
This is a repository copy of Virtual Spring- Damper Mesh-Based Formation Control for 
Spacecraft Swarms in Potential Fields.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/90249/

Version: Accepted Version

Article:

Chen, Q., Veres, S.M., Wang, Y. et al. (1 more author) (2015) Virtual Spring- Damper 
Mesh-Based Formation Control for Spacecraft Swarms in Potential Fields. Journal of 
Guidance, Control, and Dynamics, 38 (3). pp. 539-546. ISSN 0731-5090 

https://doi.org/10.2514/1.G000569

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Virtual Spring-Damper Mesh-Based Formation Control for 

Spacecraft Swarms in Potential Fields 

Qifeng Chen
1
 

National University of Defense Technology, Changsha, Hunan, 410073, China 

Sandor M Veres
2
 

University of Sheffield, Sheffield, S13JD, United Kingdom 

Yaonan Wang
3
 

Hunan University, Changsha, Hunan, 410082, China 

and 

Yunhe Meng
4
 

National University of Defense Technology, Changsha, Hunan, 410073, China 

I. Introduction 

he goal of formation control is to coordinate a team of agents to maintain a particular geometric pattern or set of 

relative positions. The behavior of a networked, multi-agent system depends on not only the dynamics of the 

individual agents but also the interactions between the individual agents [1]. Thus, designing suitable interactions is 

the main challenge for coordinating multiple agents; local interactions that lead to the required global behaviors are 

particularly desirable for distributed implementations. 

Several distributed formation control architectures have been proposed in the literature. One popular architecture 

is called leader-following (LF) [2-4]. In the LF architecture, the followers use the leader as their control reference, 

which provides ease of implementation and analysis. However, the LF architecture has poor disturbance rejection 

properties because there is no explicit feedback from the followers to the leader [5, 6]. Additionally, the leader is a 

single point of failure for the entire group [6]. Introducing non-hierarchical connections and feedbacks to the control 

interaction architecture is expected to result in a better performance and to distribute the control effort more evenly 

among the agents [7]. The cyclic architecture [4, 7] provides feedbacks, but the connecting topologies and the 

formation shapes that can be realized are rather restricted. Fax and Murray [5] considered a broad range of 

interconnection possibilities for vehicle with linear dynamics and proved a Nyquist criterion to determine the effect 

of the communication topology on the formation’s stability. The passivity-based approach [8] exploits the fact that 

the closed-loop system inherits the passivity properties of its components when the information flow is bidirectional. 
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Thus the stability of coordinated control of multiple agents is achieved through passivity. The behavioral approach 

[4] combines the outputs of multiple controllers designed for achieving different behaviors. This approach is flexible 

in formation control design but is difficult to analyze mathematically [9]. In the virtual structure approach [4, 9], the 

desired formation is considered a virtual rigid body, and the agents track the trajectories generated by the motion of 

the rigid body. In the consensus-based approach [10], consensus protocols are designed to reach agreement on the 

value of the formation variables. 

For most of the distributed formation control methods presented in the literature, a basic assumption is that every 

agent knows its own position or velocity. However, for spacecraft formation missions, accurate absolute position 

measurements are often not available, whereas relative measurements can reach much higher accuracy; besides the 

absolute positions of spacecraft are usually not subject to as stringent constraints as the relative positions are. Thus, 

it is reasonable to control relative motion using only relative measurements [11]. In addition, spacecraft dynamics 

within the gravitational field has not been considered for these distributed control methods. 

This paper derives a distributed control method based on a virtual spring-damper mesh (VSDM) for the 

formation control of spacecraft swarms in a gravitational potential field. This method requires no information about 

the absolute positions or velocities of spacecraft. Bidirectional local interaction, which provides intrinsic feedback, 

is used, and general connected topologies are assumed. Collision avoidance and topology switching are integrated, 

and the convergence of the closed-loop system is assured. Approximate expressions that predict the steady-state 

performance of relative position errors and control accelerations are also derived by linearization and using algebraic 

graph representations. The VSDM method proposed in this paper is different from the virtual spring mesh algorithm 

explored for the deployment of mobile sensors in Ref. [12]. One spring and one damper are combined as a 

connection unit for relative motion control in this study, whereas in Ref. [12], virtual dampers are separately used to 

decrease the absolute velocity of each agent to a stationary state. 

This paper is organized as follows. In Sec. II, a graphic description for the relative motion in a formation is 

briefly introduced. In Sec. III, the VSDM control law is presented, and the convergence and steady-state 

performance for VSDM-based spacecraft formation control are analyzed. In Sec. IV, collision avoidance is 

integrated with VSDM-based formation control. In Sec. V, the switching of the connecting topology in the VSDM-

based formation control is investigated. In Sec. VI, the effectiveness of the proposed method is demonstrated via 

numerical simulations. Finally, in Sec. VII some concluding remarks are provided. 



II. Graphic Description for the Relative Motion in a Formation 

The relative states between the agents in a formation can be associated with the incidence matrix of a directed 

graph (or digraph) ( ),G V E= , where V = v
1
,v
2
,!,v

n{ }  is the vertex set corresponding to the n agents and 

( ){ }, , ;
i j i j

E v v v v V i j= ∈ ≠  is the edge set (all graphs have n vertices in this paper). If ( ),
i j
v v E∈ , then 

i
v  and 

j
v  

are adjacent; i.e., they are neighbors to each other. Any edge ( ),k i je v v E= ∈  of the digraph is an ordered pair. The 

starting vertex 
i
v  is defined to be the tail of the edge, and the ending vertex 

j
v  is the head. The incidence matrix of 

the digraph G is defined as follows [1]: 
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The columns of the incidence matrix represent the edges of the digraph. Note that ( )
T

n
G = 0D 1 , where 

n
1  is the 

1n×  column vector with a value of 1 for every entry. The relative position vector corresponding to the k-th directed 

edge ( ),k i je v v=  of the digraph G can be defined as 
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x y z=r  is the position vector of the i-th agent, R = r

1

T
,r
2

T
,!,r

n

T!
"

#
$
T

, ⊗  denotes the Kronecker product, 

and ( )keD  denotes the k-th column of ( )GD , where a slight abuse of notation is used. Therefore, the relative 

positions corresponding to the edges of the digraph G can be represented in vector form as 
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 and m is the number of edges in G. The minimum and complete set of independent 

relative positions of an n-agent system can be specified by a directed spanning tree 
T
G  as 

 ( )( )3T

T
P G R= ⊗D I  (4) 
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. The notations of the graph Laplacian, ( ) ( ) ( )
T

G G G=L D D , and the edge Laplacian 

[1], ( ) ( ) ( )
T

e
G G G=L D D  are used in this paper. The edge Laplacian of a spanning tree is an invertible matrix. 

There exists a linear transformation from any directed spanning tree 
T
G  to any digraph G, such that [1] 

 ( ) ( ) ( ) ( ) ( )
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G G G G G

−
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Thus, the relation between 
G
P  and P can be obtained as 

 ( )3G
P P= ⊗T I  (6) 

For a weakly connected digraph G and its spanning tree subgraph 
T
G′ , there exists an ( )1n q− ×  matrix ψ  such that 

[1] 

 ( ) ( )[ ]1T n
G G −

′=D D I ψ  (7) 

where q is the number of edges that are in G but not in 
T
G′ . If the complete graph 

n
κ  is considered in the 

transformation of Eq. (5), by noting that ( ) T

n n n n
nκ = −L I 1 1 , a relation can be derived as 

 ( ) ( ) ( ) ( )1 1 1T T

T e T T n n n n
G G G

n n
κ− = = −D L D L I 1 1  (8) 

The transformations between 
T
G  and 

T
G′  can be defined from Eq. (5) as 
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It can be verified that 
1t t t t n−

′ ′= =TT TT I  using Eq. (9) and (8). 

III. Virtual Spring-Damper Mesh-Based Spacecraft Formation Control 

A. Model Setup 

Consider a swarm of spacecraft in a gravitational field. Each spacecraft is considered a point with unit mass. The 

translational motion of the i-th spacecraft is described as 

 !!r
i
= −∇Q r

i( )+ ai i =1,2,",n( )  (10) 

where Q is the potential function of the gravitational field and 
i
a  is the control acceleration. For the spacecraft 

formation application in low Earth orbit, this model can account for the zonal gravitational harmonics of the 



perturbing potential of the oblateness of the Earth. For example, when the main perturbation, the J2 term from the 

oblateness of the Earth, is included, the gravitational potential function is as follows [14]: 
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where [ ], ,
T

x y z=r  is the position vector in the Earth-centered inertial (ECI) reference frame, 
e
R  is the mean 

equatorial radius of the Earth, µ  is the gravitational constant of the Earth, and 

14 3 -2 -3

2
3.986004405 10 m s ,    6378137 m,    1.082626675 10

e
R Jµ = = =× × . 

B. The VSDM Control Law 

Consider a system of point masses connected by a spring-damper mesh as shown in Fig. 1. All of the springs and 

dampers have zero mass. The natural lengths of the springs are set to be the desired distances between the point 

masses. Because of the elastic and damping forces, the system will eventually reach an equilibrium, i.e., the desired 

configuration of the relative motions of these point masses. It is reasonable to expect that the spring-damper mesh 

works for a system of agents in a general dynamical environment. The VSDM method is an analog to the spring-

damper mesh system. No actual springs or dampers are used, but the control forces that drive the agents are 

generated based on virtual spring-damper pairs “connected” to the agents. 

 

Fig. 1 Point masses connected by a spring-damper mesh. 

This paper considers a linear, relative-state-based VSDM control law. The spring-damper mesh in 3-D space is 

“projected” onto the three axes of a shared coordinate frame. For each adjacent agent pair in the connecting topology, 

three independent connections are assumed, each parallel to one of the coordinate axes. In this way, the control 

inputs are proportional to the relative states between the agents: 
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where 
i
N  is the index set of those agents adjacent to the i-th agent, 

d

ijr  is the desired relative position between agent 

i and agent j, !r
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i
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i
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 is the velocity of agent i, 0
s
k >  is the elastic coefficient of the springs, and 0

d
k >  is 

the damping coefficient. The superscript “d” means “desired value” throughout the remainder of this paper. 

The control input for agent i in (12) can be reformulated using the edges in the connecting graph G as 
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s
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Rewriting Eq. (13) in matrix form and using the definition of the incidence matrix, the VSDM control law becomes 

 U = −k
s
D G( )⊗ I3( ) PG − PGd( )− kd D G( )⊗ I3( ) !PG  (14) 
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In the VSDM method, each connection is double-sided. Thus, the connecting topologies are undirected. In Eq. 

(14) and throughout this paper, the definition of the incidence matrix is slightly modified to fit the case of undirected 

graphs. For an undirected graph G, its incidence matrix ( )GD  represents the incidence matrix of a derived digraph 

by endowing every edge of G with an arbitrary orientation. However, the same digraph derived from G must be used 

in specifying 
G
P , d

G
P , and ( )GD . 

To implement the VSDM-based distributed control law, a common inertial coordinate frame must be used by 

each agent. Because the VSDM control law utilizes only the relative states between agents, the location of the origin 

of the coordinate frame does not matter, and local frames can be used. However, each agent must be able to 

determine its attitude with respect to the common coordinate frame. Each agent must obtain the relative positions 

and the relative velocities of adjacent agents either by using the measurements from itself or by using the 

communication of measurements from adjacent agents. Spacecrafts are required to exert continuously variable 

control accelerations, which may cause difficulties for implementation using conventional thrusters, although recent 

generations of ion thruster [15] and variable specific impulse plasma thrusters [16] hold great promise to fulfill this 

role. 

 

 

 



 

C. Convergence of the Closed-loop System 

Theorem III.1 For a spacecraft swarm with the dynamics of Eq. (10) under the VSDM-based formation control 

of Eq. (12), if the connecting topology G is connected, then the velocities of the spacecraft in the swarm become 

equal as t→∞ . 

Proof: Consider the energy function 
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where 
0
Q  is a negative constant satisfying ( ) 0

0
i

Q Q− >r  for the trajectories of ( )
i
tr  ( )1,2, ,i n= ! . For the 

spacecraft formation flying problems considered in this paper, all of the spacecraft are very close to a natural 

reference orbit. The gravity potential ( )iQ r s are bounded during the spacecraft motion. Thus, it is always possible 

to find such a 
0
Q . Then, 
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which yields 

 !
V = −k

d
!p
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⋅ !p

k

k=1

m
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Therefore, according to LaSalle’s invariance principle [17], each !p
k

, which is the relative velocity between the two 

vertices of edge 
k
e E∈ , approaches zero as t→∞ . Considering that the connecting topology G is connected, 

Theorem III.1 is thus proven.                      □ 

D. Analysis of Steady-State Performance 

In this subsection, the analytical results for the steady-state errors and control accelerations are presented. 

According to Theorem III.1, for ,i j∀ , !r
i
= !r

j
, 

i j
const− =r r , and !!r

i
− !!r

j
= 0  when t→∞ . Therefore, the 

equilibrium for the relative motion of the swarm can be obtained by solving the nonlinear equation !!P = 0 . Note that 



for spacecraft formation flying problems, 
i j
−r r  and 

d

ijr  are very small relative to 
i
r  and 

j
r  i, j =1,2,!,n;i ≠ j( ) ; 

therefore, the linearization of the dynamics is used to facilitate the analysis. 

Suppose 
0
r  stands for the motion of the reference point, where the motions of the spacecraft in the swarm are all 

very close to the reference point. By linearizing the dynamics and noting that !r
i
= !r

j
 at steady state ( t→∞ ), the 

swarm motion of Eq. (10) under the VSDM control of Eq. (12) at steady state are obtained in vector form as 
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n
⊗ ∇2Q r

0( )r0 −∇Q r
0( )$

%
&
'− In ⊗∇2Q r

0( )$
%

&
'R− ks D G( )⊗ I3$

%
&
' PG − PG

d( )  (17) 

Substituting Eq. (17) into the twice differentiated Eq. (4) with respect to time, one obtains 
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Substituting Eqs. (4), (5), and (6) and solving the equation !!P = 0  yields 
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From Eqs. (7) and (9) it can be obtained that 
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Eq. (19) verifies the invertibility of the matrix ( ) ( ) ( ) ( )
T T

T T
G G G GD D D D  in Eq. (18). Eq. (18) shows that the 

steady-state error between the relative position vector of the swarm P and the desired relative position vector P
d
 can 

be sufficiently small, if the elastic coefficient 
s
k  is sufficiently large. Thus, if a sufficiently large 

s
k  is used, a good 

approximation of the relative position errors of the steady-state motion can be 
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Next, the steady-state control acceleration is investigated. At steady state, it holds that !P
G
= 0 . Substituting Eqs. 

(6) and (20) into Eq. (14) yields the steady-state control acceleration of the swarm: 
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Substituting Eqs. (5), (7), (8), (9), and (19) yields 
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Substituting ( )( )3Td d

T
P G R= ⊗D I , where 

d
R  represents the absolute motion of the swarm that maintains the 

relative states 
d
P  between spacecraft, and Eq. (8) into Eq. (21) yields 
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1
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d d

c j

jn =

= ∑r r  is the position of the geometric center of the desired configuration. Eq. (22) shows that the 

approximate steady-state control accelerations depend only on the desired relative configuration and the 

gravitational potential function of the reference orbit and that they can thus be predicted before implementation. The 

elastic coefficient 
s
k , which is inversely proportional to the control accuracy, does not affect the steady-state control 

acceleration. This finding means that it is possible to achieve a higher level of accuracy in maintaining a formation 

without increasing fuel consumption. 

IV. Integrating Collision Avoidance 

In this section, the integration of an artificial potential function method with the VSDM-based formation control 

to avoid collisions is investigated. It is assumed that two spacecraft will collide if their distances are smaller than a 

certain value 
0
l . The artificial potential function ( )lϕ  depends on the distance l between agents. It is a smooth, 

nonnegative function in ( )0
,l +∞ , ( ) 0lϕ ≡  when [ ),l d∈ +∞ , ( )lϕ  is monotonically decreasing in ( )0

,l d , and 

( )lϕ →+∞  as 
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+

→ , where d (
0

d l> ) is the maximum influence distance of the artificial potential function. The 

artificial potential function is used as a signal to generate rapidly increasing repulsive forces as the distance 

decreases. Let ϕ
ij
!ϕ(l

ij
)  denote the artificial potential function introduced between agent i and agent j, where 

, 1, 2, ,i j n= !  and i j≠ . The collision avoidance acceleration of agent i is 
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where ( )l d dlϕ ϕ′ = . 

The collision avoidance accelerations that are introduced do not affect the closed-loop convergence for the 

VSDM-based formation control. Adding the nonnegative artificial potential term Φ r
1
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previously defined energy function in Eq. (15) yields 
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Then, noting that 
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and 
i
a  in Eq. (10) is the sum of 

i
u  in Eq. (12) and ca
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u  in Eq. (23), one obtains 
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which yields Eq. (16). Thus, the same conclusion as Theorem III.1 can be drawn. 

Because agents will surely not collide in the desired configuration, the artificial potentials must be designed to 

generate zero acceleration when the motion of the agents approaches the desired configuration. Thus, the artificial 

potentials have no effect on the steady-state motion and do not affect the steady-state performance of the VSDM-

based formation control. 

V. Switching of the Connecting Topology 

For formation initialization or reconfiguration missions, the relative positions between agents vary greatly. 

Improper physical geometry of the connecting topology may occur, which can cause difficulties in implementation, 

such as blocking of the lines of sight, interference of the transmission signals, or becoming out of sensing and 

communication range. Therefore, switching to a new connecting topology with a better physical geometry is 

desirable. The new connecting topology should also be connected. However, switching topologies induces abrupt 

changes in the elastic energy. This may cause instability in the system. This section develops a criterion that can be 

verified in a distributed manner for topology switching in the VSDM formation control to ensure convergence. 

Gabriel graphs are used as a simple way to maintain the connectivity and a favorable physical geometry of the 

topology. 

 

 



A. Switching Criteria to Ensure Stability 

Let [ )( ) : 0, Sσ τ ∞ →  denote the switching signal, where S is the set of topology indices. 
k
τ  are the switching 

times at which ( )σ τ  is discontinuous, where 0,1,2,k = !  and 
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k k
τ τ
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 is the connecting topology at 

time τ . To simplify our notation, ( ),
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. It is assumed that 
k
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connected for all 0,1,2,k = ! . An energy function of the system under topology switching can be defined as 
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During the time intervals between switching, the energy function continues to smoothly decrease, as shown in Sec. 

IV: 

 !V
k
= −k

d
!r
i
− !r

j( ) ⋅ !ri − !rj( )
(i , j )∈E

k

∑ ≤ 0  (26) 

where 
k
V  is the energy function defined in Eq. (24) when the connecting graph is 

k
G . At the switching times, 

however, the energy function of the system is discrete and not differentiable. According to the theory of switched 

systems [18], as long as the value of the energy function at the switching times, i.e., 
( )
k

Vσ τ
, continues to decrease, 

the closed-loop system of the VSDM-based formation control with topology switching is convergent such that the 

velocities of the spacecraft approach equality. The convergence condition can also be described as a case in which 

the decrease of the energy function in the time interval ( )1,
k k
τ τ +

 is larger than the increase of the elastic energy 

caused by topology switching at time 
1k

τ
+

, i.e., 
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for all 0,1,2,k = ! . Eq. (27) can be used as an additional condition for implementing topology switching for 

VSDM-based formation control. The integration in Eq. (27) can be calculated numerically. 

The calculation of 
1k

V
+

Δ  can be distributed to each agent as 
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where k

i
N  is the set of vertices in 

k
G  that are neighbors to 

i
v . It is obvious that 

1

i

k
V

+
Δ  can be calculated by agent i 

using only local information. If the connecting topologies are connected and the communication is fast enough, then 

each agent is able to obtain the 
1

i

k
V

+
Δ  values calculated by all of the other agents. Thus, the topology switching 

criteria of Eq. (27) can be verified in a distributed manner. 

B. Topology Switching Using Gabriel Graph 

A graph is a Gabriel graph [19] if and only if for any of its edges ( ),
i j
v v E∈  and { }\ ,k i jv V v v∀ ∈ , 

2 2 2

ij ik jkd d d< +  is satisfied, where ijd  represents the Euclidean distance between 
i
v  and 

j
v . There are favorable 

characteristics for the Gabriel graph to be used in topology switching. First, Gabriel graphs are connected. Second, 

Gabriel graph can be uniquely determined if the relative positions of vertices are given. This ensures consistency in 

the topology that is determined by each agent, provided that each agent knows the whole relative position 

information of the swarm. Third, Gabriel graphs have favorable geometric properties. Edges that are nearly parallel 

on the same vertex are rare, and the chances of interference and block-out are thus also rare. 

In the Gabriel graph-based topology switching method, each connecting topology 
k
G  for 0,1,2,k = !  is a 

Gabriel graph determined by the relative position information of the swarm at the time instant when the connecting 

topology switches to 
k
G . At each time instant, the spacecraft check the switching criterion of Eq. (27) through 

distributed computing and communicating of 
1

i

k
V

+
Δ s in Eq. (28). If Eq. (27) is satisfied, then the agents consistently 

switch the topology to the new Gabriel graph determined by the current relative positions of the swarm. Otherwise, 

the previous connecting topology is maintained. Details about Gabriel graphs and Gabriel graph-based switching can 

be observed in Refs. [19] and [12], respectively. 



VI. Numerical Simulations 

A sparse aperture application in low Earth orbit was simulated to assess the performance of the VSDM method. 

Thirty spacecraft were required to form a sparse aperture on a three-dimensional parabolic surface. The planar 

layout of the spacecraft on the axial projection of the parabolic surface followed the Golomb pattern [20]. The two 

most distant spacecraft (longest baseline) were 1000 meters apart. The distance from the vertex to the focus of the 

parabola was 300 meters. The spacecraft were near a circular reference orbit at an altitude of 500 km. At the initial 

time, the inclination of the reference orbit was 30°, the right ascension of the ascending node was 60°, and the 

argument of the perigee and the mean anomaly were both 0°. The initial states of the spacecraft were randomly 

generated with the relative position to the reference point uniformly distributed in [-500, 500] m along the three 

coordinate axes in the ECI reference frame. The simulations were carried out by numerical integration. Orbital 

dynamics with a J2 perturbing potential of Eq. (11) were used. The MATLAB built-in function ode45 was used for 

the numerical integrations. The relative tolerance and the absolute tolerance were both set to 10
-10

. 

A simple, segmented linear tuning policy of the elastic and the damping coefficients is used. When the 

configuration error is large at the beginning of the simulation, small coefficients are used to avoid high control thrust 

levels. As the simulation continues, the error becomes smaller, and larger coefficients are used to reduce the errors. 

The tuning of the coefficients with respect to time is shown in Fig. 2. 
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Fig. 2 Tuning of the coefficients with respect to time. 

The VSDM control with Gabriel graph-based topology switching and collision avoidance was simulated. The 

simulation time was 16,000 s. The spacecraft’s relative position with respect to the 1
st
 spacecraft in the ECI 

reference frame and the connecting topology are shown in Fig. 3. The history of the relative position errors is 

presented in Fig. 4. The control accelerations are presented in Fig. 5. These figures show a high accuracy for 

maintaining formation and small control accelerations at steady state. 
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(a)  Initial time (t = 0 s).                                                         (b)  Steady state (t = 8000 s). 

Fig. 3 Relative configuration and connecting topology of the 30 spacecraft. 
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(a)  Transient state.                                                         (b)  Steady state. 

Fig. 4 Relative position errors of the other 29 spacecraft with respect to the 1
st
 spacecraft. 
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(a)  Transient state.                                                         (b)  Steady state. 

Fig. 5 Control accelerations of the 30 spacecraft. 
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(a)  Differences of the relative coordinate errors.       (b) Differences of the control accelerations. 

Fig. 6 Differences between the predicted steady-state performance and the simulation results. 

Eqs. (20) and (22) were used to predict the steady-state errors and control accelerations, respectively. 

Differences between the predicted steady-state performance and the simulation results are presented in Fig. 6. It is 

shown that the errors of Eqs. (20) and (22) are quite small, although the equations are obtained by approximation. 

The artificial potential function used to handle collision avoidance is 

 

( ), 0 1
( )

0, 1

k f l l
l

l

ϕϕ
 < ≤

= 
>  

where 2 2( ) 3 8 6f l l l l−
= − + − , ( )0l l l d= −  is the normalized distance, the scaling factor ( )k kk d f lϕ α ′= − , l0 

= 25 m, d = 10 m, 0.1
k

α = , and 0.5
k
l = . The collision history of the simulation case with and without collision 

avoidance is given in Fig. 7. By integrating the collision avoidance in the VSDM control, collisions are successfully 

eliminated. 
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Fig. 7 Number of collisions that occurred with respect to time. 

VII. Conclusion 

Inspired by the physical analogy of a system of free point masses connected by spring-dampers, this paper 

developed a distributed formation control method for spacecraft swarms in a gravitational potential field. The 

convergence of the closed-loop system was proven, and approximate expressions for the relative motion errors and 



control accelerations at steady-state were derived, showing that the steady-state errors can be arbitrarily small if a 

sufficiently large elastic coefficient is used. Collision avoidance was integrated by using artificial potential functions. 

A topology switching criterion that can be checked in a distributed manner was developed for the virtual spring-

damper mesh-based formation control, and with the aid of Gabriel graphs, a strategy for switching to advantageous 

topologies was established. Numerical simulations of a 30 spacecraft formation in low Earth orbit show the 

effectiveness of this method. The proposed method uses only relative-state measurements and is scalable to a large 

number of spacecraft. The issue of virtual spring-damper mesh-based formation control using distances instead of 

relative states deserves further study. Following time-varying configurations, such as a rotating formation for 

pointing a moving target, is another topic for future work. 
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