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Abstract: Tony Hallam’s contributions to mass extinction studies span more
than 50 years and this thematic issue provides an opportunity to pay tribute to
the many pioneering contributions he has made to this field. Early work (1961)
on the Jurassic in Europe revealed a link, during the Toarcian Stage, between
extinction and the spread of anoxic waters during transgression - the first time
such a common leitmotif had been identified. He also identified substantial sea-
level changes during other mass extinction intervals with either regression (end-
Triassic) or early transgression (end-Permian) coinciding with the extinction
phases. Hallam’s (1981) study on bivalves was also the first to elevate the status
of the end-Triassic crisis and place it amongst true mass extinctions, changing
previous perceptions that it was a part of a protracted period of turnover,
although debates on the duration of this crisis continue (Hallam, 2002).
Conflicting views on the nature of recovery from mass extinctions have also
developed, especially for the aftermath of the end-Permian mass extinction.

These discussions can be traced to Hallam'’s seminal 1991 paper that noted the
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considerable delay in benthic recovery during the Early Triassic and attributed it
to the persistence of the harmful, high stress conditions responsible for the
extinction itself. This idea now forms the cornerstone of one of the more

favoured explanations for this ultra-low diversity interval.

1. Introduction

The 125t Anniversary Meeting of the Geological Society of America was
held in Denver in late October 2013. Amongst the many sessions were no less
then three devoted to mass extinctions and their aftermath. This research area
has been a topical subject of enquiry for over 30 years ever since publication of
Alvarez et al. (1980) and most large geological meetings now have at least one
mass extinction-themed session. The Denver topical sessions specifically focused
on the aftermath of the end-Permian end-Triassic mass extinctions and the

nature of the intervening interval:-

T167. The Road to Recovery—The Nature of Biotic and Geochemical Cycles During

the Early Triassic. Organised by Stephen Grasby and Benoit Beauchamp.

T227. Into the Frying Pan: The Early Triassic Hothouse of Pangea and Panthalassa.

Organised by Tom Algeo, Arne Winguth and Dave Bottjer.
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T238. New Insights into Triassic-Jurassic Transition Events and End-Triassic Mass
Extinction. Organised by Rowan Martindale, Morgan Schaller and Jessica

Whiteside

This thematic volume gathers together some of the research from these
sessions together with overviews of the current state-of-art in the highly
dynamic field of mass extinction studies. Following the initial focus on the
dinosaur-killing, end-Cretaceous mass extinction in the 1980s there has been a
gradual shift of attention to earlier mass extinctions with the two mid-
Phanerozoic examples, at the end of the Permian and the Triassic, being
especially topical. Alongside these studies, the extraordinary nature of the
aftermath interval in the Early Triassic has also become a subject of intense

scrutiny - and this field too has its initiation paper - Hallam (1991).

Hallam’s articles feature in many of the debates on middle Phanerozoic
extinctions and this thematic volume provides us with an opportunity to
acknowledge his substantial and frequently pioneering contributions. Indeed
many of the current concepts and ideas relating to mass extinctions derive from
Hallam’s earliest papers; some predate the Alvarez et al. (1980) starting pistol by
nearly 20 years. Here we highlight Hallam’s earliest works and show how they
have influenced the current and ongoing debates on mass extinctions and their
causation. It is worth noting that this review of Hallam’s extinction studies just
gives a flavour of his enormous and diverse research output that includes themes

such as evolution, sea-level change, palaeobiogeography, petroleum source rock
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origins, palaeoclimatology and the history of science. It would take a much

longer contribution than this to evaluate the influence of this impressive oeuvre.

The treatment here is in chronological order of Hallam’s mass extinction
studies (rather than stratigraphic order) because this allows the evolution of key
ideas to be explored and to see their subsequent contribution to the debates in
burgeoning fields. So, we begin (at the end!) with the Toarcian crisis of the Early

Jurassic.

2. Toarcian Extinction

Hallam'’s earliest studies were on the Liassic strata in and around the
United Kingdom and these allowed him to pioneer the investigation of topics
such as trace fossils, facies analysis and sea-level change. Hallam’s (1961) paper
on sea level and faunal change in the Early Jurassic of Europe is especially
important because it contains a species-level range chart for marine
invertebrates constructed at the level of ammonite zones - a temporal resolution
that has rarely been bettered even today. The chart reveals the loss of 64 of 66
benthic species at the base of the Toarcian Stage at a point where black shales,
such as the Jet Rock in the UK, become widespread. The link between the two
phenomena was immediately apparent and Hallam concluded that there was a
“mass disappearance followed by a complete renewal of forms [and] It can
hardly be a coincidence that this striking change is intimately correlated with the
widespread development of finely laminated bituminous shales, signifying

bottom conditions unfavourable to benthic organisms.” (Hallam, 1961, p. 154).
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Thus, was born the idea of a mass extinction linked with the spread of marine
anoxia, decades before such ideas became commonplace.

Hallam’s subsequent studies have added detail to the timing and nature of
the Early Jurassic extinction losses. Thus, extinctions amongst the nektonic
ammonites and belemnites were found to occur at the Pliensbachian/Toarcian
boundary whilst the benthic losses were a little later, in the earliest Toarcian, at
the point at which black shales become extensive (Hallam, 1967, 1976). Amongst
a plethora of cogent observations, Hallam noted that the benthic bivalves show
little evidence for ecological selectivity amongst the losses (Hallam, 1986). This
discovery provides an interesting contrast with extinction selectivity during
other crises such as the end-Triasic mass extinction discussed below.

As well as their temporal complexity, the Toarcian extinction losses also
show geographic variation with the timing of the extinction varying from region
to region as first shown in Hallam’s (1972) study of the Iberian record. Black
shales are weakly developed in this region and some extinction losses in
Portugal occur considerably after those in northern Europe. The Lower Jurassic
of South America similarly has a dearth of black shales and this region too shows
an extinction history somewhat nonsynchronous with that of northern Europe
(Hallam, 1986). Despite this temporal variation, the observation that
transgression, anoxia and marine extinction went hand-in-hand in the Early
Jurassic has been shown to be a generally recurring theme during other mass
extinctions (Hallam, 1986, 1987, 1989; Hallam & Wignall, 1999) and in some
regards can be considered a “rule” in global biodiversity studies (e.g. Hannisdal &

Peters, 2011).
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Much current research effort continues to be expended on the Toarcian
extinction with many workers especially concerned with the interpretation given
to the substantial carbon isotope oscillations of the early Toarcian and in
particular the sharp negative excursion at the same time that black shale
deposition became widespread (Hesselbo et al. 2000; Wignall et al. 2006;
Harazim et al. 2013). Oxygen isotope data has also shown that the interval was a
period of warming (Bailey et al. 2007) and radiometric dating reveals that the
crisis coincides with the eruption of a large igneous province (LIP), the Karoo-
Ferrar Traps of the Gondwanan continent (Palfy & Smith, 2000; Svensen et al.
2007).

The Toarcian crisis thus has many of the hallmarks of most Phanerozoic
mass extinctions: LIP eruption, global warming and d13C negative excursions
(Hallam & Wignall, 1997), together with transgression and marine anoxia - the
two facets that were first identified by Hallam in 1961. The recognition of a
temporal complexity to extinction losses also continues to feature as a key issue
in understanding this event (e.g. Wignall et al. 2005) and especially its

relationship with basaltic eruptions (Caruthers, Smith & Grocke, 2013).

3. End-Triassic Mass Extinction

Was there a mass extinction at the end of the Triassic? Prior to the
seminal work of Alvarez et al. (1980) and its catastrophist message, the idea of
an abrupt end-Triassic mass extinction had little currency. A major Triassic-
Jurassic turnover of terrestrial vertebrates had been identified by the mid 20t
century but it was thought to be a protracted affair rather than a short-lived

crisis. The losses were viewed as “only part of a large and extended sequence of
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events that makes the Triassic period a time span of great significance” (Colbert,
1958, p. 973). In contrast, Newell (1967) considered the end-Triassic to be one of
several Phanerozoic mass extinction events that were marked by the rapid loss
of many diverse groups. In this case Newell especially highlighted the coincident
loss of numerous ammonoids and reptiles at the end of the Triassic, pointing to a
crisis on both land and sea. Today Newell’s claims are uncontroversial but at the
time they were distinctly at odds with prevailing ideas and had little or no
influence on contemporary studies. The idea of gradual change was deeply
entrenched: “the transition from the Triassic to the Jurassic was not marked by
sudden, simultaneous extinctions of large numbers of higher order taxa of
vertebrates, but instead was a time of gradual faunal replacement” (Olsen &
Galton, 1977, p. 985). Indeed the main changes amongst tetrapods were placed
tens of millions of years earlier, within the Carnian Stage (e.g. Bakker, 1977).

This appreciation profoundly changed with Hallam’s evaluation of the
marine fossil record (Hallam, 1981), and saw the end-Triassic crisis gain a mass
extinction status. Hallam demonstrated that European bivalves show major
losses in a geologically-brief interval of the latest Triassic. Interestingly, unlike
the Toarcian crisis, Hallam showed the extinction was clearly selective with
epifaunal groups showing much greater extinction losses compared with the
sediment-dwelling infaunal groups (Hallam, 1981).

Hallam’s paper provided clear data that showed the severity of the
marine losses and invigorated the debate on the end-Triassic’s mass extinction
status. The main questions that developed in the 1980s and continue to be
addressed to this day are:-

i) how severe was this crisis especially on land?
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ii) how quickly did it occur?

iii) was it in fact just a minor event in comparison with a much more

intense Carnian extinction?

Within a few years of Hallam’s 1981 paper the end-Triassic mass
extinction crisis was being ranked alongside the end-Cretaceous event and it
even had its own meteorite-impact crater at Manicouagan in Quebec Province
(Olsen, Shubin & Anders, 1987). However, the crater is now known to be much
too old to be implicated in an end-Triassic extinction and for many
palaeontologists the key extinction happened earlier. Thus, Benton has argued
that both marine and terrestrial extinctions were at their most severe within the
Carnian whereas the end-Triassic losses were both less intense and less sudden
- very much a second rate crisis compared with the earlier event (Benton, 1986,
1991). Late Carnian extinctions removed many taxa from species-rich tetrapod
families (e.g. the kannemeyerids and the rhynchosaurs) but the end-Triassic
event only removed species-poor families. Thus, Benton concluded that “The
Carnian event unequivocally had greater impact than the end-Triassic event
among terrestrial vertebrates” (Benton, 1991, p. 270) and “the end-Triassic
extinction was a whimper” (Benton 1991, p. 263). These views were very much
in keeping with pre-1981 views and have echoes in the earlier opinions of
Colbert (1958) and Bakker (1977). More recent reviews have tended to
acquiesce with Benton’s (e.g. Tanner, Lucas & Chapman, 2004).

Despite these attempts of vertebrate palaeontologists to downgrade or
dismiss the status of the end-Triassic terrestrial mass extinction, the marine
record clearly shows substantial losses, albeit potentially spread over the last

few million years of the Triassic (Hallam, 2002). More recent studies also suggest
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that the tetrapod extinction may indeed have been a severe but selective one.
The diverse and successful pseudosuchians suffered severe end-Triassic losses
leaving only crocodylomorphs, which radiated rapidly in the early Jurassic
(Toljagi¢ & Butler, 2013). In contrast dinosaur extinctions were minor (Brusatte
etal. 2010).

As well as exploring the nature of the marine extinctions, Hallam has also
pioneered palaeoenvironmental studies of the Triassic-Jurassic transition
interval. The end-Triassic crisis coincided with the onset of a phase of long-term
sea-level rise that saw the flooding of extensive low-lying areas in central Pangea
(now western Europe). By the end of the Early Jurassic extensive epicontinental
seas had developed but in the latest Triassic Rhaetian Stage this flooding had
only just begun and it is within Rhaetian strata that the extinction record is
preserved. Thus, the relationship between sea-level change and extinction at the
end of the Triassic is enigmatic. Hallam (1981) considered Rhaetian eustasy to
be the culmination of a first order lowstand with a superimposed second-order
transgressive-regressive couplet. The terminal Rhaetian regression is mostly
clearly manifest as a karst surface developed atop reefs in Austrian Alps
(Satterley, Marshall & Fairchild, 2006).

There is thus a temporal link between regression and extinction at the
end of the Triassic and the notion that the two phenomena are causally linked
has a long pedigree. It was first explicitly proposed by Newell (1967). The idea
derives from MacArthur and Wilson's species-area effect and it suggests that, as
shallow seas retreat and shallow-marine habitat areas are lost, marine extinction
rates increase (although the concept clearly cannot be invoked to cause

terrestrial losses). The general link between sea level and diversity is a recurrent
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and disputed theme in biodiversity studies (e.g. Hallam, 1977; Hallam & Wignall,
1999; Hannisdal & Peters, 2011; Smith, 2007). The link at the end of the Triassic
is complicated because the terminal Rhaetian regression was swiftly followed by
the rapid spread of anoxic bottom waters, a phenomenon that could have been
also bound up in the extinction and its aftermath (Hallam, 1981, 1995; Richoz et
al. 2012). Summing up the difficulties of disentangling the key factor Hallam
noted that: “Because such transgressions normally follow quickly after major
regressions, it is not always clear from analysis of extinction events what the
critical causal factor was, although in both cases [regression and transgression-
with-anoxia] there would have been a reduction in benthic and nektobenthic
habitable area.” (Hallam, 1989, p. 443).

Subsequent studies by Hallam and other workers have added to, and to
some extent, clarified the possible culprits for the end-Triassic mass extinction.
Analysis of the rate and regional variation of sea-level change has provided
further, indirect evidence of a potential smoking gun. The Rhaetian sea-level
changes seen in Europe, with their regressive-transgressive couplet around the
end of the Triassic are only weakly manifest in North America (Hallam & Wignall,
2000) and are not seen at all in South America (Hallam, 1989) nor in the
Perigondwanan sections of southern Tibet (Hallam et al. 2000) where the story
is one of gradual sea-level rise across the Triassic-Jurassic boundary (Hallam &
Wignall, 1999).

Rates of sea-level change across of Triassic-Jurassic boundary in western
and central Europe (but not further afield) are too fast to be attributed to normal
eustatic drivers such as changes in mid-ocean ridge spreading rates (Hallam,

1997). Instead they can be linked with North Atlantic tensional tectonic activity
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“where it is associated with substantial basaltic activity” (Hallam, 1997 p. 777)
and widespread deformed horizons that probably formed as a consequence of
this activity (Hallam & Wignall, 2004).

Studies of the fragments of a flood basalt province now found in Morocco,
Spain, Brazil and the United States have borne out Hallam’s claim of “substantial
basaltic activity”. This volcanism is now recognized as the Central Atlantic
Magmatic Province, or CAMP, and it is one of the largest all LIPs with an eruption
onset that appears to closely coincide with the mass extinction (Marzoli et al.
1999; Wignall, 2005; van de Schootbrugge et al. 2009; Palfy & Kocsis, 2014;

Bachan & Payne, this volume).

4. End-Permian Mass Extinction and its Aftermath

Whilst the role of widespread marine anoxia during the end-Triassic
crisis is enigmatic, there is a much more clear-cut link between anoxia and the
end-Permian mass extinction. Hallam’s work in collaboration with one of us
(PBW) was the first to show the close synchrony between the spread of marine
anoxia and the marine extinction losses (Wignall & Hallam, 1992, 1993). There
are however close parallels between Triassic-Jurassic and Permian-Triassic
events: sea-level changes for both show a regression-transgression couplet
(Hallam & Wignall, 1999). The contrast is that whilst the end-Permian losses
occurred during the transgressive-anoxic phase of the sea-level cycle the end-
Triassic losses were during the preceding regression. Summing up, Wignall and
Hallam (1992, p. 43) concluded that, “the disappearance of Permian faunas at the

end of the period is abrupt, taking place not at the level of regression but shortly
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above, associated with a major transgression [and] dysaerobic to anaerobic
conditions”.

The concept of an “abrupt” end-Permian mass extinction was, in the early
1990s, counter to the widely held view of a protracted extinction spanning
several million years (e.g. Teichert, 1990). It has subsequently proved to be a
rather non-controversial claim. It is certainly less contentious than the notion
that there was an abrupt end-Triassic extinction. Most studies of the past 20
years have viewed the end-Permian crisis to have taken place in a geologically
short period of time, probably only a few tens of thousands of years at most (e.g.
Kaiho et al. 2006): the latest radiometric dates suggest 60 kyr (Burgess, Bowring
& Shen, 2014). However, detailed study of marine sections has revealed the crisis
in South China can be resolved into two separate extinction events straddling the
Permian-Triassic boundary (Song et al. 2012). It may be that the discrete
extinction intervals were much shorter than this (a few thousand years?) and it
is their spacing that is measured in tens of thousands of years.

The parallels between the end-Permian and the end-Triassic and Toarcian
extinctions are manifold but it is the aftermath of the crisis that marks the end-
Permian crisis out as a uniquely severe event. Hallam investigated the fortunes
of bivalves with Miller and revealed the peculiar nature of the Early Triassic
aftermath fauna. Rather than marking a recovery and diversification phase, there
was instead a prolonged phase of low diversity throughout the Early Triassic
followed by the reappearance of many bivalves in the Middle Triassic that had
not been seen since the Permian (Hallam & Miller, 1988). Hallam returned to this
theme in 1991 in a short but influential paper in which he suggested that the

long-delayed recovery was caused by the prolonged duration of the harsh
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conditions (such as marine anoxia) that had triggered the mass extinction

(Hallam, 1991). Subsequent study has confirmed that the early Triassic was

indeed marked by one of the most prolonged and intense phases of Phanerozoic

oceanic anoxia (Isozaki, 1997; Wignall et al. 2010; Wignall et al, this issue).

As with all major topics, the nature of the Early Triassic world, its biota

and the role of environmental constraints on radiation have been the subject of

intense debate. There are currently three distinct viewpoints :-

1)

2)

3)

The Early Triassic world was a harsh one that inhibited the recovery
of all but a few hardy groups (Hallam's original idea). The recognition
of extremely hot conditions at this time (Sun et al. 2012), alongside
the widespread anoxia, adds credence to this stance as do studies of
the recovery record in South China (Song et al. this issue).

The Early Triassic world was normal but the preceding extinction had
caused such devastation that it took a long time for the biota to even
start to recover. This viewpoint can be traced back to a highly
influential paper by Schubert & Bottjer (1992). They identified the
extraordinary abundance of stromatolites in the Early Triassic and
argued that the dearth of grazers, such as gastropods, following the
mass extinction allowed cyanobacteria to flourish.

The Early Triassic world was normal as was the recovery which
proceded untrammelled. For this “nothing unusual” view see the
recent study of Hofman et al. (2013) on the post-extinction record in

the US Rockies.
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Clearly these are all discordant views and the debates continue but it was
Hallam’s characteristically perceptive thoughts that sparked this research field.
To some extent, the most recent studies suggest some compromise between
these alternatives with an initial early harsh environmental phase followed by
the first hints of recovery in the early Olenekian only to be pegged back by a
resultant crisis around the Smithian/Spathian boundary (e.g. Song et al. 2011).
But the original observation of Hallam remains pertinent - alpha diversity in
Early Triassic environments was exceptionally low. It remains to be seen if a
consensus develops or whether, like the end-Triassic extinction, the same

themes are still being debated in the decades to come.
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