

∂ξr

∂Z
· (27)

Substituting Eqs. (26) and (27) in Eq. (22) and using Eq. (24)
yields

ǫ−2P = rρi

⎡⎢⎢⎢⎢⎣
(
Ω2 −W

2
i

) ∂(rξr)
∂r
+

2mÃ
√
µ0ρi

Wiξr

⎤⎥⎥⎥⎥⎦ + O(ǫ2). (28)

Substituting Eqs. (26) and (28) in Eq. (21) and collecting terms
of the order of unity in the obtained equation we find the equa-
tion for ξr valid in the leading-order approximation with respect
to ǫ2:

(
Ω2 −W

2
i

) (
r2 ∂

2ξr

∂r2
+ 3r
∂ξr

∂r

)
= 0. (29)

Equation
(
Ω2 −W2

i

)
f = 0 describes Alfvén waves inside the

tube. In what follows we eliminate these waves from the anal-
ysis. This implies that the expression in the second brackets in
Eq. (29) is zero. Then the solution to Eq. (29) regular at r = 0 is

ξr = η(Z), (30)

where η(Z) is an arbitrary function satisfying η(0) = η(ℓ) = 0,
where ℓ = ǫL. Substituting this result in Eq. (28) we obtain

P =
ǫ2r

µ0

[
B2

0

d2η

dZ2
+
(
µ0ρiΩ

2 + Ã2
)
η

]
. (31)

3.2. Equations in external region

While the characteristic scale in the radial direction in the tube
is a, this is, in general, not true outside the tube. In the whole
external region this characteristic scale is L. However, the ex-
ternal region can be divided into two parts: The inner external
region defined by the condition r ∼ a, and the outer external re-
gion defined by the condition r ≫ a. The characteristic scale in
the radial direction in the inner external region is still equal to a,
so we can use Eqs. (15)–(17) to describe the plasma motion in
this region. In the outer external region we have to introduce the
new scaled variable R = ǫr. Then we can obtain the solution in
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the external region using the method of matched asymptotic ex-
pansions. In accordance with this method we obtain the solution
in the inner and outer external region separately, and then match
the two solutions in the overlap region.

The solution in the outer external region is not used for the
derivation of the governing integral equation. All that we need
from this solution are the boundary conditions for the solution in
the inner external region that are imposed by the matching con-
ditions. In accordance with the matching conditions the asymp-
totic expression for the solution in the inner external region valid
for large r has to coincide with the asymptotic expression for the
solution in the outer external region valid for small R. Since Bϕ
is inversely proportional to r, it can be neglected in the outer ex-
ternal region and the magnetic field in this region can be consid-
ered as approximately homogeneous and in the z-direction. The
solution describing the plasma motion in the presence of such
an equilibrium magnetic field was obtained in Paper I. In this
solution P ∝ R−1 and ξr ∝ R−2 for small R. Then the matching
conditions imply that the asymptotic behaviour of the solution
in the inner external region for large r has to be P ∝ r−1 and
ξr ∝ r−2. In accordance with this, in what follows, we look for
the solution in the inner external region that vanishes as r → ∞.
Using Eqs. (1) and (3) we write Eqs. (15), (17) and (19) in the
external region as

(
Ω2 −W

2
e

)
ξr +

2a4Ã2

µ0ρer2

∂

∂r

(
ξr

r

)
=

ǫ−2

ρe

∂P

∂r
+

2a2B0Ã

µ0ρer2

∂ξ⊥

∂Z
+ O(ǫ2), (32)

P = −
B2

e

rµ0

∂(rξr)

∂r
+

2ǫ2a4Ã2

µ0r3
ξr −

iB2
e

µ0

Feξ⊥, (33)

Fe

[
Feξ⊥ −

i

r

∂(rξr)

∂r

]
= ǫ2
µ0ρe

B2
0

(
Ω2 −W

2
e

)
ξ⊥

+ ǫ2
2a2Ã

r2B0

∂ξr

∂r
+ O(ǫ4). (34)

where

We =
1
√
µ0ρe

⎛⎜⎜⎜⎜⎝
ma2Ã

r2
− iB0

∂

∂Z

⎞⎟⎟⎟⎟⎠ , Fe =
mB0

rBe

+
iǫ2a2Ã

rB0

∂

∂Z
·

(35)

In what follows we also use the expansion

Be = B0 + ǫ
2 a4Ã2

2r2B0

+ O

(
ǫ4
)
. (36)

In the first-order approximation, the solution to Eq. (34) is again
given by Eq. (26). In the next-order approximation, we obtain

ξ
(1)
⊥ =

i

m

⎛⎜⎜⎜⎜⎝r2 ∂
2

∂Z2
+

ia2Ã

mB0

∂

∂Z

+
µ0ρer2Ω2

B2
0

− a4Ã2

2r2B2
0

⎞⎟⎟⎟⎟⎠
∂(rξr)

∂r
+

2a2Ã

B0

∂ξr

∂Z
· (37)

Substituting Eqs. (35)–(37) in Eq. (33) yields

ǫ−2P = rρe

⎡⎢⎢⎢⎢⎣
(
Ω2 −W

2
e

) ∂(rξr)
∂r
+

2ma2Ã

r2
√
µ0ρe

Weξr

⎤⎥⎥⎥⎥⎦ + O(ǫ2). (38)

Collecting terms of the order of unity in Eq. (32) and using
Eqs. (26) and (38) we obtain, after some algebra, the equation

for ξr valid in the leading-order approximation with respect to ǫ2:

∂

∂r

[
r3
(
Ω2 −W

2
e

) ∂ξr
∂r

]
= 0, (39)

which implies that the expression in the square brackets is
equal to an arbitrary function of Z, which we write in the form
B2

0
χ(Z)/(µ0ρe). Then Eq. (39) reduces to

∂2ψ

∂Z2
+

2imα

r2

∂ψ

∂Z
+

(
β2 − α

2

r4

)
ψ =
χ(Z)

r3
, (40)

where ψ = ∂ξr/∂r and

α =
a2Ã

B0

, β =
Ω
√
µ0ρe

B0

· (41)

It follows from Eq. (14) that ψ satisfies the boundary conditions

ψ(0) = ψ(ℓ) = 0. (42)

Since Eq. (40) does not contain the derivatives with respect to
r, it can be considered as an ordinary differential equation for ψ
considered as a function of Z. Its solution satisfying the bound-
ary conditions (42) is given by

ψ = − 1

βr3

∫ ℓ

0

exp
[
imαr−2(u − Z)

]
F(Z, u)χ(u) du, (43)

where

F(Z, u) =
1

sin(βℓ)
{H(Z − u) sin(βu) sin[β(ℓ − Z)]

+H(u − Z) sin(βZ) sin[β(ℓ − u)]}, (44)

and H is the Heaviside function. We note that this solution is
only valid when βℓ � πn, n = 1, 2, . . . When βℓ = πn the
homogeneous counterpart of Eq. (40) has a non-trivial solu-
tion satisfying the boundary Eqs. (42). As a result a solution
to Eq. (40) satisfying the boundary conditions (42) only exists
when its right-hand side is orthogonal to the solution of its ho-
mogeneous counterpart. In what follows we eliminate βℓ = πn
from the analysis. To clarify the physical meaning of this condi-
tion we consider Alfvén oscillations outside the tube. They are
described by the boundary value problem
(
Ω2 −W

2
e

)
ξ⊥ = 0, ξ⊥(0) = ξ⊥(ℓ) = 0. (45)

The solutions to this boundary value problem are

ξ⊥ = exp

(
− imαZ

r2

)
sin
πnZ

ℓ
, β =

πn

ℓ
, (46)

where n = 1 corresponds to the fundamental mode and n > 1
to the overtones. Hence, the condition βℓ � πn means that we
eliminate kink oscillations that are in resonance with the Alfvén
oscillations outside the tube.

Integrating Eq. (43) with respect to r and taking into account
that ξr → 0 as r → ∞ we obtain

ξr =
im

2αβ

∫ ℓ

0

1 − exp
[
imαr−2(u − Z)

]

u − Z
F(Z, u)χ(u) du. (47)

We note that ξr ∼ 1/r2 when r ≫ a, in complete agreement with
the matching conditions at large r. Using Eqs. (35) and (39) we
obtain from Eq. (38) in the leading-order approximation with
respect to ǫ2 that

P =
ǫ2r

µ0

[
B2

0

∂2ξr

∂Z2
+

⎛⎜⎜⎜⎜⎝µ0ρeΩ
2 +

a4Ã2

r4

⎞⎟⎟⎟⎟⎠ ξr
]
+
ǫ2χB2

0

rµ0

· (48)

In particular, it follows from this expression that P ∼ 1/r for r ≫
a, which is again in the complete agreement with the matching
conditions at large r.

A57, page 4 of 9



M. S. Ruderman & J. Terradas: Kink oscillations of twisted magnetic tubes

3.3. Matching solutions

It follows from the boundary condition (12) that ξr = η at r =
a. Using this result and substituting Eqs. (31) and (48) in the
boundary condition (13), we obtain

χ = (ρi − ρe)
µ0a2Ω2

B2
0

η. (49)

Substituting this result and ξr = η in Eq. (47), and returning to
the original non-scaled variable z, we obtain the equation deter-
mining η:

η(z) =
imω(ρi − ρe)

√
µ0

2A
√
ρe

×
∫ L

0

1 − exp
[
imA(u − z)/B0

]

u − z
F(z, u)η(u) du, (50)

where ω = ǫΩ, ω is substituted for Ω in the expression for β,
and L is substituted for ℓ in the expression for F.

4. Eigenfrequencies of kink oscillations

We introduce the Alfvén speed at large distance from the tube,
V = B0/

√
µ0ρe, and the dimensionless quantities

ζ =
ρi

ρe

, s =
2z − L

L
, q =

AL

B0

, h =
η

a
exp

(
imqs

4

)
, ̟ =

ωL

V
·

(51)

The quantity q is especially important in our analysis. To clarify
its physical meaning, we consider the equation of a magnetic
field line inside the tube,

dϕ

A
=

dz

B0

, (52)

where we have taken Bz ≈ B0. Integrating this equation we
obtain

ϕ =
zA

B0

+ const. (53)

It follows from this equation that the ϕ-coordinate of a point on
a magnetic field line varies by the angle ∆ϕ = q when this point
moves along the field line from one footpoint to the other. The
Kruskal-Shafranov stability criterion can be written as q � 2π.

In the dimensionless variables Eq. (50) is rewritten as

h(s) =
̟(ζ − 1)

q sin̟

∫ 1

−1

sin[q(s − u)/4]

s − u
G(s, u)h(u) du, (54)

where

G(s, u) = H(s − u) sin[̟(1 + u)/2] sin[̟(1 − s)/2]

+H(u − s) sin[̟(1 + s)/2] sin[̟(1 − u)/2]. (55)

First of all, we note that Eq. (54) is independent of m. We also
note that without loss of generality, we can assume that h(s) is
a real function. The right-hand side of Eq. (54) does not change
sign when ̟ changes sign. This implies that if ̟ is an eigen-
value of the integral Eq. (50), then −̟ is also an eigenvalue,
which completely agrees with the general spectral theory of ideal
linear MHD (e.g. Goedbloed & Poedts 2004). Changing the sign
of s and u in Eq. (54) we obtain

h(−s) =
̟(ζ − 1)

q sin̟

∫ 1

−1

sin[q(s − u)/4]

s − u
G(s, u)h(−u) du. (56)

It follows from Eqs. (54) and (56) that both h(s) + h(−s) and
h(s)− h(−s) are solutions to Eq. (54). If̟ is an eigenvalue, then
at least one of these two functions is not identically equal to zero.
This means that we can only search for solutions to Eq. (54) that
are either even or odd.

Now we assume that the twist is weak, q ≪ 1, and use the
regular perturbation method to obtain a solution to Eq. (54). In
accordance with this method, we search for the solution in the
form

h = h0 + q2h1 + . . . , ̟ = ̟0 + q2̟1 + . . . , (57)

where we have taken into account that the expansion of the right-
hand side of Eq. (54) with respect to q only contains even powers
of q. The first terms in these expressions describe kink waves in
an untwisted magnetic tube. Substituting these expressions in
Eq. (54) we obtain in the zero order approximation

L[h0] ≡ h0 −
̟0(ζ − 1)

4 sin̟0

∫ 1

−1

G0(s, u)h0(u) du = 0, (58)

where G0(s, u) is given by Eq. (55) with ̟0 substituted for ̟.
This is straightforward to verify by the direct substitution that

h0(s) = h0 f = cos
πs

2
, ̟0 = ̟0 f = π

√
2

ζ + 1
(59)

satisfy Eq. (58). Since this is a linear problem, we can take the
amplitude of h0(s) equal to unity without loss of generality. In
the dimensional variables the expression for the frequency in the
zero order approximation is

ω = Ck

π

L
, C2

k =
2B2

0

µ0(ρi + ρe)
, (60)

which corresponds to the fundamental mode of kink oscillations,
in complete agreement with the general theory of kink oscilla-
tions (e.g., Ruderman & Erdélyi 2009).

In the first-order approximation, after some algebra, we ob-
tain from Eq. (54)

L[h1] =
̟1(ζ − 1)

4 sin̟0

∫ 1

−1

[
̟0G1(s, u)

+(1 −̟0 cot̟0)G0(s, u)
]
h0(u) du

− ̟0(ζ − 1)

384 sin̟0

∫ 1

−1

(s − u)2G0(s, u)h0(u) du, (61)

where

G1(s, u) = H(s − u)

(
1 + u

2
cos
̟0(1 + u)

2
sin
̟0(1 − s)

2

+
1 − s

2
sin
̟0(1 + u)

2
cos
̟0(1 − s)

2

)

+H(u − s)

(
1 + s

2
cos
̟0(1 + s)

2
sin
̟0(1 − u)

2

+
1 − u

2
sin
̟0(1 + s)

2
cos
̟0(1 − u)

2

)
· (62)

Since the equation L[h1] = 0 has a non-trivial solution, Eq. (61)
can only be solved if its right-hand side satisfies the compati-
bility condition. To obtain this condition we multiply Eq. (61)
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Fig. 1. Dependence of the relative correction to the fundamental fre-
quency, ̟1 f /̟0 f , on ζ.

by h0(s) and integrate with respect to s over the interval [−1, 1].
Then, using the symmetry G0(s, u) = G0(u, s), we obtain

∫ 1

−1

h0(s)L[h1] ds =

∫ 1

−1

h1(s)L[h0] ds = 0. (63)

Hence, the compatibility condition is that the integral from the
right-hand side of Eq. (61) multiplied by h0(s) and integrated
with respect to s over the interval [−1, 1] is zero. It follows from
Eq. (58) that

ζ − 1

4 sin̟0

∫ 1

−1

h0(s) ds

∫ 1

−1

G0(s, u)h0(u) du =
1

2̟0

. (64)

After long but straightforward calculation we obtain

ζ − 1

4 sin̟0

∫ 1

−1

h0(s) ds

∫ 1

−1

G1(s, u)h0(u) du =

cot̟0

2̟0

+
ζ + 3

2̟2
0
(ζ − 1)

, (65)

̟0(ζ − 1)

384 sin̟0

∫ 1

−1

h0(s) ds

∫ 1

−1

(s − u)2G0(s, u)h0(u) du =

̟0(ζ + 1)

6π2(ζ − 1)2

(
8(ζ + 1)2

π2(ζ − 1)
cot
̟0

2
− 3ζ + 5

2̟0

)
· (66)

Then, using the compatibility condition for Eq. (61), we obtain
with the aid of Eqs. (64)–(66) that the correction to the funnda-
mental frequency is given by

̟1 f =
1

6(ζ2 − 1)

(
16(ζ + 1)2

π2(ζ − 1)
cot
̟0 f

2
− 3ζ + 5

̟0 f

)
· (67)

The dependence of̟1 f /̟0 f on ζ is shown in Fig. 1.
Now we obtain the second solution corresponding to the first

overtone. In the zero-order approximation we have

h0(s) = h0o = sin(πs), ̟0 = ̟0o = 2π

√
2

ζ + 1
· (68)

Equations (63)−(65) remain valid, while instead of Eq. (66) we
obtain equation

̟0(ζ − 1)

384 sin̟0

∫ 1

−1

h0(s) ds

∫ 1

−1

(s − u)2G0(s, u)η0(u) du =

−
̟0(ζ + 1)

24π2(ζ − 1)2

(
2(ζ + 1)2

π2(ζ − 1)
tan
̟0

2
+

3ζ + 5

2̟0

)
· (69)

Fig. 2. Dependence of the relative correction to the first overtone,
̟1o/̟0o, on ζ.

Using these results we obtain that the correction to the first-
overtone frequency is given by

̟1o = −
1

6(ζ2 − 1)

(
4(ζ + 1)2

π2(ζ − 1)
tan
̟0o

2
+

3ζ + 5

̟0o

)
· (70)

The dependence of̟1o/̟0o on ζ is shown in Fig. 2.

Note that the expression for ̟1o has a singularity when
̟0o = π, that is, when ζ = 7. This singularity is related to
the fact that, at this value of ζ, the frequency of the first over-
tone in the zero-order approximation with respect to q coincides
with the frequency of the fundamental mode of the Alfvén oscil-
lations outside the tube, so the kink oscillation is in resonance
with the Alfvén oscillation. The expression for ̟1 f does not
have any singularities because̟0 f is smaller than the frequency
of the fundamental mode of the Alfvén oscillations outside
the tube.

Here one needs to clarify one important point. In the case
of propagating waves the Alfvén frequency for a given axial
wave number is constant inside the tube, but it depends on the
radial variable outside the tube. As a result, there is an Alfvén
continuum and some of propagating wave modes are subject to
resonant damping (Ruderman 2015). However, in the case of
standing waves the situation is completely different. The eigen-
frequency of Alfvén oscillations outside the tube is defined by
the eigenvalue problem Eq. (45). It defines exactly one eigenfre-
quency of the fundamental mode and one eigenfrequecy for each
overtone. Hence, there is no Alfvén continuum and, as a result,
no wave damping due to resonant absorption.

It is worth noting that the resonance between the kink and
Alfvén oscillation does not cause any problem when q = 0,
that is, in the case of an untwisted tube. The reason for this
is the following. As we can see from Eq. (49), χ is propor-
tional to η. When Ω coincides with the eigenfrequency of one
of the Alfvén oscillations, Eq. (40) has a solution when its
right-hand side is orthogonal to the corresponding Alfvén eigen-
mode. When q = 0, it follows from Eq. (46) that the eigen-
function corresponding to the fundamental mode of the Alfvén
oscillation is proportional to cos(πs/2). The eigenfunction corre-
sponding to the first overtone of kink oscillations is proportional
to sin(πs), so it is obvious that the orthogonality condition is
satisfied.

In contrast, the orthogonality condition is not satisfied when
q � 0. This can be easily proved in the case of small q.
In this case it follows from Eq. (46) that the eigenfunction
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Fig. 3. Dependence of the correction to the frequency ratio, Ψ, defined
by Eq. (72), on ζ.

corresponding to the fundamental mode of the Alfvén oscilla-
tion is given by

exp

(
− imqa2(s + 1)

2r2

)
cos
πs

2
=

(
1 − imqa2(s + 1)

2r2

)
cos
πs

2
+O(q2).

The eigenfunction corresponding to the first overtone of kink
oscillations is

exp

(
imqs

4

)
sin(πs) + O(q2) =

(
1 +

imqs

4

)
sin(πs) + O(q2).

Then the condition that the right-hand side of Eq. (40) is orthog-
onal to the fundamental Alfvén eigenmode is written as

∫ 1

−1

sin(πs) cos
πs

2

(
s

4
−

a2(s + 1)

2r2

)
ds = O(q).

After integration this equation reduces to

r2 − 2a2

r2
= O(q).

It is obvious that this relation cannot be satisfied for all values of
r.

The ratio of frequencies of the first overtone and fundamental
mode is given by the expression

̟o

̟f

= 2 + q2Ψ(ζ) + O(q4), (71)

where

Ψ(ζ) =
3ζ + 5

8π2(ζ − 1)
−

(ζ + 1)
√

2(ζ + 1)

3π3(ζ − 1)2

×
⎛⎜⎜⎜⎜⎜⎝tan

π
√

2√
ζ + 1

+ 8 cot
π
√

2

2
√
ζ + 1

⎞⎟⎟⎟⎟⎟⎠ · (72)

Figure 3 shows the dependence of Ψ on ζ. Note that Ψ also has
singularity at ζ = 7. We see that the magnetic twist enhances the
ratio ̟o/̟f when ζ < 7, and reduces this ratio when ζ > 7.

We also calculated the dependence of ̟ on q numerically
for the fundamental mode and first overtone, and for three var-
ious values of ζ. In this calculation we used the full system of
linearized ideal MHD equations for cold plasmas (see equations
and details about the method in Terradas & Goossens 2012). The
results are shown in Fig. 4. We can see that the frequency of the
fundamental mode calculated analytically practically coincides
with that calculated numerically for q � 6, where q = 2π ≈ 6.28

Fig. 4. Dependence of ̟f and ̟o on q. The lines show the approxi-
mated dependence valid for small q and determined by Eqs. (59) and
(67) for the fundamental mode, and by Eqs. (68) and (70) for the first
overtone. The solid, dotted and dashed lines correspond to for ζ = 3, 6,
and 10. The lower three lines correspond to the fundamental mode, and
the upper three lines to the overtones. The circles show the numerical
results.

corresponds to the full turn of helical magnetic field lines inside
the tube on the loop length. Moreover, the correction related to
the twist is practically negligible.

The agreement between the analytical and numerical results
is poorer for the frequency of the first overtone. However, even
in this case, the analytical approximation works fairly well for
q � 2 when ζ = 3 and ζ = 10, and only when ζ = 6 the analyt-
ical and numerical results only agree well for q � 1. This more
severe restriction on the value of q when ζ = 6 is related to the
fact that this value is close to 7. As we have seen, the fist over-
tone frequency has a singularity when ζ = 7. It follows from the
numerical results that the correction related to the twist is fairly
small for q � 2π. Hence, we see that if the equilibrium magnetic
field satisfies the Kruskal–Shafranov stability criterion, i.e. when
the ratio of the azimuthal to axial magnetic field is lower than or
of the order of ǫ = a/L, the effect of twist on the frequencies of
fundamental mode and first overtone is sufficiently small.

In Fig. 5 we show the dependence of the ratio of the first
overtone frequency to the fundamental frequency, ̟o/̟f . The
numerical results confirm the conclusion based on the analytical
results that the twist enhances the frequency ratio when ζ < 7
and reduces it when ζ > 7. Again the agreement between the
analytical and numerical results strongly depends on the value
of ζ. When ζ = 3, the agreement is fairly good for q � 2. When
ζ = 10, the analytical and numerical results agree fairly well for
q � 1. Finally, When ζ = 6, the analytical and numerical results
only agree for q ≪ 1.

Up to now two properties of coronal loops that can affect the
frequency ratio have been studied. The first property is the den-
sity variation along the loop related to the coronal stratification.
This property causes the decrease in the frequency ratio. It was
suggested by Andries et al. (2005) as a tool for estimating the
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Fig. 5. Dependence of ̟o/̟f on q. The lines show the approximated
dependence valid for small q and determined by Eqs. (71) and (72).
The solid, dotted and dashed lines correspond to for ζ = 3, 6 and 10.
The circles show the numerical results.

density scale height in the corona using simultaneous observa-
tions of the fundamental harmonic and first overtone of coro-
nal loop kink oscillations (see also the review by Andries et al.
2009). The second property is the coronal loop expansion. This
property causes the increase in the frequency ratio (Ruderman
et al. 2008; Verth & Erdélyi 2008; Verth et al. 2008). Now
we have a third property, the magnetic twist. It enhances the
frequency ratio similarly to the loop expansion when the den-
sity contrast is moderate, and reduces this ratio similarly to the
density variation when the density contrast is high. This result
should be taken into account in coronal seismology.

5. Wave polarization

To study the wave mode polarization we need to obtain real so-
lutions for ξr and ξϕ. We recall that without loss of generality,
we can assume that solutions to Eq. (54) are real. Then, using
the relation between η and h given by Eq. (51) and restoring the
dependence on t and ϕ, we obtain that inside the tube,

ξr = ah(s) exp[i(mϕ − mqs/4 − ωt)]. (73)

Now it follows from Eq. (26) that

ξϕ = imah(s) exp[i(mϕ − mqs/4 − ωt)], (74)

where we have used the fact that the difference between ξϕ
and ξ⊥ is of the order of ǫ and thus can be neglected. Now we
recall that if ω is an eigenfrequency and the corresponding so-
lution to Eq. (54) is h(s), then −ω is also an eigenfrequency and
the corresponding solution to Eq. (54) is the same h(s), and the
eigenfrequency is independent of m. Then we take the superpo-
sition of two solutions, one given by Eqs. (73) and (74) with
m = 1, and the second given by the same equations but with
m = −1 and with −ω substituted for ω. As a result, we obtain

ξr = ah(s) cos(ωt − ϕ + qs/4),

ξϕ = ah(s) sin(ωt − ϕ + qs/4).
(75)

We introduce the auxiliary Cartesian coordinates x, y in the plane
perpendicular to the tube axis with the angle ϕ measured from
the x-axis. Then

ξx = ξr cosϕ − ξϕ sinϕ = ah(s) cos(ωt + qs/4),

ξy = ξr sin ϕ + ξϕ cosϕ = ah(s) sin(ωt + qs/4).
(76)

This solution describes a circularly polarized wave. At a fixed a,
the displacement vector rotates in the couterclockwise direction,
so the wave is right-hand polarized. Changing the sign of ω, we
obtain the second solution

ξx = ah(s) cos(ωt − qs/4), ξy = −ah(s) sin(ωt − qs/4). (77)

This solution describes a circularly polarized wave with a left-
hand polarization. Using the linear combination of the two cir-
cularly polarized waves, we can obtain a wave with arbitrary
elliptic polarization. We are particularly interested in the wave
with the linear polarization. We obtain the solution describing
the linearly polarized wave taking the half-sum of the two solu-
tions given by Eqs. (76) and (77):

ξx = ah(s) cos(ωt) cos(qs/4),

ξy = ah(s) cos(ωt) sin(qs/4).
(78)

We see that the polarization direction varies along the tube
axis. It constitutes the angle qs/4 with the positive x-direction
measured counterclockwise. Note that the effect of variation of
the polarization direction of linearly polarized kink oscillations
along a twisted tube has previously been reported by Ruderman
& Scott (2011) and Terradas & Goossens (2012). In particular,
Eq. (78) agrees with Eqs. (60) and (61) of Terradas & Goossens
(2012) in the limit of very small twist.

All the results in this article have been obtained under the
assumption that A > 0. If A < 0, all the results remain the
same except for he direction of polarization. In particular, the di-
rection of polarization of a linearly polarized oscillation would
constitute an angle qs/4 with the positive x-direction measured
clockwise.

6. Summary and conclusions

We studied the kink oscillations of a twisted magnetic tube. We
assumed that the tube is thin and the twist is weak, that is, the
ratio of the azimuthal and axial component of the background
magnetic field is of the order of the small parameter ǫ equal to
the ratio of the tube radius to its length. We took the azimuthal
component of the background magnetic field to be proportional
to the distance r from the tube axis inside the tube, and inversely
proportional to r outside the tube. The background magnetic
field was continuous at the tube boundary. We also assumed that
the plasma density is constant inside and outside the tube, and
we used the cold plasma approximation.

Using the method of asymptotic expansions we derived the
governing equation for kink oscillations valid in the leading-
order approximation with respect to ǫ. It is a complicated in-
tegral equation that cannot be solved analytically in the general
case. To make analytical progress we introduced the parameter q,
which is the ratio of azimuthal to axial component of the mag-
netic field at the tube boundary divided by ǫ. Then we assumed
that q ≪ 1 and found the solutions to the integral equation in the
form of expansion with respect to q2. We restricted our analysis
to the fundamental mode and first overtone and only calculated
the first two terms of this expansion. Hence, we obtained the
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corrections proportional to q2 to the frequencies of the funda-
mental mode and first overtone of a straight magnetic tube. We
studied the dependence of these correction of the ratio of den-
sities inside and outside the tube, ζ. In particular, we obtained
that the correction to the first overtone has a singularity at ζ = 7.
This singularity is related to the fact that the frequency of the
first overtone coincides with the fundamental Alfvén frequency
in the external plasma at this value of ζ.

The analytical solution was compared to the numerical solu-
tion obtained using the full set of ideal linear MHD equations.
Although the analytical expressions for the eigenmode frequen-
cies were obtained under assumption that q ≪ 1, the analyti-
cal expression for the fundamental mode frequency agrees very
well with the numerical one for q ≤ 6. The correction to the fun-
damental mode frequency related to the magnetic twist is very
small.

The analytical expression for the first-overtone frequency
agrees with that calculated numerically for q � 1 alone. The
numerically calculated correction to the frequency of the fist
overtone of a straight tube related to the magnetic twist remains
moderate for q ≤ 6.

We also calculated the ratio of frequencies of the first over-
tone and fundamental mode, which is especially important for
coronal seismology. We found that the twist enhances this ra-
tio when ζ < 7 and reduces it when ζ > 7. In general, when
q ≃ 6, the difference between this ratio and 2 is similar to the
values obtained in the simultaneous observations of the funda-
mental harmonic and first overtone of the coronal loop kink os-
cillations (Verwichte et al. 2004; van Doorsselaere et al. 2007,
2009; Andries et al. 2009). This result implies that the observed
deviation of the frequency ratio from 2 can be related not only
with the density variation along the loop and loop expansion, but
also with the presence of magnetic twist.

Finally, we studied the eigenmode polarization. We found
that, in general, the eigenmodes are elliptically polarized. In a
particular case of linear polarization the polarization direction
rotates along the loop.

Comparing the results obtained in this article to those ob-
tained previously, we note that they are different from those
presented in Paper I. We had shown in Paper I that the mag-
netic twist does not affect the period ratio of the fundamental
harmonic and first overtone, while in this article we obtained
that it does affect the period ratio. The latter result also agrees
very well with those obtained by Karami & Bahari (2012) and
Terradas & Goossens (2012). Hence, we can conclude that the
result obtained in Paper I is only valid for the particular equilib-
rium considered in that article, while, in general, the magnetic
twist affects the period ratio. It does not make very much sense
to compare the results obtained in this article with those obtained
by Karami & Bahari (2012) and Terradas & Goossens (2012)
quantitatively because the equilibria considered in these articles
are completely different from that used in this article.

To study the standing kink waves we have used a relatively
simple model of a magnetic tube with the constant electrical
current density inside the tube and current free environment.
The assumption that the environment is current free, so that

the current is only concentrated inside the tube, seems to be quite
general. If it is satisfied then the equilibrium magnetic field out-
side the tube is independent of a particular distribution of the
electrical current inside the tube. Its axial component is con-
stant and the azimuthal component is inversely proportional to
the distance from the tube axis. If the current density inside the
tube varies in the radial direction then the local Alfvén frequency
will also vary in the radial direction. Depending on a particular
equilibrium this may or may not lead to wave damping due to
resonant absorption. However, we can expect that other proper-
ties of the waves will remain qualitatively the same.
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