
This is a repository copy of Computable theoretical error bounds for Nyström methods for 
1-D Fredholm integral equations of the second kind.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/90237/

Version: Accepted Version

Proceedings Paper:
Fairbairn, AI and Kelmanson, MA (2015) Computable theoretical error bounds for Nyström 
methods for 1-D Fredholm integral equations of the second kind. In: Harris, P, (ed.) 
Proceedings of the 10th UK Conference on Boundary Integral Methods. 10th UK 
Conference on Boundary Integral Methods, 13-14 Jul 2015, University of Brighton. 
University of Brighton . ISBN 1910172057 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Accepted for publication in Proc. 10th UK Conf. on Boundary Integral Methods, July 2015

0 Computable theoretical error bounds for Nyström
methods for 1-D Fredholm integral equations of the
second kind
Abigail I Fairbairn and Mark A Kelmanson†

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT
mm09af@leeds.ac.uk and mark@maths.leeds.ac.uk (†corresponding author)

Abstract

New expressions for computable error bounds are derived forNyström-method approximate solu-
tions of one-dimensional second-kind Fredholm integral equations. The bounds are computed usingonly

the numerical solution, and so require noa priori knowledge of the exact solution. The analysis is imple-
mented on test problems with both well-behaved and “Runge-phenomenon” solutions, and the computed
predictions are shown to be in impressive quantitative agreement with the true errors obtained from

known exact solutions of the test problems. For independentcomputational validation, both Lagrange
and barycentric interpolation are employed on grids with both regularly spaced nodes and those located
at the roots or extrema of orthogonal polynomials. For independent theoretical validation, asymptotic
estimates are derived for the convergence rates of the observed computational errors.

0.1 Introduction

Presented herein is the theory for, and implementation of, anew method for computing explicita priori
bounds for the error in the numerical approximation of solutions of linear Fredholm integral equations of
the second kind (FIE2s). Since the theory is based on Nyström-type quadrature methods that utilise nodes
based on both Chebyshev and Legendre polynomials, it is assumed that the FIE2s have beena priori scaled
onto the universal interval[−1, 1], so that the FIE2 under consideration is of the canonical form

u(x)− λ

∫ 1

−1

K(x, y)u(y) dy = f(x), x ∈ [−1, 1] , (0.1)

in whichu(x) is the required solution,K(x, y) is the kernel,f(x) is the source function andλ is a real or
complex constant. It is assumed thatu,K andf are bounded and infinitely differentiable forx, y ∈ [−1, 1],
and thatλ is not a characteristic value of (0.1), which therefore has the unique solutionu(x).

The approximate numerical solution of (0.1) is considered in a substantial literature, of which [1, 2, 3, 4]
are perhaps the best known fundamental treatises covering the theory and implementation of a host of meth-
ods (e.g. interpolation, projection, collocation and quadrature) that attest to the widespread and continuing
interest in (0.1). Despite the demonstrable interest in thedevelopment of such methods, implementation of
quantifiable analyses for estimating computablea priori error bounds for them continues to be relatively
scarce in the literature; indeed, it is acknowledged [2, p.158] that“these bounds will be difficult to evaluate
in applications”. In particular, it is explicitly noted [5] that, in the“actual numerical computation [of error
bounds]”, there are“only some scattered results that apply this approach.”For example, when (0.1) is of
degenerate-kernel form, computable error bounds can readily be computed [4, p.32] and, for the general
form of (0.1), error estimates based on Gauss-Jacobi polynomials can be found [6] within the context of
Nyström-based methods.

Thus motivated, the error analysis developed herein is founded on an operator theory that underpins
both convergence and stability analyses of the Nyström method within a general abstract framework.
Specifically, the present work demonstrates that accurate error estimates can be obtained by building upon
and extending two fundamental interconnected theorems, [3, Thm. 4.7.11] and [4, Thm. 4.1.1], in such a
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way that the approximate solution of (0.1) can be used to yield accuratea priori error predictions in the
absence of an exact solution. The new prediction differs markedly from thea posteriorierror estimate
[7, (14,15)] inherent in “forced-oscillation” interpolation [8, (4.7.39)] which, as demonstrated in§0.4, is
orders of magnitude larger than the Nyström error. Finally, it is noted that the present approach aligns with
the recent interest in, and development of, fast and spectrally accurate algorithms [9] for computing the
nodes and weights of Gaussian quadratures utilising in excess of100 nodes.

The remainder of this paper is structured as follows. In§0.2.1 and§0.2.2 are presented overviews of,
respectively, the “classic” and “interpolated” Nyström method (CNM and INM), in the latter of which both
Lagrange and barycentric interpolation are used to projectbetween Nyström and, e.g., optimal differentia-
tion nodes. In§0.3 are presented error analyses for both the CNM and INM on meshes that used nodes that
are either regularly spaced or at the roots and extrema of orthogonal polynomials. In§0.4 are presented
numerical results generated by implementing the new theory, validation of which is convincingly demon-
strated by application to test problems for which exact solutions of (0.1) are known. One such solution
is infinitely continuously differentiable; interpolationof the other is plagued by the Runge phenomenon
on the regular mesh, the consequences of which are analysed explicitly and explained via an asymptotic
analysis. The summary in§0.5 includes brief suggestions of how the estimates can be further improved in
future work.

0.2 Nyström Method

0.2.1 Classic Version

Following, e.g., [4], (0.1) can be written in symbolic form as

u− λK u = f , (0.2)

in which the action of the integral operatorK onu is defined by

K u = (K u)(x) ≡

∫ 1

−1

K(x, y)u(y) dy . (0.3)

In the Nyström method, the action of the integral operatorK is approximated by an operatorKN that
represents anN -node quadrature rule, thereby yielding the discrete counterpart,

K u ≈ KN u = (KN u)(x) ≡

N∑

j=1

wj,NK(x, yj,N)u(yj,N) , (0.4)

of (0.3), in whichwj,N andyj,N are respectively the weights and abscissae of the rule. Because the weight
function in the integral in (0.3) is unity, Gauss-Legendre quadrature (GLQ) is used [10, Table 4.4], which
yields the weightswj,N and abscissaeyj,N that maximise the order of the quadrature rule. This is tanta-
mount to interpolatingu(x) on [−1, 1] by Legendre polynomials, whence the abscissaeyj,N are simply the
zeros of the Legendre polynomial of the first kind,PN(x), of degreeN ,

PN(yj,N) = 0 , j = 1(1)N , (0.5)

with the weightswj,N then given by

wj,N =
−2

(N + 1)P ′
N
(yj,N)PN+1(yj,N)

, j = 1(1)N . (0.6)
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Using (0.4), a discrete equation is obtained for the (GLQ-)Nyström approximation,uN(x), of (0.1), which
satisfies

uN(x)− λ

N∑

j=1

wj,NK(x, yj,N)uN(yj,N) = f(x), x ∈ [−1, 1] , (0.7)

with corresponding symbolic form
uN − λKN uN = f . (0.8)

Collocating (0.7) at theN nodesx = yi,N , i = 1(1)N , yields

uN(yi,N)− λ

N∑

j=1

wj,NK(yi,N , yj,N)uN(yj,N) = f(yi,N), i = 1(1)N , (0.9)

which is anN ×N linear system for the nodal valuesuN(yj,N), j = 1(1)N which, in matrix-vector form,
is

(I− λKN)uN = fN , (0.10)

wherein the elements, fori, j = 1(1)N , are given by the explicit formulae

{uN}i = uN(yi,N) , {fN}i = f(yi,N) , {KN}i,j = wj,NK(yi,N , yj,N) . (0.11)

Inversion of the system (0.10) yields the nodal valuesuN(yj,N), j = 1(1)N in the Nyström inversion
formula

uN(x) = f(x) + λ
N∑

j=1

wj,N K(x, yj,N)uN(yj,N) , x ∈ [−1, 1] , (0.12)

which is used to approximateu(x) for all x ∈ [−1, 1]. Finally, it is noted that, by (0.9), (0.12) and the
construction of GLQ, it is the case thatuN(x) ≡ u(x) if the productK(x, y)u(y) in (0.1) is a polynomial
in y of degree less than or equal to2N − 1.

0.2.2 Interpolated Version

By the discussion immediately after (0.4), the classical Nyström method (CNM) utilises abscissae at the
roots of the Legendre polynomialsPN(x) since the weight function (implied) in (0.1) is unity. However,
within the context of, for example, integro-differential equations (IDEs), the error in approximating dif-
ferentiation is optimised when the nodes are at the roots of the Chebyshev polynomialsTN(x) [11]. In
this event, interpolation between the Legendre and Chebyshev nodal data is demanded by the need to min-
imise the total error. In this context, analysis of a new “interpolated Nyström method” (INM) is presented,
although implemention of the full solution of IDEs is deferred to a companion paper.

In the quadrature rule on the right-hand side of (0.7), the nodal ordinatesuN(yj,N) are Lagrange-
interpolated through a set of nodes{ỹk,N}

N

k=1 ⊆ [−1, 1] that are distinct from the Legendre nodes{yj,N}
N

j=1

defined by (0.5). Corresponding to (0.7), the new “interpolated Nyström” approximatioñuN therefore sat-
isfies, forx ∈ [−1, 1],

ũN(x)− λ

N∑

j=1

wj,NK(x, yj,N)

N∑

k=1

Lk,N(yj,N) ũN(ỹk,N) = f(x) ,

whose symbolic form is
ũN − λKN LN ũN = f , (0.13)
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in which the action of the operatorLN is defined by

LN ũN = (LN ũN)(x) ≡
N∑

k=1

Lk,N(x) ũN(ỹk,N) , x ∈ [−1, 1] , (0.14)

wherein the Lagrange basis functions are given by

Lk,N(x) =
N∏

ℓ=1
ℓ 6=k

x− ỹℓ,N
ỹk,N − ỹℓ,N

, k = 1(1)N . (0.15)

Collocating (0.13) at theN (new) nodesx = ỹi,N , i = 1(1)N and interchanging the subscriptsj andk
yields anN ×N linear system for the nodal valuesũN(ỹj,N), j = 1(1)N which, in matrix-vector form, is

(I− λ K̃N) ũN = fN , (0.16)

wherein the elements, fori, j = 1(1)N , are given by the explicit formulae

{ũN}i = ũN(ỹi,N) , {fN}i = f(ỹi,N) ,

{K̃N}i,j =
N∑

k=1

wk,N K(ỹi,N , yk,N)Lj,N(yk,N) . (0.17)

Inversion of (0.16) yields the nodal valuesũN(ỹj,N), j = 1(1)N for computing the approximate solution
ũN(x), for x ∈ [−1, 1], of (0.1) via the inversion formula

ũN(x) = f(x) + λ

N∑

k=1

wk,N K(x, yk,N)

N∑

j=1

Lj,N(yk,N) ũN(ỹj,N) . (0.18)

Note that the price paid for utilising independent integration and interpolation nodes is, by comparing
(0.11) with (0.17), the orderO(N) summation required within each element of the amended system matrix
K̃N .

0.3 Error Analysis

The CNM is first analysed. Subtracting (0.8) from (0.2) yields

u− uN = λ (K u−KN uN) = λK (u− uN) + λ (K −KN)uN ,

hence the error can be expressed in terms of (only) the approximate solutionuN as

u− uN = λ (I − λK)−1(K −KN)uN , (0.19)

in which the existence and boundedness of(I − λK)−1 is guaranteed [2, Thm. 3.4] byu being the unique
solution of (0.2), equivalently(I−λK)u = f , and in which (0.8) givesλ (K−KN)uN = λK uN−uN+f.

Thus an error bound for the CNM is

||u− uN || ≤
∣∣∣∣(I − λK)−1

∣∣∣∣ ||uN − λK uN − f || , (0.20)

which, to the authors’ knowledge, is a novel way of expressing the error that both avoids having to compute
KN uN and admits the “inverted” interpretation of the degree to which the exact operatorK fails to ap-
proximate the Nyström operatorKN in the equation (0.8) foruN . In (0.20), and subsequently, the infinity
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norm||·|| defined on[−1, 1] is used, and a bound for the first term on the right-hand side can be obtained as
(cf. [3, (4.7.17b)]

∣∣∣∣(I − λK)−1
∣∣∣∣ ≤

1 + |λ|
∣∣∣∣(I − λKN)

−1
∣∣∣∣ ||K||

1− λ2 ||(I − λKN)−1|| ||(K −KN)K||
. (0.21)

Being derived via the geometric series theorem [1, Thm. 1.1], both numerator and denominator on the
right-hand side of (0.21) are by construction positive (cf. [4, (4.1.22)]): additionally,(I − λKN)

−1exists
and is bounded via the existence and uniqueness of the solutionu of (0.2) [4, Thm. 4.1.2].

Though alternative bounds have been presented in the sources cited, they have been neither expressed in
the simple form (0.20) nor used for the explicit computationof ||u− uN ||. Pursuing this objective,νN > 0

andδN > 0 are used to denote respectively the numerator and denominator of the right-hand side of (0.21).
Then, for allN ,

∣∣∣∣(I − λK)−1
∣∣∣∣ ≤ νN /δN , so the tightest bound on(I −λK)−1 uses the minimum value

ν̌N of νN and the maximum valuêδN of δN . By (0.21), bothν̌N and δ̂N demand
∣∣∣∣(I − λKN)

−1
∣∣∣∣ to

be minimised; additionally,̌νN and δ̂N respectively demand||K || and ||(K −KN)K || to be minimised.
Applying standard norm properties to the inverse of (0.8) yields

∣∣∣∣(I − λKN)
−1

∣∣∣∣ ≥ ||uN ||

||f ||
, (0.22)

in which equality minimises
∣∣∣∣(I − λKN)

−1
∣∣∣∣ as the computable right-hand side. For sufficiently largeN ,

uN ≈ u by construction, whence norm properties yield

||(K −KN)K || ≡ sup
u

||(K −KN)K u||

||u||
≥

||(K −KN)K u||

||u||
≈

||(K −KN)K uN ||

||uN ||
, (0.23)

of which the last term approximately minimises||(K −KN)K || as a computable quantity, and within which
K uN can be re-used to minimise||K || in (0.21) without further expense as||K uN || / ||uN ||; a posteriori
consideration of the results in§0.4 vindicates both this and the approximation (0.23). Assembling all
results, the new prediction of the error bound for the CNM is

||u− uN || ≤
||f ||+ |λ| ||K uN ||

||f || − λ2 ||(K −KN)K uN ||
||uN − λK uN − f || , (0.24)

in which the right-hand side is explicitly computable in terms of only the approximate solutionuN =

f + λKN uN determined by (0.8).
Turning to the INM, subtraction of (0.13) from (0.8) yields

u− ũN = λ(K u−KN LN ũN) ,

in which the action ofLN is defined by (0.14). Proceeding along identical lines to those used in deriving
(0.19) and (0.20) now yields the INM error,

u− ũN = λ (I − λK)−1(K −KN LN) ũN , (0.25)

with bound
||u− ũN || ≤

∣∣∣∣(I − λK)−1
∣∣∣∣ ||ũN − λK ũN − f || , (0.26)

which both avoids the need to computeKN LN ũN and again admits the “inverted” interpretation of the
degree to which the exact operatorK fails to approximate the “interpolated Nyström” operatorKN LN in
the equation (0.13) for̃uN , and in which (0.21) must be amended to

∣∣∣∣(I − λK)−1
∣∣∣∣ ≤

1 + |λ|
∣∣∣∣(I − λKN LN)

−1
∣∣∣∣ ||K||

1− λ2 ||(I − λKN LN)−1|| ||(K −KN LN)K||
. (0.27)
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Repeating the minimum-numerator, maximum-denominator argument used in deriving (0.24) now yields

||u− ũN || ≤
||f ||+ |λ| ||K ũN ||

||f || − λ2 ||(K −KN LN)K ũN ||
||ũN − λK ũN − f || , (0.28)

in which the right-hand side is explicitly computable in terms of only the approximate solutioñuN =

f + λKN LN ũN determined by (0.13).

0.4 Implementation, Results and Discussion

The theory of§0.3 is now implemented and validated using two examples of (0.1) for which exact solutions
are known. The first, “problem 1”, is

u(x) −
1

10

∫ 1

−1

(3x+ 2) (y + 1)u(y) dy

= cosx−
1

5
sin(3x+ 2)−

11

5
x+

13

15
, x ∈ [−1, 1] , (0.29)

whose exact solutionu(x) = cosx − 2x + 1 is bounded and infinitely continuously differentiable on
x ∈ [−1, 1]. The second, “problem 2”, is

u(x) −
1

10

∫ 1

−1

(
3x+ 2 + (2x− 1)(25y2 + 1)

)
u(y) dy

=
1

25x2 + 1
+

1

25

(
5− 10x− (3x+ 2) tan−1 5

)
, x ∈ [−1, 1] , (0.30)

whose exact solutionu(x) = 1/(25x2 + 1) is also bounded and infinitely differentiable onx ∈ [−1, 1]

but which, when interpolated on a regular grid, has an exponentially divergent interpolation error asN
increases [11]. Problems 1 and 2 are each solved using both the CNM and an INM that uses three different
interpolation node sets located at regular intervals, Chebyshev zeros and Chebyshev extrema. For the sake
of compactness and consistency in presenting subsequent results, note that the CNM can be considered to
be the INM using interpolation nodes located at the Legendrezeros, in which caseLN ≡ I.

Since it is well known [12, 13, 14] that barycentric interpolation is more stable and computationally
efficient than its Lagrange counterpart (0.14), the alternative barycentric interpolation formula

(LN ũN)(x) ≡

N∑

j=1

ω̃j,N ũN(ỹj,N)

x− ỹj,N

/ N∑

j=1

ω̃j,N

x− ỹj,N
, x ∈ [−1, 1] (0.31)

was used to replace (0.14) in the above to check both accuracyand stability, particularly for largerN ;
predicted errors, by construction, remain unaltered. The barycentric weights̃ωj,N = 1/Ψ̃′

N
(ỹj,N) in (0.31)

were evaluated explicitly [13] for nodes that are regularlyspaced, at Chebyshev extrema and at Chebyshev
roots. In all cases, it transpired that results computed using either (0.14) or (0.31) were indistinguishable
from each other on the scale presented; however, numerical experiments revealed (0.31) to be≈ O(N)

times faster than (0.14).
In solving both problems 1 and 2 on the four described node sets, the INM solutioñuN was computed

in two ways. Having first solved (0.16) for the nodal valuesũN(ỹj,N), j = 1(1)N , the solutioñuN(x) for
x ∈ [−1, 1] was computed using either Lagrange interpolationũN(x) = LN ũN (cf. (0.14), “method 1”) or
Nyström inversioñuN(x) = f + λKN LN ũN (cf. (0.18), “method 2”).

The effect upon the error of the type of interpolation is firstconsidered. In figures 0.1(a) and 0.1(b)
are respectively presented semilog plots of the true (computational) erroreN ≡ ||u− ũN || for problems
1 (0.29) and 2 (0.30), for each of which̃uN is evaluated using both interpolations (0.14) (method 1) and
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Figure 0.1:Semilog plots of the true (computational) INM erroreN ≡ ||u− ũN || for (a) problem 1(0.29),
and (b) problem 2(0.30), in both of whichũN is computed using interpolations(0.14) (method 1) and
(0.18) (method 2). In (a), note the optimal performance of the CNM (the INM on Legendre nodes), the
uniform superiority of method 2 over method 1, and the spectral convergence of both methods. In (b),
note the expected manifestation (divergence) of the Runge phenomenon on the regularly spaced nodes and,
by comparing the vertical scale with that in (a), the uniformerosion of error convergence rate on the
orthogonal-polynomial nodes.

(0.18) (method 2). For problem 1, immediately evident in figure (0.1)(a) is the superior performance of
INM method 2 interpolated on the Legendre nodes—i.e. the CNM—in which the error roundoff plateau
(for the 36-digit arithmetic used here) is rapidly achieved. Moreover, the vertical scale reveals that the INM
error (for both methods 1 and 2) on all other node sets still converges to zero spectrally withN , in keeping
with the behaviour demanded of the INM in its intended application to IDEs.

The divergence of errors withN shown in figures 0.1(b) demonstrates the expected failure ofboth
INM methods 1 and 2 when the solutionu(x) = 1/(25x2 + 1) of problem 2 is interpolated at regularly
spaced nodes: this is the manifestation of the well-known Runge phenomenon [11] associated with the
interpolation ofu(x) on [−1, 1] which, whilst not fatal to the INM on the orthogonal-polynomial nodal
distributions, greatly reduces the efficacy of the method thereon, as evidenced by comparing vertical scales
in figures (0.1)(a) and (b).
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Figure 0.2:Semilog plots of the true (computational) INM erroreN ≡ ||u− ũN || and boundbN predicted
by (0.28)for (a) problem 1(0.29), and (b) problem 2(0.30), in whichũN is computed using interpolation
(0.18)(method 2). In (a), note the demonstrable impressive accuracy of the predictions irrespective of the
interpolation nodes. In (b), note that, on the regular nodes, the Runge phenomenon that causes the true
error eN to diverge exponentially also does so for the predicted bound bN . The dotted lines in (a) indicate
the theoretical (asymptotic) convergence rates(0.32) that explain the marked disparity in the CNM and
INM errors for problem 1.

In figure 0.2 are presented both the true errorseN and the newly predicted error boundsbN for problems
1 and 2, as solved using INM method 2 on different interpolation nodes. In figure 0.2(a), which has the
same axis scaling as figure 0.1(a), note that both the CNM and INM errors for problem 1 are predicted
extremely accurately by the computable bounds (0.24) and (0.28) respectively. Note also that the CNM
error is orders of magnitude smaller than the INM error in this case. This discrepancy is now quantified.

Using well-known formulae for the errors incurred in both Lagrange interpolation [8, (5.3.29)] and
GLQ [8, (4.7.26)], it is possible to use the exact solutionu and kernelK in (0.1) to derive leading-order
explicit asymptotic estimates for the convergence rates (ignoring numerical prefactors) of the erroreN as
N → ∞. If a superscript in parentheses denotes the degree of partial differentiation with respect toy, it can
be shown that the bounds necessary for the interpolation andGLQ errors are respectively

∣∣∣∣u(N)
∣∣∣∣ = O(1)

and
∣∣∣∣(K u)(2N)

∣∣∣∣ = O(N). Omitting algebraic details, the INM convergence rates foreN in problem 1 can
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be shown to be
N

4N (2N)!
,

1

2N N !
and

1

N

[
2

N − 1

]
N

(0.32)

for Legendre nodes (i.e. the CNM), Chebyshev nodes or extrema, and regularly spaced nodes respectively.
Appropriate scalar multiples of the theoretical rates (0.32) are superimposed on the numerical errorseN

and computed boundsbN in figure 0.2(a). The agreement is excellent, confirming that(0.32) fully explains
the large disparity between the CNM and INM accuracies for the “well-behaved” problem 1.

The corresponding results for problem 2 are presented in figure 0.2(b), the bottom half of which con-
tains a vertically compressed version of the true errors plotted in figure 0.1(b), and the top half of which
reveals that, as expected, when regularly spaced nodes are employed for INM interpolation, the predicted
INM error bounds no longer approximate well the true INM errors. This breakdown is again a manifesta-
tion of the Runge phenomenon. However, by contrast with problem 1, the convergence rate ofeN cannot
be explicitly predicted because the theoretical bounds

∣∣∣∣u(N)
∣∣∣∣ ≤ N !αN and

∣∣∣∣(K u)(2N)
∣∣∣∣ ≤ (2N)!α2N are

over-pessimistic to the extent that they portend a divergence ofeN , on even the Legendre and Chebyshev
nodes, that is not validated by the numerical results shown in figure 0.2(b). In this case, all that can be
predicted is that the convergence rates of both the GLQ and interpolation errors are of the same order, and
that the spectral convergence of the CNM degenerates to pure-exponential convergence, as evidenced by
the linearity of the convergence rates in the semilog plot figure 0.2(b).

0.5 Summary

A novel error analysis has been developed for the (GLQ) Nyström method, for which errors are well-known
to be“difficult to estimate” [8, p.282]. The analysis has been demonstrated to yield accurate prediction
of errors via unexpectedly simple to state and hitherto-unknown explicit computations that utilise only the
computed numerical solution. For FIE2s in which the solution is infinitely continuously and boundedly
differentiable, computed error estimates are spectrally accurate and error convergence rates have been
predicteda priori. When higher derivatives of the solution are unbounded, discrepancies between the CNM
and INM errors can be explicitly analysed so that the observed quantitative breakdown of the approach in
the presence of the Runge phenomenon can be accurately quantified. Ongoing work is aimed at improving
the estimates (0.22) and (0.23) of required norm approximations in order to preclude the situation, observed
for the test problems herein, that the predicted bounds are marginally lower than the true errors.
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