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Abstract: 45 

 46 

Objective: Autoimmune polyendocrine syndrome type 1 (APS 1) is caused by mutations in the AIRE 47 

gene that induce intrathymicT-cell tolerance breakdown, which results in tissue-specific autoimmune 48 

diseases. Design: To evaluate the effect of a well-defined T-cell repertoire impairment on humoral 49 

self-reactive fingerprints, comparative serum self-IgG and -IgM reactivities were analyzed using both 50 

one- and two-dimensional western blotting approaches against a broad spectrum of peripheral tissue 51 

antigens. Methods: Autoantibody patterns of APS 1 patients were compared with those of subjects 52 

affected by other autoimmune endocrinopathies (OAE) and healthy controls. Results: Using a Chi-53 

square test, significant changes in the Ab repertoire were found when intergroup patterns were 54 

compared. A singular distortion of both serum self-IgG and self-IgM repertoires was noted in APS 1 55 

patients. The molecular characterization of these antigenic targets was conducted using a proteomic 56 

approach. In this context, autoantibodies recognized more significantly either tissue-specific antigens, 57 

such as pancreatic amylase, pancreatic triacylglycerol lipase and pancreatic regenerating protein 1, or 58 

widely distributed antigens, such as peroxiredoxin-2, heat shock cognate 71-kDa protein and aldose 59 

reductase. As expected, a well-defined self-reactive T-cell repertoire impairment, as described in APS 60 

1 patients, affected the tissue-specific self-IgG repertoire. Interestingly, discriminant IgM reactivities 61 

targeting both tissue-specific and more widely expressed antigens were also specifically observed in 62 

APS 1 patients. Using recombinant targets, we observed that post translational modifications of these 63 

specific antigens impacted upon their recognition. Conclusions: The data suggest that T-cell-64 

dependent but also T-cell-independent mechanisms are involved in the dynamic evolution of 65 

autoimmunity in APS 1. 66 

67 



Introduction 68 

Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED; OMIM ID: 69 

601240; 240300), also known as “Autoimmune Polyendocrine Syndrome type 1” (APS 1), is a rare 70 

monogenic autosomal recessive disease associated with autoimmune regulator (AIRE) gene mutations 71 

(1, 2). The AIRE gene is located on chromosome 21(21q22.3) and encodes the Aire protein, which is 72 

expressed in thymic medullary epithelial cells (mTECs), but also in dendritic cells and monocytes (1) 73 

in spleen and lymph nodes (3). Aire expresses many structural and functional characteristics common 74 

to transcriptional regulators (4). Experimental models using Aire–/– animals have shown that Aire is 75 

involved in intrathymicT-cell-negative selection because it promotes ectopic expression of a subset of 76 

peripheral tissue-specific antigens (TS-Ags) by mTECs (5, 6). Loss of Aire-dependent thymic 77 

expression of a peripheral TS-Ag (such as mucin-6) results in autoimmune reactivity against this 78 

protein (7). Aire is also expressed in extra-thymic Aire-expressing cells (eTACs), like myeloid and 79 

lymphoid cells (8), in lymph nodes and spleen, where it regulates a set of TS-Ags, suggesting that Aire 80 

expression has broad transcriptional consequences for TS-Ag presentation in the periphery. 81 

Interestingly, the genes regulated by AIRE in eTACs had no overlap with AIRE-regulated genes in the 82 

thymus, suggesting a complementary role in the maintenance of self-tolerance (3). Aire–/– mice 83 

develop tissue-specific autoantibodies (autoAbs) and lymphocyte infiltrates in multiple organs (5, 6). 84 

In humans, APS 1 is characterized by several tissue-specific autoimmune diseases (9) associated with 85 

organ-specific but also non-organ-specific autoAbs detected in the serum (10). Antibodies against 86 

cytokines have also been reported (11, 12). APS 1 patients develop endocrine autoimmune diseases, 87 

such as adrenal insufficiency, hypoparathyroidism, hypogonadism, type 1 diabetes mellitus and 88 

Hashimoto thyroiditis, and non-endocrine autoimmune diseases, such as pernicious anemia, hepatitis, 89 

alopecia, vitiligo and candidiasis (9). Thus, APS 1 represents a unique monogenic human model in 90 

which a well-demonstrated T-cell tolerance breakdown occurs that can result in several tissue-specific 91 

autoimmune diseases. Although numerous APS 1tissue-specific target antigens have been described, 92 

the global systemic self-antibody repertoire remains to be defined. We have previously performed 93 

such a global immunoproteomic approach in healthy subjects and in patients with different 94 



autoimmune diseases (13–15). In healthy subjects, the human Ab repertoire is thought to be well 95 

conserved and restricted to a few self-antigens in homologous tissues (16). Nevertheless, in each 96 

subject, singular patterns were found, possibly related to individual responses against exoantigens 97 

(13). Interestingly, a distortion of serum self-IgG patterns in organ-specific autoimmune diseases that 98 

predominantly involve T cells, such as multiple sclerosis, has been demonstrated in our laboratory 99 

(13). The intriguing aspect of these data was that discriminant reactivities were supported by widely 100 

distributed antigens (14). To define more precisely the pathophysiological significance of these 101 

fingerprints, we evaluated, in the present study, the autoreactive antibody response in a pathology 102 

where well-defined molecular defects, related to tolerance induction processes, have been described. 103 

To evaluate T-cell-dependent and T-cell-independent involvement in APS 1, we compared self 104 

immunological patterns obtained with both IgG and IgM autoAbs and characterized the respective 105 

molecular targets recognized.  106 

 107 

Subjects and Methods 108 

Patients 109 

Sera from 48 patients were analyzed. The samples were obtained from 14 patients with APS 1 110 

(group 1: 9 males, 5 females, mean age = 33 ± 14 years), 17 patients with other autoimmune 111 

endocrinopathies (OAE) (group 2: 6 males, 11 females, mean age = 47. 6 ± 15.1 years) and 17 healthy 112 

controls (group 3: 9 females, 8 males, mean age = 33.1 ± 9.2 years). APS 1 patients were clinically 113 

diagnosed according to Neufeld criteria (17) and confirmed by DNA sequencing as described 114 

previously (18). OAE patients presented either single or multiple endocrinopathy (Table 1). Sera were 115 

collected with the subjects’ written consent and the study was approved by the local ethics committee.  116 

 117 

Anti-cytokine ELISA 118 

 Serum reactivities towards interleukin (IL)-22, IL-17A, IL-17F, IFN-omega and IFN-alpha2A 119 

(all from R and D Systems, Minneapolis, MN), were evaluated in both APS 1 and OAE patients using 120 

ELISAs, as previously reported (12), with either anti-human IgG or IgM alkaline phosphatase-121 



conjugate (Sigma-Aldrich, Poole, UK) as the secondary antibody.  122 

 123 

Tissues 124 

Tissue samples were extracted from post-operative fragments with the patients’ written 125 

consent or from post-mortem samples. Adrenal tissue was obtained from adrenalectomies performed 126 

during nephrectomies for kidney adenocarcinoma; none of the adrenal tissues had been invaded by 127 

tumors. Pancreas samples were obtained during postmortem dissections within 6 hours of death and 128 

were performed with the approval of the local ethics committee.  129 

 130 

Western blotting and related analytical procedures 131 

One-dimensional electrophoresis (1-DE) or two-dimensional electrophoresis (2-DE) was 132 

performed as described in (14). For immunostaining, the gels were blotted onto Hybond-P PVDF 133 

membranes (Amersham Pharmacia Biotech Europe GmbH, Saclay, France) using a semidry protocol 134 

(8 mA per cm²) as in (14). Dilution of secondary antibodies coupled to peroxidase was1/5000 for anti-135 

human Fc and 1/10000 for anti-human Fcantibodies. Superimposition and alignment of antibody 136 

reactivity was performed using Diversity Database Fingerprint software (version 22; BioRad, 137 

Hercules, CA, USA) for 1-DE and PDQuest software (BioRad) for 2-DE.  138 

 139 

Two-dimensional electrophoresis (2-DE) 140 

Tissue homogenization and 1-DE protein separation were done as previously described (11). 141 

Briefly, 100 mg of each tissue was homogenized in a detergent solution (4% Triton X100, 1X anti-142 

protease cocktail; Sigma, St Louis, MO, USA) and ground using a grinding kit (GE Healthcare) before 143 

protein precipitation with a 2D cleanup kit (GE Healthcare). The supernatant was removed and the 144 

pellet was resuspended in 250 ml of sample buffer (8 M urea/2 M thiourea [Sigma], 4% CHAPS 145 

[Sigma]). Protein concentration was determined using the Bradford assay (BioRad). Proteins (500 mg 146 

per gel) were eluted into rehydration buffer (8 M urea/2 M thiourea [Sigma], 2% CHAPS [Sigma], 147 

DeStreak reagent [15 mg/ml, GE Healthcare] and ampholytes [1% IPG buffer, GE Healthcare]) before 148 

first separation according to their isoelectric points along a nonlinear immobilized pH-gradient (IPG) 149 



strip (pH 3–11 NL, 18 cm long) using an IPGphor III apparatus (GE Healthcare), as described 150 

elsewhere (14). For the second dimension, equilibrated strips were loaded onto 8–18% SDS-151 

polyacrylamide gels and electrophoresis was performed as in (19). One preparative gel was stained 152 

with CBB G-250 (Sigma) and used for spot cutting and protein sequencing. The remaining gels were 153 

electroblotted onto ECL membranes (GE Healthcare).  154 

 155 

In-gel digestion and MALDI-TOF/TOF MS analysis 156 

Protein identification was performed using a ProteineerTM workflow from BrukerDaltonics 157 

(Bremen, Germany). Colloidal Coomassie blue-stained spots were excised from preparative 2D gels 158 

using a spot picker (PROTEINEER sp™) and placed onto 96-well microtiter plates. In-gel digestion 159 

and sample preparation for MALDI-TOF/TOF analysis were performed according to the 160 

manufacturer’s instructions using a digester/spotter robot (PROTEINEER dp™) and a digestion kit 161 

(DP 96 standard kit, BrukerDaltonics). The MALDI target plate (AnchorChip™, BrukerDaltonics) 162 

was covered with a cyanohydroxycinnamic acid (CHCA) matrix (0.3 mg/ml in acetone:ethanol, 3:6 163 

v/v). Extracted peptides were applied directly onto the CHCA matrix thin layer. The molecular mass 164 

measurements were performed in automatic mode using FlexControl™ 22 software on an Ultraflex™ 165 

TOF/TOF instrument (BrukerDaltonics), in the reflection mode for the MALDI-TOF peptide mass 166 

fingerprint (PMF) and in LIFT mode for the MALDI-TOF/TOF peptide fragmentation fingerprint 167 

(PFF). External calibration was performed using a peptide calibration standard kit (BrukerDaltonics). 168 

Peak lists were generated from MS and MS/MS spectra using Flexanalysis™ 24 software 169 

(BrukerDaltonics). Database searches using Mascot (Matrix Science Ltd, London, UK) and PMF 170 

datasets were performed via ProteinScape 13 (BrukerDaltonics). Searches were conducted for 171 

monoisotopic peptide masses using the NCBI and Swiss-Prot protein databases and Mascot 172 

(www.matrix-science.com). Various parameters were used for database searches: mammal species, 173 

one missed cleavage, chemical partial modifications (oxidation of methionines, cysteines modified by 174 

carbamidomethylation) and a mass tolerance of 75 ppm and 0.5 Da for fragment ions. Criteria used to 175 

accept the identifications included the probability score and the number of matched peptides 176 

(minimum of 6 peptides).  177 



 178 

Recombinant proteins 179 

GST-tagged full length recombinant proteins were purchased from ABNOVA (Aachen, 180 

Germany): pancreatic amylase (AMY2A, AAH07060); pancreatic triacylglycerol lipase (PNLIP, 181 

AAH14309.1); pancreatic regenerating protein 1 (REG1A, AAH05350); aldose reductase 182 

(AKR1B1AAH00260); peroxiredoxin 2 (PRDX2, AAH00452.1); heat shock cognate 71-kDa protein 183 

(HSPA8, AAH16179). They were all produced in wheat germ cell-free system. Five micrograms were 184 

loaded on SDS-PAGE mini-gels (Biorad), and were processed as described earlier in the western 185 

blotting procedure.  186 

 187 

Statistical analysis 188 

Data were expressed in binary mode (0 = absence of an antigenic band; 1 = presence of an 189 

antigenic band) to analyze IgG and IgM antibody patterns using the Chi-square test (a p value “P”< 190 

5.10-2 was judged as significant). This approach enabled us to select antigens indicative of 191 

qualitatively different immune recognition among the 3 groups, within groups 1 and 2 and within 192 

groups 1 and 3.  193 

 194 

Results 195 

Validation of serum and western blotting procedure 196 

Anti-cytokine antibody reactivity (anti-IFN alpha2A, IFN-omega, anti IFN-lambda1, anti-IL -197 

17A anti-IL -17F, and anti-IL -22) was -evaluated in APS 1 and OAE patients, in order to qualify the 198 

sera of the 2 groups (Supplemental Table 1). IgM anti-cytokine reactivity and IgG anti-IL -17A were 199 

never observed neither in OAE, nor in APS-1 patients. By contrast, IgG anti-IFN-alpha2A, anti-IFN-200 

omega, anti-IL22 and anti-IL -17F were predominantly observed in APS 1 compared to OAE patients 201 

(90%, 80%, 70% versus 27%, 18% and 0%, respectively). Anti-IFN-lambda1 Ab (IgG or IgM) were 202 

never observed in APS 1 or OAE patients (data not shown). 203 

To evaluate the preservation of relevant antigenic targets after the protein extraction procedure 204 

and to test the quality of pancreatic and adrenal tissues as selected targets in this present work, we first 205 



evaluated the ability of monoclonal IgG antibodies to detect representative antigenic markers of these 206 

tissues. As expected, glutamic acid decarboxylase 65 (GAD 65) and steroid 21 hydroxylase 207 

(21OHase) expression was respectively preserved in pancreatic or adrenal tissues. However, NACHT 208 

leucine-rich-repeat protein 5 (NALP 5) expression was not observed in these 2 tissues, in contrast to 209 

the parathyroid tissue (see Supplemental Figure 1).  210 

To enlarge the spectrum of analysis of T-cell-independent and T-cell-dependent self-reactive 211 

Abs, the reactivity of the 2 isotypes IgM and IgG were respectively evaluated towards adrenal and 212 

pancreatic protein extracts. A similar analysis was preliminaril y performed with sera collected in 213 

healthy subjects. As illustrated in Figure1A, each isotype was able to recognize protein bands whose 214 

expression was shared by the 2 tissues (e.g. ~37 kDa for IgG; ~25 kDa for IgM; black arrows). In 215 

addition, each isotype recognized tissue-specific antigens (~50 kDa for IgG in adrenal tissue; ~63-65 216 

kDa for IgM in pancreatic tissue; white arrows in Figure1, A and B). Moreover, a same tissue-specific 217 

antigenic band was recognized by the 2 isotypes (~20 kDa for adrenal tissue; ~60 kDA for pancreatic 218 

tissue; black arrows in Figure1B).  219 

 220 

Serum self-IgG and -IgM reactivities restrictively observed in APS 1 patients 221 

As shown in Figure 2, serum self-IgG and -IgM responses against adrenal and/or pancreas 222 

protein extracts were quantitatively (numbers of bands) and qualitatively (molecular mass of 223 

recognized bands) heterogeneous within subjects, indicating that inter-individual variability occurs. 224 

Firstly, there were more antigenic bands in patients with APS 1 or OAE than in healthy controls. 225 

When we considered all the sera studied, serum self-IgM reactivity was quantitatively greater than 226 

self-IgG reactivity against both extracts, in both groups of patients. For pancreatic extracts, 82 227 

different antigenic bands were identified in self-IgM patterns, while 56 bands were noted in self-IgG 228 

patterns (P<0. 001). Moreover, for adrenal extracts, 71 antigenic bands were identified in self-IgM 229 

patterns, while only 45 bands were noted for self-IgG patterns (P<0. 001). A similar difference was 230 

observed in all groups (APS 1, OAE and healthy subjects). In addition, some antigenic bands detected 231 

either in adrenal or in pancreatic tissues were common in all sera collected (black arrows in Figure2, A 232 

and B).  233 



Marking of antigenic bands related to 21OHase for adrenal extracts and GAD65 for pancreatic 234 

extracts revealed a co-alignment of bands only detectable in some APS 1 and OAE patients and never 235 

detectable in healthy subjects (see Supplemental Table 2). Immune reactivity against 21OHase or 236 

GAD65 was only observed when patients presented adrenal or pancreatic autoimmune diseases. 237 

Compared to classical assays performed in routine to define specific Abs towards theses Ag, western 238 

blotting procedure is less sensitive. In spite of the singularity found in each pattern, variabilities 239 

related to a specific group were observed. Thus, some antigenic bands were only detected on adrenal 240 

and/or on pancreatic extracts in APS 1 patients when IgG and/or IgM isotypes were evaluated. We 241 

then focused statistical analysis (i) on reactivities observed on adrenal tissue in APS 1 and OAE 242 

patients when adrenal insufficiency occurred in these 2 groups, and (ii ) on reactivities observed on 243 

pancreatic tissue in APS 1 and OAE patients when pancreatic insufficiency occurred in these 2 groups. 244 

In these 2 situations, specific reactivities towards either adrenal or pancreatic tissues were specifically 245 

observed in APS 1 group. 246 

The presence or absence of protein bands of reactivity was evaluated for each tissue. 247 

Computer-assisted alignment and additional statistical studies allowed us to localize singular IgG 248 

and/or IgM bands of reactivity detected in adrenals (p66, p36 and p25) and in pancreas (p55, p53 and 249 

p22) (thin black arrows in Figure2, A and B). For self-IgG patterns (see Supplemental Figure 2A), the 250 

Chi-square test identified 2 bands unique to adrenal tissue (Ad p36 and Ad p25) and 2 bands unique to 251 

pancreatic tissue (Pc p55 and Pc p53), which were significantly more often recognized by APS 1 252 

patients, compared to OAE patients and healthy controls. For self-IgM patterns (see Supplemental 253 

Figure 2B), the Chi-square test identified 2 bands unique to adrenal tissue (Ad p66 and Ad p25) and 2 254 

bands unique to pancreatic tissue (Pc p53 and Pc p22), which were significantly more often recognized 255 

by APS 1patients compared to the other two groups. Thus two protein bands (Ad p25 and Pc p53) 256 

were recognized both by IgG and IgM.  257 

 258 

Characterization of discriminant antigenic bands of reactivity 259 

To further characterize the discriminant bands of reactivity, we used a serological proteomic 260 

approach. Identification of antigenic targets of such reactivities was first performed by comparing 1-D 261 



and 2-D immune patterns. Sera were used to identify antigenic candidates on a proteomic map 262 

obtained after 2-D electrophoresis performed for each tissue. Two-dimensional electrophoresis 263 

followed by immunoblotting revealed the presence of multiple antigenic spots for pancreatic (Figure3) 264 

and adrenal protein extracts (Figure4). Then, superimposition of antigenic spots and protein spots 265 

revealed by a standard colloidal Coomassie blue-stained two-dimensional gel electrophoresis enabled 266 

us to select proteins for further in-gel digestion and MALDI-TOF/TOFanalysis on the basis of peptide 267 

mass matching (19).  268 

This approach enabled us to identify some proteins as potent discriminant antigens for each 269 

tissue using the SWISS-PROT database (Table 2). The antigens identified in our study were either 270 

tissue-specific or ubiquitous proteins. Some antigens were targeted both by self-reactive IgM and IgG 271 

reactivities: one for adrenal tissue, and 2 for pancreatic tissue. As shown in (Figure 3 and Table 2), 272 

pancreatic (Pc) p55 was characterized as pancreatic Į-amylase (P04746), Pc p53 as pancreatic 273 

triacylglycerol lipase (P16233), and Pc p22 as pancreatic regenerating protein 1 (P05451). 274 

Furthermore, adrenal (Ad) p66 was characterized as heat shock cognate 71-kDa protein (P11142), Ad 275 

p36 as aldose reductase (P15121) and Ad p25 as peroxiredoxin-2 (P32119) (Figure 4 and Table 2). 276 

 277 

Evaluation of discriminant reactivities observed in APS 1 patients against targeted recombinant 278 

proteins 279 

In order to strengthen the data observed on tissue-extracted proteins, we performed 1-D blotting with 280 

recombinant proteins identified by the 2-D approach. Both IgG and IgM reactivities were tested in all 281 

APS 1 sera against the 6 discriminant antigens.  282 

For the IgG isotype, and except for lipase, the autoreactivity frequency was similar between tissue 283 

protein extracts and recombinant proteins (Table 3). Moreover, in terms of presence or absence of 284 

reactivity, concordance levels were higher than 80% when IgG reactivities were evaluated either on 285 

tissue extract or recombinant proteins. For the IgM isotype, whatever the frequencies observed, the 286 

concordance in terms of presence or absence of reactivity was lower than 75% (Table 3).  287 

 288 

Discussion 289 



In previous studies, specific serum autoAbs were usually investigated by techniques using 290 

purified self-Ags and/or relevant peptides from preselected targets (20). We previously demonstrated 291 

the value of using a large panel of antigens derived from different tissue extracts to analyze the serum 292 

autoAb repertoire in organ-specific autoimmune disease (13, 15). Using this approach, we illustrated 293 

that the specific antibody response associated with a pathological condition could be rich and diverse 294 

and not only focalized on a restricted set of antigenic targets. Among the different reactivities, some of 295 

them could constitute a specific pathological signature of the disease. In this study, we aimed to 296 

analyze the diversity of the autoantibody repertoire in APS 1, not for diagnostic purposes, but to 297 

appreciate potential biases specifically associated with this condition. APS 1 is classically described as 298 

an Aire-mediated T-dependent disease. In this view, we performed a specific analysis of both the IgG- 299 

and IgM-specific auto-antibody repertoires in APS 1 patients versus controls, to evaluate the specific 300 

distortion restricted to the IgG repertoire in this disease, whereas the IgM patterns were attempted not 301 

to be changed.  302 

We have first evaluated anti-cytokine Ab reactivity in order to assess whether our patients are 303 

representative of both APS 1 and OAE patients reported elsewhere (12). We chose then to analyze the 304 

autoAb repertoire on both adrenal and pancreatic protein extracts based on the large diversity of 305 

autoAb specificities observed in the sera of APS 1 patients and controls in these tissues. Other tissue 306 

protein extracts have been evaluated (gastric, ovarian, testis, liver, thyroid, parathyroid, skin) (not 307 

shown) and reveals less global reactivity or more homogeneous autoreactive patterns between groups 308 

of patients, as observed previously (10). Moreover, adrenal and pancreatic tissue protein extracts 309 

contained specific antigens which have been described as being targeted by autoAb associated with 310 

clinical manifestations reported in APS 1 and other autoimmune endocrinopathies, such 21OHase and 311 

GAD 65. We have confirmed that, using monoclonal Abs with our western blotting procedure, we 312 

could reveal these specificities in these tissues when Abs were present in serum of individuals. As 313 

expected, we did not reveal NALP5 expression in these 2 tissues, whereas it was observed in the 314 

parathyroid protein extract. Thus, we could not detect anti-NALP5 autoAbs in this study. 315 

We first evaluated the global richness of the immune repertoire. With regard to the IgM 316 

autoAb panels, we observed in all individuals a more diversified repertoire than with IgG, which could 317 



be related to the natural immune repertoire (‘immunculus’) that has been described as being largely 318 

composed of IgM autoAbs (21). By contrast, we observed a more diversified IgG autoAb repertoire in 319 

patients suffering from autoimmune diseases, namely APS 1 and OAE, than in healthy subjects. This 320 

phenomenon could be related to at least two events. First, a specific defect of the educational process 321 

of the immune system leading to the persistence of autoreactive immune cells could contribute to the 322 

enlargement of this autoreactiveAb repertoire in patients. Secondly, the tissue damage associated with 323 

the autoimmune process could contribute to enlarging the panel of autoantigens that are expressed in 324 

altered tissues and presented to these immune cells. This phenomenon may itself contribute both to the 325 

preservation of autoimmune specificities and to the emergence of new autoreactiveAb specificities, 326 

generating a neo-repertoire. These two processes may also act by a summation effect.  327 

In a second step, we analyzed the intra-individual variations of the autoreactive patterns 328 

between adrenal and pancreatic tissues. We observed that some IgM or IgG reactivities were co-329 

aligned between the two tissues, suggesting that a cluster of widely distributed auto-antigens could be 330 

targeted by these reactivities. By contrast, some bands of reactivity were exclusively observed on 331 

either the adrenal or the pancreatic protein extracts, suggesting tissue-specific autoimmune targeting. 332 

We next studied the inter-individual variations of the autoreactive patterns independently on the 333 

adrenal or pancreatic tissues. Whereas we did not observe any difference in terms of number of bands 334 

of reactivity between APS 1 and OAE, we hypothesized that qualitative distortions could be 335 

specifically associated with the Aire-related pathological process in APS 1. This condition is described 336 

as a T-dependent autoimmune disorder which preferentially impacts the IgG autoAb repertoire. 337 

Surprisingly, in APS 1 patients compared to the 2 control groups, our approach demonstrated as much 338 

as specific distortions in IgM repertoire that in IgG repertoire. In our study, some IgM specificities 339 

were shared by different APS 1 patients, suggesting that the autoreactivities supported by this isotype 340 

are sustainable and not transitory reactivity brought to switch to the IgG class. Several studies have 341 

reported an extrathymic expression of Aire that influenced the T-cell repertoire(3, 5). Our data suggest 342 

that Aire expression deficiency in peripheral lymphoid organs could also impact the autoreactive IgM 343 

repertoire. Sustained IgM production by B cells has been associated with two different B-cell 344 

subpopulations in humans. It has been reported that during germinal center differentiation, follicular B 345 



cells could maturate into long-lasting IgM-expressing memory B cells through T-dependent 346 

mechanisms (22). By contrast, T-independent mechanisms generate marginal zone B cells which 347 

produce IgM in response to non-peptidic epitopes (23, 24). Interestingly, numerous studies have 348 

focused on changes affecting B-cell homeostasis and T-cell-independent marginal zone (MZ) B-cell 349 

subsets in Aire-/- mice (25–28). In addition, recent studies have underlined the fact that Aire can 350 

regulate T-cell-independent B-cell responses through B-cell-activating factor of the TNF family 351 

(BAFF) (28).  352 

 Using a serological proteomic approach, we did not observe any discriminant reactivities 353 

towards 21OHase or GAD specifically associated with APS 1 condition. These results could be related 354 

to the presence of common reactivities in the control group of patients with other autoimmune 355 

endocrinopathies, since both antibodies could be observed in both APS 1 and other 356 

polyendocrinopathies. By contrast, we noted that some reactivity were statistically more observed in 357 

the APS 1 group. They targeted tissue-specific antigens such as amylase, lipase and pancreatic 358 

regenerating protein 1 alpha. They also recognized three ubiquitous antigens: peroxyredoxine-2, heat 359 

shock cognate 71-kDa protein and aldose reductase. The discriminant recognition of amylase, lipase 360 

and pancreatic regenerating protein 1 alpha emphasizes pancreatic exocrine dysfunctions widely 361 

evoked either in APS 1 patients who could develop malabsorption caused by several mechanisms such 362 

as exocrine pancreatic insufficiency (29–35) or in experimental models such as NOD Aire-deficient 363 

mice (5, 36).  364 

The discriminant targeting of aldose reductase, a ubiquitous protein mainly expressed in 365 

adrenal glands (37), by IgG Abs in APS 1 patients, requires consideration. It has been shown that the 366 

expression of aldose reductase is regulated by Aire in mTECs in mice (5). In addition, the Aire-367 

dependent expression of other ubiquitous Ags has also been described in eTACs localized in lymph 368 

nodes and the spleen (3). Multi-organ inflammation in Aire-deficient models is also known to be 369 

associated with the presence of serum autoAbs against proteins specifically produced by these organs. 370 

In our study, the discriminant targeting of some ubiquitous antigens, such as peroxyredoxine-2 and 371 

heat shock cognate 71-kDa protein, could be indicative of endogenous danger signals involving 372 

cellular oxidative stress. It can be compared to biomarkers previously described in systemic 373 



autoimmune disorders (38, 39). 374 

In parallel with the combination of reactivities classically associated with APS 1 diagnosis, 375 

our data highlight some biomarkers that could be associated with a particular tissue alteration 376 

(exocrine pancreatic-specific antigens) or more general pathological processes associated with 377 

autoimmune diseases. We aimed to design an in vitro assay to evaluate the presence of these 378 

reactivities, using recombinant antigens. IgG reactivities towards amylase, aldose reductase and 379 

peroxyredoxine-2 were also observed in APS 1 patients when we used recombinant proteins as targets. 380 

By contrast, IgM reactivities against HSP71, REG-1A, and lipase were not concordantly observed 381 

between tissue extracts and recombinant proteins. When detected, such IgM reactivities were 382 

systematically observed at a lower frequency when we used recombinant proteins. Such a discrepancy 383 

between the immunoproteomic approach and an in vitro assay using recombinant targets has 384 

previously been observed (40). To avoid the impact of folding on antigenic recognition, we chose to 385 

use the same one-dimensional electrophoresis experimental procedure. The denaturing conditions lead 386 

to the linearization of proteins whatever their origin: tissue extracts or purified wheat germ 387 

recombinant proteins. Nevertheless, the presence of post transcriptional modifications (PTMs), such as 388 

glycosylation, on the targeted antigens could support these observations. Eukaryotic PTMs are not 389 

observed in the wheat germ expression system, so that specific modifications of native proteins are not 390 

present on the recombinant protein. Interestingly, we observed a major reactivity discrepancy when we 391 

focused on the IgM isotype. Once again, these observations could highlight the impact of the thymo-392 

independent processes associated with the dynamic changes in the IgM repertoire in APS 1 patients. 393 

Conventional immunoassays are usually performed with limited antigenic targets, the choice 394 

of which has been driven by a supposedly well-known physiopathogenic rationale. Advances in 395 

proteomic methodologies (in vitro gene expression, 2-DE and mass spectrometry) have allowed the 396 

emergence of broad spectrum analysis methods. These approaches have been developed to overcome 397 

the limits of conventional methods. Based on a “without any a priori” strategy, they offer a 398 

simultaneous analysis of a large spectrum of reactivities, which surpasses the physiopathogenic 399 

hypotheses and offers an integrative interpretation of results. When applied to the APS 1 condition, 400 

this immunoproteomic methodology not only reveals the expected IgG repertoire biases, it also 401 



identifies IgM repertoire distortions. The latter alterations could be partially associated with T-402 

independent immunological events related to the impact of post-translational modifications of 403 

antigens. Our results highlight the fact that AIRE also impacts the presentation of thymo-independent 404 

antigens. It points out that autoimmune alterations observed in APS 1 are not only related to Aire-405 

driven T-cell clonal deletion deficiency. At an individual level, this approach highlighted original 406 

antigenic targets, potentially associated with tissue injury and cellular dysfunctions related to the 407 

singular clinical evolution in each patient.  408 

  409 
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Table 1.Main Clinical Characteristics of APS 1 and OAE patients.AIRE gene mutations are detailed in APS 1 patients. 

 

 

Patient 
Age 

(Gender) 
AIRE gene mutations Clinical manifestations 

Autoantibodies 
TPO TG TBII GAD IA2 21 OHase GPC tTg  

APS 1            
1 37 (F) c.967_979del13 / c.967_979del13 HPT, AI, DM, OI, PA, C, A, K    + + + +  
2 28 (M) c.1193delC / c.1193delC HPT, AI, PA, C, M + +    +   
3* 42 (F) c. 1097 C>T / c. 769 C>T HPT, AI, OI, PA, C         
4 52 (M) c.769C>T/c.967_979del13 HPT, AI, C, A, K +        

5** 31 (F) c.967_979del13 / c.967_979del13 HPT, AI, OI, PA, C, A      +   
6** 26 (M) c.967_979del13/ c.967_979del13 C, A, K         
7 25 (M) c.966_978del13 / c.967_979del13 HPT, AI, C, A      +   
8 23 (M) c.967_979del13 / c.967_979del13 AI, DM, C, A,M    +     
9 51 (M) c.769C>T/c.14-1-28G>C HPT, AI, M, C    +  +   
10 15 (M) c.967_979del13 / c.967_979del13 AI, C, A, M    +     
11 9 (M) c.769C>T/c.967_979del13 AI, C, A      +   
12 32 (M) c.967_979del13/ c.967_979del13 HPT, AI, T, A, K, C + +  +  +   
13 39 (F) c.967_979del13 / c.967_979del13 AI, OI, C  +       
14* 57 (F) c. 1097 C>T / c. 769 C>T HPT  +       

OAE            
15 25 (F) ND T, OI + +       
16 25 (F) ND DM, PA, M    + +   + 
17 60 (M) ND HPT, T, PA + +     +  
18 62 (F) ND T, OI, PA + +     +  
19 57 (F) ND DM, T, PA + +  +   +  
20 74 (F) ND AI, DM, T + +    +   
21 56 (F) ND DM, T, M + +  + +   + 
22 23 (F) ND T +        
23 63 (M) ND AI, DM, T + +    +   
24 47 (F) ND AI, T + + +   +   
25 43 (F) ND AI, DM, T + + +      
26 54 (F) ND AI, T + +    +   
27 48 (M) ND DM, M         
28 35 (F) ND T + + +      
29 61 (M) ND T, PA + + +    +  

30*** 39 (M) ND AI      +   
31*** 37 (M) ND AI         



 

Clinical manifestations: HPT: Hypoparathyroidism; AI: Adrenal insufficiency; DM: Diabetes mellitus; T: Thyroiditis; OI: Ovarian insufficiency; PA: Pernicious anemia; 

M: Malabsorption; K : Keratitis; A: Alopecia; C: Candidiasis.  

Specific Antibodies: TPO: anti-thyroperoxidase; TG: anti-thyroglobulin; TBII: thyroid-binding inhibitory immunoglobulin; GAD : anti-glutamic acid decarboxylase 65 

(GAD 65) ; IA2: antityrosine phosphatase; 21 OHase : anti-steroid 21 hydroxylase ; GPC: anti-gastric parietal cells; tTg: anti-tissular Transglutaminase  

 

M = male, F = female; ND = not done; * siblings, ** siblings, *** siblings. 

  



Table 2. Characterization of Discriminant Antigens by MS and MS/MS. Antigens Preferentially Recognized by APS 1 Patients (Chi-2 test results). 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Name of 
antigenic 

band 

Isotype 
concerned 

UniProtKB/ 
Swiss-Prot 
references 

Name 
Theoretical mass 

(Observed mass) (kDa) 
Theoretical IP 
(Observed IP) 

MS 
Mascot 
Score  

MS 
Sequence 
coverage 

MS/MS 
Mascot 
Score  

MS/MS 
Sequence 
coverage 

ADRENAL TISSUE         

Ad p66 IgM P11142 
Heat shock cognate 71-kDa 

protein 
70.7 (66) 5.4 (5.3-5.5) 169 33.3 217;8 6.32 

Ad p36 IgG P15121 Aldose reductase 35.7 (36) 6.6 (6.1-6.9) 191 50.2 132.7 12.69 
Ad p25 IgM/IgG P32119 Peroxiredoxin-2 21.7 (25) 5.6 (5.6) 190 53.3 537.8 33.5 

PANCREATIC TISSUE         
Pc p55 IgG P04746 Pancreatic Į-amylase 57.7 (55) 6.7 (7.1) 201 45.6 338 2.77 

Pc p53 IgM/IgG P16233 
Pancreatic triacylglycerol 

lipase 
49.5 (53) 6.2 (7.0) 187 68.9 561.7 16.7 

Pc p22 IgM P05451 
Pancreatic regenerating 

protein 1 alpha 
18.7 (22) 5.6 (5.5) 120 54 365.5 30.7 



Table 3. Level of Concordance of Autoreactivity According to the Origin of the Antigens (Tissue or Recombinant) and to the Isotype (IgG or IgM) 
 

    Autoreactivity frequency   Concordance level 

Target Isotype 
in 

tissue 
on recombinant 

 protein 
  

Presence of 
reactivity 

Absence of  
reactivity 

Adrenal tissue             

Heat shock cognate 71-kDa protein IgM 50% 50%   60% 40% 

Aldose reductase IgG 40% 50%   100% 85% 

Peroxiredoxine-2 
IgG 50% 60%   100% 80% 

IgM 40% 40%   75% 85% 

Pancreatic tissue             

Pancreatic alpha-amylase IgG 100% 90%   90% - 

Pancreatic triacylglycerol lipase 
IgG 100% 40%   40% - 

IgM 50% 30%   30% 71% 

Pancreatic regenerating protein 1 alpha IgM 50% 0%   0% 100% 

 
  



Supplemental table 1. Frequency of detection of IgG and IgM anti-IFN-alpha2A, anti-IFN –omega, anti-IL -22, anti-IL -17A and anti-IL -17F antibodies in APS 1 and 
OAE patients  
 

 IFN-alpha2A IFN –omega IL -22 IL -17A IL -17F 

 
IgG IgM IgG IgM IgG IgM IgG IgM IgG IgM 

APS 1 patients 90% 0% 40% 0% 80% 0% 0% 0% 70% 0% 
OAE patients 27% 0% 0% 0% 18% 0% 0% 0% 0% 0% 

 
  



Supplemental table 2.Frequency of detection of a co-alignment with anti 21 OHase and anti GAD65 IgG monoclonal antibodies in APS 1 patients, OAE patients and 
healthy controls. 
 

 
GAD65  21OHase 

 
IgG IgM  IgG IgM 

APS 1 patients 33% 25%  60% 0% 
OAE patients 40% 26%  46% 0% 
Healthy controls 0% 0%  0% 0% 

 
 
 
 


