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ABSTRACT

Observations suggest that twisted magnetic flux tubes are ubiquitous in the Sun’s atmosphere. The main aim of this
work is to advance the study of axisymmetric modes of magnetic flux tubes by modeling both twisted internal and
external magnetic fields, when the magnetic twist is weak. In this work, we solve the derived wave equations
numerically assuming that the twist outside the tube is inversely proportional to the distance from its boundary. We
also study the case of a constant magnetic twist outside the tube and solve these equations analytically. We show
that the solution for a constant twist outside the tube is a good approximation for the case where the magnetic twist
is proportional to 1/r, namely, the error is in all cases less than 5.4%. The solution is in excellent agreement with
solutions to simpler models of twisted magnetic flux tubes, i.e., without external magnetic twist. It is shown that
axisymmetric Alfvén waves are naturally coupled with magnetic twist as the azimuthal component of the velocity
perturbation is nonzero. We compared our theoretical results with observations and comment on what the Doppler
signature of these modes is expected to be. Lastly, we argue that the character of axisymmetric waves in twisted
magnetic flux tubes can lead to false positives in identifying observations with axisymmetric Alfvén waves.
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1. INTRODUCTION

There is ample evidence of twisted magnetic fields in the
solar atmosphere and below. For instance, it has been
suggested that magnetic flux tubes are twisted while rising
through the convection zone (see, e.g., Murray & Hood 2008;
Hood et al. 2009; Luoni et al. 2011). Brown et al. (2003), Yan
& Qu (2007), and Kazachenko et al. (2009) have shown that
sunspots exhibit a relatively uniform rotation, which in turn
twists the magnetic field lines emerging from the umbra.
Several studies argue that the chromosphere is also permeated
by structures that appear to exhibit torsional motion (De
Pontieu et al. 2012; Sekse et al. 2013). These structures, known
as type II spicules, were initially identified by De Pontieu et al.
(2007). De Pontieu et al. (2012) show that spicules exhibit a
dynamical behavior that has three characteristic compo-
nents: (i) flows aligned to the magnetic field, (ii) torsional
motion, and (iii) what the authors describe as swaying motion.
Also, recent evidence shows that twist and Alfvén waves
present an important mechanism of energy transport from the
photosphere to the corona (Wedemeyer-Bohm et al. 2012). The
increasing body of observational evidence of magnetic twist in
the solar atmosphere, in combination with ubiquitous observa-
tions of sausage waves (Morton et al. 2012), reinforces the
importance of refining our theoretical understanding of waves
in twisted magnetic and especially axisymmetric modes, as
these could be easily perceived as torsional Alfvén waves.

Early studies of twisted magnetic flux tubes focused on
stability analyses. For example, Shafranov (1957) investigated
the stability of magnetic flux tubes with the azimuthal
component of magnetic field proportional to r inside the
cylinder and no magnetic twist outside. Kruskal et al. (1958)
derived approximate solutions for magnetic flux tubes with no
internal twist embedded in an environment with B, oc 1/r.
Bennett et al. (1999) obtained solutions for the sausage mode

for stable uniformly twisted magnetic flux tubes with no
external twist, and Erdélyi & Fedun (2006) extended the
analysis for the uncompressible case of constant twist outside
the flux tube. The authors also examined the impact of twist on
the oscillation periods in comparison to earlier studies (e.g.,
Edwin & Roberts 1983) considering magnetic flux tubes with
no twist. In a subsequent work Erdélyi & Fedun (2007)
extended their results in Erdélyi & Fedun (2006) to the
compressible case for the sausage mode with no twist outside
the tube. Karami & Bahari (2010) investigated modes in
incompressible flux tubes. The twist was considered to be xr
for all r, which is unphysical for r — oo, while the density
profile considered was piecewise constant with a linear
function connecting the internal and external densities. The
authors revealed that the wave frequencies for the kink and
fluting modes are directly proportional to the magnetic twist.
Also, the bandwidth of the fundamental kink body mode
increases proportionally to the magnetic twist. Terradas &
Goossens (2012) investigated twisted flux tubes with magnetic
twist localized within a toroidal region of the flux tube and zero
everywhere else. Terradas & Goossens (2012) argue that for
small twist the main effect of standing oscillations is the change
in polarization of the velocity perturbation in the plane
perpendicular to the longitudinal dimension (z-coordinate).

In this work we study axisymmetric modes, namely,
eigenmodes corresponding to k, = 0, where k, is the
azimuthal wavenumber in cylindrical geometry.® The azi-
muthal magnetic field inside the tube is ocr, while the azimuthal
field outside is constant. If there is a current along the tube,
according to the Biot—Savart law this current will give rise to a
twist proportional to r inside the flux tube and a twist inversely
proportional to » outside. For this reason we start our analysis

4 k, is often denoted as m in a number of other works.
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by assuming a magnetic twist outside the tube proportional to
1/r, and we insert a perturbation parameter that can be used to
revert to the case with constant twist. Subsequently, we present
an exact solution for the case with constant twist outside the
tube and solve numerically for the case with magnetic twist
proportional to 1/r. Then, we compare the numerical solution
for 1/r with the exact solution for constant twist. Based on the
obtained estimated standard error, the solution corresponding to
weak constant twist appears to be a good approximation to the
solution with weak magnetic twist that is proportional to 1/7.
In the case where there is a preexisting twist inside the cylinder,
assuming that this twist is uniform, this will give rise to a
current, which in turn will create the external twist that is again
inversely proportional to the distance from the cylinder. The
latter case may occur, for example, as a result of vortical
footpoint motions on the photosphere (Ruderman et al. 1997).
Recent observational evidence (e.g., Morton et al. 2013) put the
assumptions of Ruderman et al. (1997) on a good basis; how-
ever, the vortical motions in Morton et al. (2013) are not
divergence free, which means that the same mechanism can be
responsible for the axisymmetric modes studied in this work.

The rest of this paper is organized as follows. In Section 2
we describe the model geometry and MHD equations
employed. In Section 3 we derive the dispersion relation for
k, = 0, and in Section 3.3 we explore limiting cases connect-
ing the results in this work with previous models. Furthermore,
in Section 4 we study a number of physically relevant cases and
elaborate on the results. In Section 5 we reflect on the
applicability and potential limitations of the presented model,
and in Section 6 we summarize and conclude this work.

2. MODEL GEOMETRY AND BASIC EQUATIONS

The single-fluid linearized ideal MHD equations in the force
formalism are (Kadomtsev 1966)

2
p8 % + Viép + L((SB x (V x B)
or? Ho
+ B x (V x 6B)) =0, (la)
op + 6€ - Vp + pV - 66 =0, (1b)
SB+ V x (B x 8¢ =0, (1¢)

where p, p, and B are the density, kinetic pressure, and
magnetic field, respectively, at equilibrium; 6§ is the Lagran-
gian displacement vector; dp and 6B are the pressure and
magnetic field perturbation, respectively; v is the ratio of
specific heats (taken to be 5/3 in this work); and ftg is the
permeability of free space. In this study we employ cylindrical
coordinates  (r, ¢, z) and therefore 6§ = (6¢,, 68, OE,),
OB = (0B,, 6B, 0B;). In what follows an index i indicates
quantities inside the flux tube (r < r,), while variables indexed
by e refer to the environment outside the flux tube (r > r,).
The model geometry is illustrated in Figure 1 when B, oc 1/7.
For static equilibrium,

V-B=0, 2a)

J = LV X B, (2b)
Ho

Vp =J x B. (2¢)
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We assume that p, p, and B have only an r-dependence. We
consider a magnetic field of the following form:

B = (0, B,(r), B.(r)). (3)

Note that in cylindrical coordinates, Equation (2a) is identically
satisfied. Then, Equation (2b) expands to

aB, 14(rB;)
J - 0’ - Z’ - ) 4
Ho ( dr r dr ®
and based on Equation (4), Equation (2¢) becomes
Vp = 7&%7ﬁd(r3¢) 5)
po Or  por dr T

Therefore, the pressure in the ¢ and z directions is constant and
the magnetic field and the plasma pressure must satisfy the
following pressure balance equation in the r direction:

B? + B? B?
i p+ LR R S—) (6)
dr 24 Mot

For a magnetic flux tube of radius 7,, according to the Biot—
Savart law (for k = 1 in Equation (7)) a reasonable assumption
for the form of the magnetic field is

(0, Sir, Bzi) forr < r,

B = ) @)
(0, n}*"Se/r’*‘, Bze) for r > r,,

where B;;, B,., S;, and S, are constants and ~ is a perturbation
parameter. The perturbation parameter has been inserted in
Equation (7) in such a way as to preserve dimensional
consistency. The constant S; can be determined by application
of the Biot—Savart law and is therefore taken to be

tol

Si=—1—
2 e

®)

where [ is the current. By substituting Equation (7) into
Equation (6), we obtain

S2
—’(ra2 — r2) +p, for r < r,,
p(r) = Ho
pAATROS2 (1 —2k) (1 1
>~ T +p, forr >r,
2ok re" "

©))

where p, is the pressure at the boundary of the magnetic flux
tube. The constant, S,, is equal to S;; however, we choose to
maintain the notational distinction so that we can separate the
internal and external environments to the flux tube, which helps
us validate our results with previous work (e.g., Erdélyi &
Fedun 2007).

2.1. Governing Equations

The solution of the system of equations shown in
Equation (1), in cylindrical coordinates, can be found by
Fourier decomposition of the perturbed components,
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Figure 1. Model illustration. Straight magnetic cylinder with variable twist inside (r < r,) and outside (r > r,), where 7, is the tube radius and p;, p;, and 7; are the
density, pressure, and temperature at equilibrium inside the tube, respectively. The corresponding quantities outside the tube are denoted with a subscript e. B, is
continuous across the tube boundary. The dark blue surface inside the magnetic cylinder represents the influence of B, oc r. The yellow surface outside the cylinder
illustrates the B, o< 1/r dependence. The dashed red rectangle represents a magnetic surface with only a longitudinal (z) magnetic field component.

namely, the perturbed quantities are taken to be
8, Spy o ef(kewthea—ur), (10)

where w is the angular frequency, k, is the azimuthal
wavenumber for which only integer values are allowed, and
k, is the longitudinal wavenumber in the z direction. The
Eulerian total pressure perturbation is Op; = op + BB/,
which is obtained by linearization of the total pressure:
pr = (P + 6p) + (B + 6B)*/(2u,), where p is the equili-
brium kinetic pressure. Note that for the sausage mode,
considered in this work, the azimuthal wavenumber is k, = 0.
Combining Equation (1) with Equation (10), we obtain the
equation initially derived by Hain & Lust (1958) and later by
Goedbloed (1971) and Sakurai et al. (1991), to name but a few.
This equation can be reformulated as two coupled first-order
differential equations,

d(rs
D% = G(r6€,) — rCsbpy, (11a)
r
p%Pr _ Loty — Gopy, (11b)
dr r

and the multiplicative factors are defined as

D = p(w? — w})Cu, (12a)

2B k
G = N—f(m“Bw - 7% c4), (12b)
0
k2
C=uwt— (kf + r—‘;’JQ, (12¢)
2B B
G=pD|w? — W+ _wi(_w)
fop dr\ r
B 4B*W%
+ A= — pCi——=, (12d)
Mol ot
Co= (2 + i) (w? — &), (12¢)
where
2
2 Vs 2
wr = s
c Vj + vsz A
2
Ao ti
Hop

k
fy= T“"Bg, + k.B..

Here v, = \/p/p is the sound speed, vy = |B|/ Jiop is the
Alfvén speed, w, is the cusp angular frequency, and wy is the
Alfvén angular frequency. The coupled first-order ordinary



THE ASTROPHYSICAL JOURNAL, 810:53 (12pp), 2015 September 1

differential equations (ODEs) in Equation (11) can be
combined in a single second-order ODE for p; or 6&,. In this
work we choose to use the latter approach, namely,

| b d e G
dr[rCz dr(réﬁ,)]JrlD( ’ Cz)

_4f s -
rdr(rCz)](%r 0. (13)

Using flux coordinates and assuming k., = 0, it can be shown
that (Sakurai et al. 1991)

2

k.B, B
p(w? — wR)sE, = —i“—*”(épr + 2—165,], (14a)
|B| Kol

kB, v}
|B| vf + vf

B2
p(w? — w2)og =i [5pT - 2—%5,]. (14b)
r

Ho

Here (‘5§H and 6¢, are the Lagrangian displacement components
parallel and perpendicular to the magnetic field lines,
respectively. The dominant component of the Lagrangian
displacement vector (&§,, 6§, 6§;) determines the character of
the mode. For the Alfvén mode the 6, component is dominant,
while for the slow and fast magnetoacoustic modes 6§H and 6¢,
is dominant, respectively (Goossens et al. 2011). Equation (14)
suggests that in the presence of magnetic twist the slow and fast
magnetoacoustic modes are coupled to the Alfvén mode even
when k, = 0, namely, the slow and fast modes do not exist
without the Alfvén mode and vice versa. This is because for the
Alfvén mode to be decoupled from the slow and fast
magnetoacoustic modes it is required that for 6§ =0,
0, =0 and 6£H = 0. However, it follows trivially from
Equation (11) that if 6§, = 0, then also ép; = 0, and therefore
from Equation (14) we have that 6§, = 0. From this, it follows
that the Alfvén mode cannot exist without the components
corresponding to the slow and fast magnetoacoustic modes;
hence, the Alfvén mode is coupled with the slow and fast
magnetoacoustic modes. Furthermore, from Equation (14) we
can also see that for a solution, i.e., (w, k;) pair, as w
approaches wy, the 6, component is amplified that leads to the
azimuthal component of the displacement to be accentuated.

3. DISPERSION EQUATION

In this section we follow a standard procedure in deriving a
dispersion equation, namely, we solve Equation (13) inside and
outside the flux tube and match the two solutions using the
boundary conditions. The boundary conditions that must be
satisfied are

8], = 6 |, (15a)
B}, B2,
6[)7",' - _\péé-ri = 6pTe - _*965”3 ’ (ISb)
Kol r—r, ot .

where Equations (15a) and (b) are continuity conditions for the
Lagrangian displacement and total pressure across the tube
boundary, respectively.
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3.1. Solution inside the Flux Tube

The parameters in Equation (12) for the case inside the flux
tube for the sausage mode become

D; = p(w? — wh). (16a)
2

=22 (16b)
o

G, =n? — k2, (16¢)

2 (2.2
G =p; (W2 - szi)z + 4i(Sl “n? - Wixi]} (16d)

HoPi \ HoPi
4
w
niz ~ 72 2 2 2\’ (16¢)
(V + VAi)(W Wci)
where
2 Vsi 2 2 _ 2 Dy
Wei = 5 ZWais WA = k;
Vai T Vg HoP;

The B, component is assumed to be small to avoid the
kink instability (see, e.g., Gerrard et al. 2002; Torok
et al. 2004). This implies B, < B;, and since B, is a
function of r inside (and outside) the tube, we require
sup(B,) < B; = 81, < B;. This condition is satisfied in the
solar atmosphere, so we can use the approximation
Vi = (Bf,- + BY) / (ftop;) ~ B3 / (1o p;). Notice that according
to Equation (9), the pressure depends on r; however, in
this work we assume that the sound speed is constant. This is
because the term that depends on r in Equation (9) is assumed
to be small when compared with p, in solar atmospheric
conditions. To see this, consider that sup(Sr,) = 0.2B, and’
B, ~ (107! — 1079T, T ~ (10* — 109 K, and the number
density n ~ (10% — 10" m=3. This means that® p, ~
(10* — 107 N - m~2 and the term that depends on the radius
is of the order (S7,)?/y ~ (10> — 107*) N - m~2, and there-
fore the constant term p, is ~(10> — 103) times larger when
compared with the term that has an r-dependence. Hence, to a
good approximation, the pressure can be assumed to be
constant. Note that the density is discontinuous across the tube
boundary, and therefore we avoid the Alfvén and slow continua
that lead to resonant absorption.

Substitution of the parameters in Equation (16) into
Equation (13) leads to the following second-order differential
equation (see, e.g., Erdélyi & Fedun 2007):

R2

2 2
a0, | R4S |y 4 Ky prélse =0, a7
dR? dR k2

Z

5 In the following expressions the left number corresponds to typical values
on the photosphere, while the right number corresponds to typical values of the
quantity in the corona.

Here we use p = nkgT.
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where
R=k,r,
k2 (kzzvszz )(kszl wz)
" (vﬁi—k vsi)(ksz, wz) ’
_ 48%n?
2D (1 - a?)
2 _ 451'2‘03\1‘
MoM(Wz - Wii)2
2.2
2 _ _ VaiVsi
T

Here k, = k.(1 — a?)!'/2 is the effective longitudinal wave-
number and vy; is the internal tube speed. Equation (17) was
derived and solved before by Erdélyi & Fedun (2007). The
solution is expressed in terms of Kummer functions (Abramo-
witz & Stegun 2012) as follows:

06, (s) = Ay e"2M (a, b; s)
§l/2
+A2W6 /20 (a, b; s), (18)

and the parameters a, b, and the variable s are defined as

k2
a=1 + Tgl/z,
b=2,
s = R2E'/?
— K2EV,

and A;; and A;; are constants. Furthermore, the total pressure
perturbation dp; is

kaDi ze“‘/z[ni + stM(a, b; s)

opr () = Ain—
ng — z

—2M(a, b — 1; 5)]

kD /z[n,—i—k
Pk :

—-2(1 —a)U(a, b — 15 9)].

+ Ap sU (a, b; s)

n

Now, considering that solutions at the axis of the flux tube,
namely, at » = 0, must be finite, we take A;; = 0, and so

1/2
66, (s) = 'We /M (a, b; s), (19a)

kaDi v/z[”' kM, by 5)

5PT,~ ()= Ailz—k2

i Tz z

—2M(a, b — 1; 9)]. (19b)

Note that the corresponding equation to Equation (196) had a
typographical error in Erdélyi & Fedun (2007; see Equation
(13) in that work).
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3.2. Solution outside the Flux Tube

The multiplicative factors in Equation (12) outside of the
flux tube for the sausage mode, k, = 0, become

D, = pe(u)2 — wie), (20a)

2(1+kK) g2
2r( h)S 2

G = Wne, (20b)
0
G = nez — kzz, (20¢)
G= g — Ao
4raz(1+H)Sez raz(lﬂc)sez ,
+ 1or2 0 | o2 1,
1+ &
- phe - p 2 (w2 wie)], (20d)
4
2 w
n,Z = , (20¢)
(Vsze + Vzie)(w2 - wge)
where
wge = 2 VSE 2 wzz‘\e’ wzzﬁ\e = k2 =
VAe + Vse Nope

Equation (13) with Equation (20) for x = 1 corresponds to
B, ~ 1/r; however, the resulting ODE is difficult to solve. By
setting x = 0, we obtain the case for constant twist outside the
tube, which is also a zeroth-order approximation to the problem
with Kk =1 (Bender & Orszag 1999). Note that it is
unconventional to use only the zeroth-order term in perturba-
tive methods; therefore, to establish the validity of the
approximation, we estimate the error by solving for k = 1
numerically. The estimated error is quoted in the caption of the
dispersion diagrams in this work, and the process that we
followed to obtain this is described in Appendix B. Substituting
the parameters given in Equation (20) into Equation (13), we
have

2

rzd—éfr + r% — (krze r?
dr? dr
+ 12(k; 1))6¢, = 0, (21)

where k2 and /2 are given as follows:

kr = —(n? — k2), (22)
2(14r) g2, 2 2
a e ’"e "7

F201+5) 2
vir;r)=1+2 "2D2 i {2r

’,2&

+ e[ @he(nZ G + 1) = K21 = )
— (n2 +K2)(1 + m)wz]}. (23)

Note that ©2(0; r) is independent of r. Therefore, for K — 0,
Equation (21) is transformed to either the Bessel equation for
k2 < 0 or the modified Bessel equation for k2 > 0. It should
be noted that n? = kzz, namely, k2 = 0, is prohibited since
during the derivation of Equation (21) it was assumed that
nZ = kz2 to simplify the resulting equation. Therefore, the
solution to Equation (21) for k — 0, and assuming no energy
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propagation away from or toward the cylinder (k2 > 0), is
6€r (r) = AelKu(kre r) + A€2[l/ (kre }’). (24)

On physical grounds we require the solution to be evanescent,
ie, 6, (r) — 0 as r— 0, and therefore we must have
A, = 0, namely,

08, (r) =

and, from Equation (11a), the total pressure perturbation ép, is

AelKV(kre r)’ (25)

to(1 — v)D, — 2r282n?
Or(kz2 — nez)
D,

Dok r)). 26)

re

6pTe = Ael Kz/(kre r)

Note that, for the case k,ﬁ > 0 and S, — 0, namely, zero twist
outside the cylinder, > — 1, thus retrieving the solution for ¢,
by Edwin & Roberts (1983). The limiting cases for
Equations (19a) and (b) have been verified to converge to the
solutions with no twist inside the magnetic cylinder in Erdélyi
& Fedun (2007) in Section 3.3.

3.3. Dispersion Relation and Limiting Cases

Application of the boundary conditions (see Equations (154)
and (b)), in combination with the solutions for 6§, and dp;
inside the magnetic flux tube, Equations (19a) and (b), as well
as the solutions in the environment of the flux tube,
Equations (25) and (26), respectively, leads to the following
general dispersion equation, for the compressible case in the
presence of internal and external magnetic twist:

raDe Kufl(kre ra) Sz Sz 2 2
RN k ¢ k
krg Ky(krg ra) /140 |: k ( + ) k2 (nﬁ + Z )

(1 —-v)D, 2&M(a b—1;9)

2 Tk M, by
k. k; (a, s)(27)

+

In order to validate Equation (27), we consider a number of
limiting cases. The first is the case where there is no external
magnetic twist. In this case S, = 0, and from Equation (23) it
follows trivially that v?(k; r) = 1. Therefore, Equation (27)
for no external twist becomes

raD, Ko(ke1a)  S2r 2( FRY - ,DiM@. b~ 1)
ke Ki(krera) — pok2 k% M, b;s)

(28)

This equation is in agreement with the dispersion equation
obtained by Erdélyi & Fedun (2007), and all the limiting cases
therein also apply to Equation (27). However, there is one
limiting case missing from the analysis in Erdélyi & Fedun
(2007), namely, for no twist inside and outside the tube with
k2 < 0, which in combination with k2 > 0 corresponds to
body wave modes. We complete this analysis here. Starting
with Equations (13.3.1) and (13.3.2) in Abramowitz & Stegun
(2012), in the limit as S; — 0 and k2 > 0 we have

IimM(a, b — 1;5)) = Io(k,ir), (29a)

§i—0
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Table 1
Equilibrium Cases Considered in This Work
Characteristic Speed Ordering Type B B,
VSE > VSI > VAE > VAl Warm dense tube >1 >1
VSE > VAL > VAE > VsI Cool evacuated tube <1 >1
VSE > VsI > VAL > VAE ‘Weak cool tube >1 >1
VAE > VsI > VAl > VSE Intense warm tube <1 <1
VAE > VAI > VSE > Vs1 Intense cool tube <1 <1

Note. The normalized characteristic speeds are defined in Appendix A.

lim (M (a, b; 5)) = iIl(kr,'r), (29b)
$i—0 ki
while for k3 < 0,

lim (M (a, b — 1; s5)) = jyk,ir, (30a)
Si—>0

. 2 .

lim (M (a, b; 5)) = —j,kyr. (30b)
$i—0 kri

Therefore, Equation (28), in conjunction with the facts that
J§(s) = —Ji(s), Ii(s) = Li(s), and KJ(s) = —Ki(s) (Equa-
tions (9.1.28) and (9.6.27) in Abramowitz & Stegun 2012),
is, in the limit as S; — 0, equal to

Ko(kre 1 Io(kyira
kDo Kolkne ) —k,eDM fork2>0, (31
(kre ra) (krzra)
Ko(kre 14 Jo([kri|Ta
|kr1|D (j( K ) = kre DiM, for krzl < 0, (32)
KO(krer) J()(|kri|ra)

which are in agreement with Edwin & Roberts (1983) and
describe the wave mode for the case with no magnetic twist.

4. DISPERSION EQUATION SOLUTIONS

To explore the behavior of the sausage mode, Equation (27)
was normalized and solved numerically for different solar
atmospheric conditions (see Table 1). Normalized quantities
are denoted with capitalized indices (see Appendix A). The
solutions of the dispersion relation depend only on the relative
ordering of the magnitudes of the characteristic velocities
(VAE, VAL, VsE, Vs1)- The sign of k,z, and ké depends on this
ordering, and this in turn defines the three band types in the
dispersion plot: (i) bands that contain surface modes (for
k3 > 0 and k3 > 0), (ii) bands that contain body modes (for
k3 < 0 and k% > 0), and (iii) forbidden bands corresponding
to k% < 0. We make additional comments on the selection of
the characteristic speeds in Appendix C. The nondimensional
dispersion equation is given in Appendix A, while the solutions
for the perturbed quantities in terms of 6¢, and dp; are given in
Appendix D.

4.1. High Plasma-(3 Regime

Based on the results by Vernazza et al. (1981) and the model
for the plasma-g in the solar atmosphere introduced by Gary
(2001), we anticipate that the results in this section are pertinent
to conditions typically observed in the upper photosphere,
lower chromosphere, and mid-chromosphere. The solutions of
the dispersion relation in Equation (27), in terms of the
nondimensional phase speed, vp = Vy;,/va; = w/k;vy;, and the
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Figure 2. Solutions of the dispersion Equation (27) for a warm dense tube
embedded in a dense environment (3; > 1, 8, > 1) with speed ordering
VSE > Vst > VAg > Va1 The color coding is as follows: blue indicates body
waves, red corresponds to surface waves, orange corresponds to either the
internal or external Alfvén speeds; note that this convention is used
consistently in this work. The circle with a point corresponds to the case
B,i/B;; = 0.01, while the spiral corresponds to B;/B;; = 0.2. The mean root
mean squared error (RMSE) for this speed ordering is 0.0328.

nondimensional longitudinal wavevector, L = k,r,, for a warm
dense tube (see Table 1) are shown in Figure 2. For this case
the ordering of the characteristic speeds is as follows:
VSE > Vs1 > Vag > Var. In this figure and in the following, we
overplot two cases, (i) B;/B; = 0.01 and (ii) B.;/B; = 0.2,
which correspond to (practically) no twist and small twist,
respectively. The reason for using a small but nonzero twist for
the case corresponding to the dispersion relation with zero
twist, which we have shown to be equivalent to the result of
Edwin & Roberts (1983), is that the limits of the Kummer
functions in Equations (29) and (30) require an increasing
number of terms as a; — 0, and their calculation becomes
inefficient by direct summation. However, B_;/B;; = 0.01 is a
good approximation to the case with zero azimuthal magnetic
field component. Note that in the following we take the twist,
namely, B, (r), to be continuous across the flux tube and thus
set S; = S.. The behavior of the fast sausage body waves
(FSBWs) is very similar for both the case with and without
twist, and in extension it is very similar to the case with only
internal twist studied by Erdélyi & Fedun (2007). It is worth
noting that when internal and external twist is present, the
different radial harmonics of the FSBW modes have two
solutions, one dispersive and one approximately nondispersive
(see Figure 2). It is, however, unclear whether the nondisper-
sive solution remains valid until the next radial harmonic.
Nevertheless, it is clear that, in the neighborhood of the vsg
singularity, we obtain two solutions with comparable phase
speeds (vg), which opens the possibility for beat phenomena
and thus widens the possibility of detection of these waves
since the beat frequency will be smaller than both waves that
produce it. This behavior is not present when we consider twist
only inside the flux tube. Otherwise, the overall behavior of the
solutions is virtually identical to that in FErdélyi &
Fedun (2007).

In Figure 3 we present the solutions for the second case in
Table 1. This scenario can occur when the internal plasma-( is
very low, §; < 1, while the external plasma-/3 is high, 5, > 1.
At this point we would like to stress the fact that for a specific
set of characteristic speeds the internal and external plasma-(3
values are uniquely defined (see Appendix C). We focus here
only on the region of solutions in (Vzg, Vsg) since an infinite
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Figure 3. Solutions of the dispersion Equation (27) for a cool evacuated tube
embedded in a dense environment (3; < 1, 5, > 1) with speed ordering
VSE > VAI > VAE > Vs1. The upper panel corresponds to no external twist for
r > r,, namely, S, = 0, while in the lower panel there is twist outside as well
as inside the flux tube. Note that in both panels the solutions for
B¢i/BZ; = {0.01, 0.05, 0.1, 0.15, 0.175, 0.2} have been overplotted to con-
serve space and illustrate the effect of increasing the magnetic twist. The axes
inside the figures match the progression of twist for the specific regions, for
instance, in the upper panel the axis with the arrow to the left indicates that the
first FSBW from the right corresponds to magnetic twist of 0.01, the second to
0.05, etc. Note that the vertical axis, for B,;/B; = 0.01, has no nondispersive
FSSW (horizontal solutions marked in red), which is indicated by the empty
parentheses near the value 0.01. The mean RMSE is 0.021.

number of the slow sausage body waves (SSBWs), present in
the (vry, vsr) interval, are minimally affected by the twist and
thus are almost identical when compared with the correspond-
ing case with no twist. We plot solutions for
B.i/B; = {0.01, 0.05, 0.1, 0.15, 0.175, 0.2}. The upper plot
in Figure 3 represents the solutions only for internal twist. Note
that the FSBW is transformed to the fast sausage surface wave
(FSSW) for I ~ 2.7, and as the twist is increased, the
transition becomes discontinuous. This discontinuity results in
a K where no solutions exist. For example, for B;/B,; = 0.05,
this interval extends for K = (2.4, 3.1) where no fast body
waves exist. This interval becomes larger with increasing twist.
However, this is not the case in the presence of external
twist; see the lower panel of Figure 3. The FSBW and FSSW
appear to behave similarly; however, in all cases except for
B,i/B;; = 0.01 there is a surface wave solution that is nearly
nondispersive for a wide range of C. Another feature is the s-
like set of surface wave solutions that are clearly visible for
B,i/B;; = 0.175 and B,;/B;; = 0.2. Note that this s-like set is
also present for the other cases; however, the cusp is
encountered for larger values of K. This structure is quite
interesting since in some interval of K there exist three
simultaneous solutions while outside of this interval exists only
one. This means that within that interval, for a broadband
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Figure 4. Plots of density perturbations superimposed on the background equilibrium density plots for the fast body and surface modes shown in Equation (3). The
gray lines represent velocity perturbation streamlines on the xy-plane. Notice that for visualization purposes the streamlines contain no information on the magnitude
of the perturbation; only direction information is conveyed. In the density plots red and blue correspond to high and low density, respectively. The slices are snapshots
at r = 0 at different positions for the wavelength \ of the oscillation. Note that this does not imply that the wavelength of the two oscillations is the same; rather, it is a
fraction of the corresponding wavelength. Left: fast body mode with magnetic twist for C = 0.3624 and vy = 1.071. Right: fast surface mode with magnetic twist for
K = 3.494 and vy = 0.9058. Notice that in both cases the azimuthal component of the velocity perturbation at 0/8\, 4/8X, and 8/8\ is nonzero.

excitation, the power of the driver will be distributed to more
than one solution, thus reducing the individual power spectrum
signatures of the individual waves. In essence this will result in
an interval of solutions that are much more difficult to detect.
Another interesting point with respect to this s-like set of
solutions is that it seems that a point may exist, for a certain
value of B,;/B; and a single X', in which there would be a
continuum as the s-shape becomes vertical (see Figure 3).
However, the existence or physical significance of this point is
speculative since it does not appear to exist for small twist,
namely, the regime for which our approximation is valid. In
Figure 4 we illustrate an FSBW (left panel) and an SSBW
(right panel). In contrast to the kink mode in magnetic flux
tubes with weak twist that exhibit a polarization (Terradas &
Goossens 2012), the sausage mode appears to be the
superposition of an Alfvénic wave and a sausage wave leading
by 7/2.

The last plasma regime with high plasma-g considered in
this work has the following characteristic speed ordering:
VSg > Vs1 > Va1 > Vag. In Figure 5 we plot the solutions to
Equation (27) for this case. The most notable feature, which
seems to be consistent for alternative parameter sets
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Figure 5. Solutions of the dispersion Equation (27) for a weak cool tube
embedded in a dense environment (53; > 1, 3, > 1) with speed ordering
VSE > Vs > Va1 > Vag. The mean RMSE is 0.0547.

corresponding to photospheric conditions, is that the magnetic
twist appears to have only a small effect on the solutions to the
dispersion equation. For example, we have also used
VAl > VSE > Vs1 > Vag, and there too (plot not shown as it is
identical to the case with no twist) the deviation of the
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Figure 6. Solutions of the dispersion Equation (27) for an intense warm tube
embedded in a rarefied environment (5; < 1, 8, < 1) with speed ordering
VAE > Vs1 > Va1 > Vsg. The mean RMSE is 0.0291.

normalized phase speed was on the order of 0.5% or less for
magnetic twist up to B;/B;; = 0.2.

4.2. Low Plasma-(3 Regime

In consultation with the results presented by Vernazza et al.
(1981) and Gary (2001), we expect the results presented in this
section to be most relevant to conditions that are typical of the
upper chromosphere, the transition region, and the corona. The
remaining two cases that we consider in this work are for low
plasma-{3 conditions (see Table 1).

In Figure 6 we consider an intense warm flux tube for which
the characteristic  speed ordering is the following:
VAE > Vs1 > va1 > vsg. This case was also considered by
Erdélyi & Fedun (2007) under the assumption that there is
only internal magnetic twist and zero twist in the environment
surrounding the flux tube. In that work the influence of twist
was under a percent; however, when the external twist is also
considered, interesting behavior emerges. In this case, when
there is zero twist, the first SSBW changes character to a slow
sausage surface wave (SSSW) crossing vy at approximately
K = 0.25. When a small twist is introduced, the first radial
harmonic of the SSBW modes now becomes bounded by vx;
and an SSSW mode appears. Also, a nondispersive solution
with a character similar to a surface wave emerges that closely
follows vay;. We have named this solution the surface-Alfvén
wave (SAW) in Figure 6, and we have expanded the plot to
make it visible since it is extremely close to the internal Alfvén
speed. Interestingly, the higher radial harmonics of the SSBW
appear to be minimally affected when the magnetic twist is
increased. Also, the correction to the phase velocity for the
FSBW with magnetic twist appears to be small compared with
the case of no magnetic twist. For the first radial harmonic this
correction is of the order of 0.4%, while the correction is less
than 0.1% for higher radial harmonics. However, this does not
mean that the FSBW for the case with magnetic twist is
identical to the case without twist. This is because the
azimuthal component of the velocity perturbation in the former
case is nonzero, altering the character of these waves
significantly as compared with its counterpart in the case
without magnetic twist.

Lastly, an intense cool tube is considered, i.e.,
VAE > Va1 > Vsg > Vs, Which corresponds to conditions in
the solar corona. The solutions to the dispersion equation (i.e.,
Equation (27)) are shown in Figure 7. In this case, magnetic
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Figure 7. Solutions of the dispersion Equation (27) for an intense cool tube
embedded in a rarefied environment (3; < 1, B, < 1) with speed ordering
VAE > Va1 > Vsg > vsi. The mean RMSE is 0.0175.

twist has a more pronounced effect on the FSBWs, while the
SSBWs are virtually unaffected. In the long-wavelength limit,
K < 1, the FSBWs become nondispersive, while for the short-
wavelength limit, K > 1, the solutions are identical to the case
of a straight magnetic flux tube with vertical magnetic field
only. It is important to note that, although the effect of
magnetic twist appears to be subtle in this case, it has
a significant difference compared with the case with no
magnetic twist, e.g., Edwin & Roberts (1983), as well as the
case considering only internal magnetic twist, e.g., Erdélyi &
Fedun (2007). In both of these cases the sausage mode
becomes leaky as JC — 0. This, however, is not the case when
both internal and external twists are considered. Instead, as the
magnetic twist increases, so does the cutoff of the trapped fast
sausage waves toward longer wavelengths. For example, for
the particular characteristic speed ordering considered in
Figure 7, the first FSBW ceases to have a cutoff wavelength
when B,;/B;; > 0.05, approximately. Therefore, the FSBW for
a twisted magnetic cylinder above a certain threshold remains
trapped for all wavelengths. A consequence of this is that
FSBWs remain in the Alfvén continuum and therefore may be
resonantly damped; see, for example, Sakurai et al. (1991).
This means that the sausage mode cannot be ruled out as a
source of energy to the corona.

5. DISCUSSION

Although the model we present in this work for a magnetic
flux tube with internal and external twist is relatively advanced
in comparison to recent theoretical models, it contains a
number of simplifications, and therefore we would be remiss
not to discuss the potential caveats when used to interpret
observations. Observations suggest that the cross section of
magnetic flux tubes is not circular. Although there are no
theoretical studies of magnetic flux tubes with completely
irregular cross section, some steps toward this direction have
been taken by considering flux tubes with elliptical cross -
section; see, for example, Ruderman (2003) and Erdélyi &
Morton (2009). The results for the sausage mode presented in
Erdélyi & Morton (2009) show that in comparison with the
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model of Edwin & Roberts (1983) (circular cross section) the
ellipticity of the cross section tends to increase the phase speed
of the sausage mode for photospheric conditions by approxi-
mately 5% in the short-wavelength limit and is negligible in
the long-wavelength limit. Conversely, in coronal conditions
for increasing ellipticity the phase speed increase is more
pronounced for a wide range of wavelengths and is shown to be
as much as 20% higher than the predicted phase speed by the
model with circular cross section. This effect is quite important
since, for sufficiently large ellipticity, it could counteract the
effect that magnetic twist has on the cutoff frequency for the
fast sausage body modes seen in Figure 7. Namely, as can be
seen in Figure 7, the fast sausage mode remains trapped in the
long-wavelength limit; however, should the phase speed be
increased, then a cutoff frequency for the fast sausage body
modes may be reinstated.

Furthermore, although we have studied propagating waves in
this work, the study of standing modes for k, = 0 is trivially
extended. Namely, if the magnetic flux tube is line-tied on both
footpoints, the longitudinal wavevector will be quantized
according to k, = nw/L, where n is an integer and L is the
length of the magnetic flux tube. If the flux tube is assumed to
be line-tied on one end and open on the other, then no
quantization takes place and there can be propagating and
standing waves for all k,. Here it should be mentioned that the
effect of the magnetic flux tube curvature is of the order of
(r./L)? and therefore has a small effect on the eigenfrequencies
of magnetic flux tubes in the solar atmosphere (van Door-
sselaere et al. 2004, 2009).

Other effects that can alter the eigenfrequencies predicted
using the model in this work are density stratification, flux tube
expansion, and resonance phenomena due to neighboring
magnetic flux tubes; see Ruderman & Erdélyi (2009) for a
more in-depth discussion. Of course, more complicated
magnetic field topologies can have other unforeseen effects.
This can be seen in magnetoconvection simulations (e.g.,
Wedemeyer-Bohm et al. 2012; Shelyag et al. 2013; Trampe-
dach et al. 2014), as well as in simulations with predefined
background magnetic fields (see Bogdan et al. 2003; Vigeesh
et al. 2012; Fedun et al. 2011). However, the interpretation of
the results from such simulations is a major challenge, which is
only increased by considering that the initial conditions, which
are mostly unknown, play a very important role in their
subsequent evolution.

6. CONCLUSIONS

In the presence of weak twist the sausage mode has mixed
properties since it is unavoidably coupled to the axisymmetric
Alfvén wave. This is apparent from the solutions; see, for
example, Appendix D, where the azimuthal velocity perturba-
tion component is nonzero and is also supported by the results
presented in Section 2.1. The implications of this on the
character of surface and body waves are seen clearly in
Figure 4, where the relative magnitudes of the radial and
azimuthal components of the velocity perturbation alternate
periodically and waves tend to exhibit Alfvénic character the
closer their phase velocity is to one of the Alfvén speeds. The
reason for this behavior has been explained in Section 2.1.

Observations of Alfvén waves rely on the apparent absence
of intensity (i.e., density) perturbations in conjunction with
torsional motion observed by alternating Doppler shifts (see,
e.g., Jess et al. 2009). The results of this work suggest that there
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exists at least one more alternative interpretation for waves with
the aforementioned characteristics. Namely, the observed
waves by Jess et al. (2009) could potentially be surface
sausage waves (see right panel of Figure 4), since the localized
character of the density perturbation also implies localized
intensity perturbations that can be well below the instrument
resolution. Furthermore, given the presence of torsional motion
(see right panel of Figure 4), the sausage mode will have a
Doppler signature similar to that of an Alfvén wave. The
Doppler signature, in combination with the fact that surface
waves can have a phase velocity very close to the Alfvén speed
(see SAW in Figure 6), suggests that Jess et al. (2009)
potentially observed a sausage mode in the presence of
magnetic twist. This line of reasoning is further supported by
the evidence in Wedemeyer-Bohm et al. (2012) and Morton
et al. (2013), where the authors show that vortical motions are
ubiquitous in the photosphere. However, the excitation of the
decoupled Alfvén wave requires vortical motion that is
divergence free (see, e.g., Ruderman et al. 1997), while the
vortical motions observed in Morton et al. (2013) are not free
of divergence. In our view these vortical motions could be a
natural mechanism for the excitation of the axisymmetric
modes studied in this work.

In this work we considered the effect of internal and external
magnetic twist on a straight flux tube for the sausage mode. It
was shown that magnetic twist naturally couples axisymmetric
Alfvén waves with sausage waves. Some of the main results of
this coupling are as follows.

1. Sausage waves can exhibit Doppler signatures similar to
those expected to be observed for Alfvén waves.

2. The phase difference between the radial and torsional
velocity perturbations is /2, which means that both
effects can be simultaneously observed.

3. Excitation of these modes can be accomplished with a
larger variety of drivers compared to the pure sausage
and axisymmetric Alfvén waves. Therefore, we speculate
that these waves should be more likely to be observed
compared with their decoupled counterparts.

4. For coronal conditions the FSBWs remain trapped for all
wavelengths when the magnetic twist strength surpasses a
certain threshold. This appears to be characteristic of
magnetic twist and could potentially be used to identify
the strength of the magnetic twist.

These findings suggest that axisymmetric modes with
magnetic twist can be easily mistaken for pure Alfvén waves.
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APPENDIX A
DIMENSIONLESS DISPERSION EQUATION

For completeness we give here the dimensionless version of
the dispersion Equation (27). The following equation is now a
function of vy and K, instead of w and k.. One of the benefits of
solving Equation (33) instead of Equation (27) directly is that
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the former is, usually, numerically more stable. Another benefit
is that the study of different plasma conditions is made simpler
since it is straightforward to alter the ordering of the
characteristic speeds (v, va;, etc.).
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Also the plasma-{3 inside and outside the flux tube can be

calculated using 5; = (2/ v)vszl and 0, = (2peBZ2[ / ypiBZ%)VSZE,
respectively.
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APPENDIX B
ESTIMATION OF THE ROOT MEAN SQUARE ERROR

We argue that the exact solution for constant twist outside
the magnetic flux tube is a good approximation to the solution
corresponding to the case where the twist is oc1/r. However, as
we state in the text, we only obtain the zeroth-order term in the
perturbation series, which corresponds to constant twist.
To justify this statement, we estimate the root mean squared
error (RMSE), also referred to as standard error, defined as
follows:

1

(ﬁ [ (6, 0 - e, ) dr)z.

- a

RMSE = lim

L—oo

In this context, 65,6 (r) is the solution to the case with constant
magnetic twist, i.e., & = 0 in Equation (21), while 6, (r) is a
numerical solution to Equation (21) with x = 1, namely,
magnetic twist proportional to 1/r. The RMSE is expected to
vary for different parameters, i.e., KC, v and B,/B;, and for
this reason we discretize X and vy using a 100 x 100 grid and
also use B,,;/B;; = 0.2, since for all values of B,;/B;; < 0.2 the
RMSE is consistently smaller. Subsequently, we average the
resulting RMSEs, which we then quote in the corresponding
figure caption. Note that &€, (r) and &¢,,(r) are normalized,
and therefore a value for the mean RMSE of, e.g., 0.01 means
that the standard error is 1% on average, when comparing

8., (r) with 8¢, (r).

APPENDIX C
CHARACTERISTIC SPEED ORDERING
CONSIDERATIONS

The ordering of characteristic speeds depends on six
variables: B,;, B, T;, T,, n; and n,, where n; and n, are
the number densities inside and outside the flux tube,
respectively. Assuming that the magnetic twist is small,
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Vsi = 'Y_l P Vse = ’Y_e P
pi pe
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Taking logs of the speeds and using the definitions
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and
B; =In(B;), B} =In(B,),
T =(1/)n(T), T, =(1/2)(T),
n”=1/2)In(n;), n'=1/2)In(ne),

the speeds and plasma-3 parameters can be written as
follows:

B} Vai
1000—1031 4
0 1 00 0 —1f]7= Vae
00100 O|T|_|w
00010 07 v
10 10 1 0}, b
0 -10o1 0 1) "

né be

Now notice that the above matrix is rank 4, which means that
the dimension of the null space is 2, with basis vectors
»y=1(1,0,0,0,1,0)and y, = (0, 1, 0, 0, O, 1). This means,
in practice, that for a given set of parameters resulting in a
specific speed ordering (§; and [, are uniquely defined, but
there is a two-dimensional subspace involving B}, B, n;*, n,’,
that is, all linear combinations of y, and y,. Also, notice
that the sound speeds, v;; and vy, depend only on the
internal and external temperature, 7;* and T, respectively.
Additionally, the null space of the matrix (see the basis
vectors y; and y,) suggests that the densities, n;* and n},
are secondary variables to the magnetic field strength, B

and Bj.

APPENDIX D
PERTURBED QUANTITIES IN TERMS OF 6¢, AND dp;

Given 6§, and dp, in Equations (194, b) or Equations (25)
and (26), the remaining perturbed quantities for the sausage
mode (k, = 0) are (Erdélyi & Fedun 2010)

172
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