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0 Computable theoretical error bounds for Nystrom
methods for 1-D Fredholm integral equations of the
second kind
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Department of Applied Mathematics, University of Leedsetle LS2 9JT
mmoO9af@leeds.ac.uk and mark@maths.leeds.abtcokrésponding author)

Abstract

New expressions for computable error bounds are derivetlystrom-method approximate solu-
tions of one-dimensional second-kind Fredholm integrabg¢igns. The bounds are computed usingy
the numerical solutiorand so require na priori knowledge of the exact solution. The analysis is imple-
mented on test problems with both well-behaved and “Rurgapmenon” solutions, and the computed
predictions are shown to be in impressive quantitative exgent with the true errors obtained from
known exact solutions of the test problems. For independemiputational validation, both Lagrange
and barycentric interpolation are employed on grids witthtvegularly spaced nodes and those located
at the roots or extrema of orthogonal polynomials. For imthejent theoretical validation, asymptotic
estimates are derived for the convergence rates of thevaliseomputational errors.

0.1 Introduction

Presented herein is the theory for, and implementation ogva method for computing explicét priori
bounds for the error in the numerical approximation of Soha of linear Fredholm integral equations of
the second kind (FIE2s). Since the theory is based on Nystyipe quadrature methods that utilise nodes
based on both Chebyshev and Legendre polynomials, it isreesbthat the FIE2s have beapriori scaled
onto the universal intervél-1, 1], so that the FIE2 under consideration is of the canonicahfor

u() - A / Klepu)dy = f@), @€ [-11], 0.1)

in whichu(z) is the required solutionis (z, y) is the kernel f(z) is the source function andlis a real or
complex constant. Itis assumed that< and f are bounded and infinitely differentiable fory € [—1, 1],
and that\ is not a characteristic value of (0.1), which therefore Ihasunique solution(z).

The approximate numerical solution of (0.1) is considenagisubstantial literature, of which [1, 2, 3, 4]
are perhaps the best known fundamental treatises covesrigeory and implementation of a host of meth-
ods (e.g. interpolation, projection, collocation and qa#ute) that attest to the widespread and continuing
interest in (0.1). Despite the demonstrable interest irdghvelopment of such methods, implementation of
qguantifiable analyses for estimating computableriori error bounds for them continues to be relatively
scarce in the literature; indeed, it is acknowledged [258] that“these bounds will be difficult to evaluate
in applications”. In particular, it is explicitly noted [5] that, in th&ctual numerical computation [of error
bounds]”, there aréonly some scattered results that apply this approadidr example, when (0.1) is of
degenerate-kernel form, computable error bounds canlydaelicomputed [4, p.32] and, for the general
form of (0.1), error estimates based on Gauss-Jacobi poliaie can be found [6] within the context of
Nystrom-based methods.

Thus motivated, the error analysis developed herein isdedron an operator theory that underpins
both convergence and stability analyses of the Nystromhatetvithin a general abstract framework.
Specifically, the present work demonstrates that accurete estimates can be obtained by building upon
and extending two fundamental interconnected theorem3H@. 4.7.11] and [4, Thm. 4.1.1], in such a



way that the approximate solution of (0.1) can be used talyaeturatea priori error predictions in the
absence of an exact solution. The new prediction differskedy from thea posteriorierror estimate
[7, (14,15)] inherent in “forced-oscillation” interpolah [8, (4.7.39)] which, as demonstrated§@.4, is
orders of magnitude larger than the Nystrom error. Fin#lig noted that the present approach aligns with
the recent interest in, and development of, fast and splgcarecurate algorithms [9] for computing the
nodes and weights of Gaussian quadratures utilising inssxai 00 nodes.

The remainder of this paper is structured as follows§ar2.1 andg0.2.2 are presented overviews of,
respectively, the “classic” and “interpolated” Nystronetinod (CNM and INM), in the latter of which both
Lagrange and barycentric interpolation are used to prbjesteen Nystrom and, e.g., optimal differentia-
tion nodes. Ir§0.3 are presented error analyses for both the CNM and INM a@hetethat used nodes that
are either regularly spaced or at the roots and extrema bbgoinal polynomials. 1§0.4 are presented
numerical results generated by implementing the new theatigdation of which is convincingly demon-
strated by application to test problems for which exact tamhs of (0.1) are known. One such solution
is infinitely continuously differentiable; interpolati@f the other is plagued by the Runge phenomenon
on the regular mesh, the consequences of which are analypbditty and explained via an asymptotic
analysis. The summary §0.5 includes brief suggestions of how the estimates canrtlesiuimproved in
future work.

0.2 Nystrom Method

0.2.1 Classic Version
Following, e.g., [4], (0.1) can be written in symbolic forra a
u—AKu=f, (0.2)

in which the action of the integral operatronw is defined by

Ku=(Ku)(x)= /_1 K(z,y)u(y)dy. (0.3)

In the Nystrom method, the action of the integral operdfois approximated by an operatdi, that
represents aiv-node quadrature rule, thereby yielding the discrete copatt,

N
RKumKyu= (’CN U)(fﬂ) = ij,NK(xvyj,N) u(?Jj,N) ) (0.4)
j=1

of (0.3), in whichw;,  andy; , are respectively the weights and abscissae of the rule.uBedhe weight
function in the integral in (0.3) is unity, Gauss-Legenduvadrature (GLQ) is used [10, Table 4.4], which
yields the weightsv; v and abscissag; y that maximise the order of the quadrature rule. This is tanta
mount to interpolating.(x) on[—1, 1] by Legendre polynomials, whence the absciggaeare simply the
zeros of the Legendre polynomial of the first kirfel; (x), of degreeV,

PN(yj,N) =0, j=11)N, (0.5)

with the weightsw;, v then given by

—2
(N +1) le\r(yj,l\l)PN+1(?JJ',N)7

Jj=11)N. (0.6)

Wj,n =



Using (0.4), a discrete equation is obtained for the (GL@gdm approximatiory , (x), of (0.1), which
satisfies

N
un (@) =AY wi K (@, y58) un(yyn) = f(2), @ e[-1,1], (0.7)
j=1

with corresponding symbolic form
Uy — A yuy = f. (0.8)

Collocating (0.7) at théV nodesr = y; v, ¢ = 1(1)N, yields
N
Uy (Yin) — A ij,NK(yi,Nayj,N)“N(yj,N) = f(yin), i=1(1)N, (0.9)
j=1

whichis anN x N linear system for the nodal values (y;,~ ), j = 1(1)N which, in matrix-vector form,
is
I-AKy)uy =1y, (0.10)

wherein the elements, forj = 1(1) N, are given by the explicit formulae

{uvti=un(in), i =fWin), {Kntij=winK(Yin, yjn)- (0.11)

Inversion of the system (0.10) yields the nodal valug$y; ~), 7 = 1(1)N in the Nystrom inversion
formula

N
uy (@) = f(@) + XY win K@,y n) un(yin), @ €[=1,1], (0.12)
j=1

which is used to approximate(x) for all € [—1,1]. Finally, it is noted that, by (0.9), (0.12) and the
construction of GLQ, it is the case that () = u(x) if the productK (x, y) u(y) in (0.1) is a polynomial
in y of degree less than or equal2d’ — 1.

0.2.2 Interpolated Version

By the discussion immediately after (0.4), the classicasttiym method (CNM) utilises abscissae at the
roots of the Legendre polynomial3, (x) since the weight function (implied) in (0.1) is unity. Hovesy
within the context of, for example, integro-differentiguations (IDEs), the error in approximating dif-
ferentiation is optimised when the nodes are at the roote@Chebyshev polynomialg, (x) [11]. In
this event, interpolation between the Legendre and Chelyystdal data is demanded by the need to min-
imise the total error. In this context, analysis of a newénpblated Nystrom method” (INM) is presented,
although implemention of the full solution of IDEs is defedrto a companion paper.

In the quadrature rule on the right-hand side of (0.7), théahordinates:,(y;,~) are Lagrange-
interpolated through a set of nodigg. ~ }7_; € [—1, 1] thatare distinct from the Legendre nodes » } ;- ;
defined by (0.5). Corresponding to (0.7), the new “interpddNystrom” approximatioa, therefore sat-
isfies, forx € [—1,1],

N N
Uy () — A ij,NK(xvyj,N) ZLk,N(yj,N) Uy (Yr,n) = f(2),
j=1 k=1
whose symbolic form is
Uy —AKy Lyuy = f, (0.13)



in which the action of the operatdy, is defined by

Lty = ZLk ~(@) Uy (Y,n), xe[-1,1], (0.14)

wherein the Lagrange basis functions are given by

:nyZN
yZN

::]2

Lix( , k=1(1)N. (0.15)

/=1
7k

Collocating (0.13) at théV (new) nodes: = y; v, @ = 1(1)N and interchanging the subscrigteind &
yields anN x N linear system for the nodal values (y;,~), j = 1(1)N which, in matrix-vector form, is

I—-AKy)tuy = £y, (0.16)
wherein the elements, forj = 1(1) N, are given by the explicit formulae
{ﬁN}i - aN@i,N) ) {fN}i - f@zw) )

N
{KN}i,j = Zwk,N K(ﬂi,vak,N)Lj,N(yk,N> . (017)
k=1

Inversion of (0.16) yields the nodal values (y; ~), 7 = 1(1)N for computing the approximate solution
uy(x), forz € [-1,1], of (0.1) via the inversion formula

N N
ﬂN(af) = f(:C)+)\ Zwk,w K(fcaykz\f ZL],N ykN Uy y] N) (0-18)
— j=1

Note that the price paid for utilising independent inteigratand interpolation nodes is, by comparing
(0.11) with (0.17), the orde?(N') summation required within each element of the amendedraysigtrix
Ky.

0.3 Error Analysis
The CNM is first analysed. Subtracting (0.8) from (0.2) ygeld
u—tuy =AKu—Kyuy) =AK(u—uy) +A(K—-Ky)uy,
hence the error can be expressed in terms of (only) the ajppate solution:,, as
u—tuy =AT-AC) 1K —-Kx)uy, (0.19)

in which the existence and boundednes&Zof- \ K)~!is guaranteed [2, Thm. 3.4] hybeing the unique
solution of (0.2), equivalentlfZ —\ ) v = f, and in which (0.8) gived (K—K ) uy = AK uy—uy+f.
Thus an error bound for the CNM is

o — ] < |(Z = A s — MKy — ] (0.20)

which, to the authors’ knowledge, is a novel way of expregtie error that both avoids having to compute
K~ uy and admits the “inverted” interpretation of the degree tacwhhe exact operatd€ fails to ap-
proximate the Nystrom operatéir, in the equation (0.8) fot. In (0.20), and subsequently, the infinity



norm|-| defined orf—1, 1] is used, and a bound for the first term on the right-hand siddeabtained as
(cf. [3, (4.7.17b)]
1| L+ N (@ = 2Kx) ] IK] .

T 1= T - AR IK - KN K
Being derived via the geometric series theorem [1, Thm., haih numerator and denominator on the
right-hand side of (0.21) are by construction positige [4, (4.1.22)]): additionally(Z — A\ K )~ ! exists
and is bounded via the existence and uniqueness of theaoiutif (0.2) [4, Thm. 4.1.2].

Though alternative bounds have been presented in the satited, they have been neither expressed in
the simple form (0.20) nor used for the explicit computatbifju — u|. Pursuing this objective;y > 0
andd, > 0 are used to denote respectively the numerator and denanafahe right-hand side of (0.21).
Then, forallN, ||(Z — AK) ™! < vy /dx, SO the tightest bound o — AK)~ ! uses the minimum value
7y of vy and the maximum valuéy of 5. By (0.21), bothi, anddy demand||(Z — AK )~} to
be minimised; additionallyy, andd, respectively demangiC | and |( — K ) K| to be minimised.
Applying standard norm properties to the inverse of (0.8)ds

(T —AK)~ (0.21)

(T - AKy) ! luxl (0.22)
I 1=
in which equality minimiseg(Z — A K ) ~!| as the computable right-hand side. For sufficiently laxge
uy A u by construction, whence norm properties yield

|(K = Kx)Kul (K= Ky)Kul| _|(K—-Ky)Luy]
B [l Jun]

(€ = Kx) K] = sup

, (0.23)
u Jul

of which the last term approximately minimisg& — K ) K | as a computable quantity, and within which
Kuy can be re-used to minimiggC | in (0.21) without further expense 3£ uy| / |uy|; @ posteriori
consideration of the results i§0.4 vindicates both this and the approximation (0.23). Agsag all
results, the new prediction of the error bound for the CNM is

IF]+ AL I ux]
[ =A% (K = Kn) Kul

lu—un] < Jux = AKuy = f] (0.24)
in which the right-hand side is explicitly computable inntex of only the approximate solution, =
f+ AKy uy determined by (0.8).

Turning to the INM, subtraction of (0.13) from (0.8) yields

U— Ty = MK u— Ky L lin)

in which the action ofC is defined by (0.14). Proceeding along identical lines ts¢hased in deriving
(0.19) and (0.20) now yields the INM error,

U—Ty = ANT = AK) N K = Ky Ly) Ty, (0.25)

with bound
u— il < (2 = 2| Jiiw = AK i = £1 (0.26)

which both avoids the need to compute, £ u, and again admits the “inverted” interpretation of the
degree to which the exact operaftorfails to approximate the “interpolated Nystrom” operatoy £, in
the equation (0.13) faiy, and in which (0.21) must be amended to

1+ M\ (= AKy £3)7Y IK]

1 . 0.27
| < T @ A 2 Tk =K Lo K ©.27)

[(Z—-AK)~



Repeating the minimum-numerator, maximum-denominatpraent used in deriving (0.24) now yields

If1+ A K]
I =22 (K = Ky Lx) Ky

”ﬂN - AK&N - f" ) (028)

Ju—uy] <

in which the right-hand side is explicitly computable inntex of only the approximate solutiom,
f+ MKy Ly 1y determined by (0.13).

0.4 Implementation, Results and Discussion

The theory 0£0.3 is now implemented and validated using two examples.aj (r which exact solutions
are known. The first, “problem 1", is

1

1
ul@ = 15 1(390+2) (y+ 1 uly)dy
1 11 13
= — i 2) — — — -1,1 2
cosw 5s1n(3x+ ) 5$+157 r e [-1,1], (0.29)

whose exact solutiom(z) = cosz — 2z + 1 is bounded and infinitely continuously differentiable on
€ [-1,1]. The second, “problem 27, is

1

u(z) — 11—0 » (3z +2+ (22 — 1)(25y% + 1)) u(y) dy

1 + 1 (5
2522 +1 25

= — 10z — 3z +2)tan"'5), =z €[-1,1], (0.30)
whose exact solution(z) = 1/(2522 + 1) is also bounded and infinitely differentiable enc [—1, 1]
but which, when interpolated on a regular grid, has an expitedey divergent interpolation error a&'
increases [11]. Problems 1 and 2 are each solved using l@®NIM and an INM that uses three different
interpolation node sets located at regular intervals, @sledv zeros and Chebyshev extrema. For the sake
of compactness and consistency in presenting subsequseitsyaote that the CNM can be considered to
be the INM using interpolation nodes located at the Legereres, in which casg, = 7.

Since it is well known [12, 13, 14] that barycentric intergiddn is more stable and computationally
efficient than its Lagrange counterpart (0.14), the alt@radarycentric interpolation formula

N ~ ~
(Lntn)@) = “JN“N Uy /Z Wy ze[-1,1] (0.31)
J=1

= T — Yj~ T — Yj~

was used to replace (0.14) in the above to check both accaratystability, particularly for largenN;
predicted errors, by construction, remain unaltered. Trgdentric weightss; v = 1/@§V@m) in (0.31)
were evaluated explicitly [13] for nodes that are regulapgced, at Chebyshev extrema and at Chebyshev
roots. In all cases, it transpired that results computedgusither (0.14) or (0.31) were indistinguishable
from each other on the scale presented; however, numerpatienents revealed (0.31) to be O(N)
times faster than (0.14).

In solving both problems 1 and 2 on the four described nodg gt INM solutionz,, was computed
in two ways. Having first solved (0.16) for the nodal valiigsy; ~), 7 = 1(1)NV, the solutionu, (x) for

€ [—1, 1] was computed using either Lagrange interpolafiQitx) = L u (cf. (0.14), “method 1”) or

Nystrom inversioniy (z) = f + AKXy Ly ty (cf. (0.18), “method 27).

The effect upon the error of the type of interpolation is fashsidered. In figures 0.1(a) and 0.1(b)
are respectively presented semilog plots of the true (coatipmal) errore, = |u — uy| for problems
1 (0.29) and 2 (0.30), for each of whiel, is evaluated using both interpolations (0.14) (method 1) an
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Figure 0.1:Semilog plots of the true (computational) INM eriy = |u — @, | for (a) problem 1(0.29)

and (b) problem 20.30) in both of whichu, is computed using interpolatior(§.14) (method 1) and
(0.18) (method 2). In (a), note the optimal performance of the CNi (NM on Legendre nodes), the
uniform superiority of method 2 over method 1, and the spéctnvergence of both methods. In (b),
note the expected manifestation (divergence) of the Rumgggmenon on the regularly spaced nodes and,
by comparing the vertical scale with that in (a), the unifoemsion of error convergence rate on the
orthogonal-polynomial nodes.

(0.18) (method 2). For problem 1, immediately evident in ffeg(0.1)(a) is the superior performance of
INM method 2 interpolated on the Legendre nodes—i.e. the ENMwhich the error roundoff plateau
(for the 36-digit arithmetic used here) is rapidly achieviglbreover, the vertical scale reveals that the INM
error (for both methods 1 and 2) on all other node sets stilVerges to zero spectrally with, in keeping
with the behaviour demanded of the INM in its intended agtian to IDEs.

The divergence of errors withV shown in figures 0.1(b) demonstrates the expected failutzotf
INM methods 1 and 2 when the solutiariz) = 1/(2522 + 1) of problem 2 is interpolated at regularly
spaced nodes: this is the manifestation of the well-knowndeuphenomenon [11] associated with the
interpolation ofu(z) on [—1, 1] which, whilst not fatal to the INM on the orthogonal-polyn@aimodal
distributions, greatly reduces the efficacy of the methedehbn, as evidenced by comparing vertical scales
in figures (0.1)(a) and (b).



3 .
OE& +
&
& % 2 -
R o +
2 g | 1
R - +
| P ¥R 1 R
-10 %g: i +
< 9 ¥R £+ + -
S 2.9 g S +
& * $%%%~. & 0+g tot” °
N y o o °
& y 5’”@%3 % & 14 %g+ o+ o
& 201 g% S %§%§i °
b %%z $$¢+
2 83
i $¢ 2 % § 3
~30- §+
30 4 &0
-3 % % <+
4 Bl %
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
N N

O Error on regular nodes

O Error on Chebyshev roots

O Error on Chebyshev extrema
O Error on Nystrdom method

-+ Bound on regular nodes

+ Bound on Chebyshev roots

-+ Bound on Chebyshev extrema
+ Bound on Nystrém method

Figure 0.2:Semilog plots of the true (computational) INM eriy = |u — u | and bound, predicted

by (0.28)for (a) problem 1(0.29) and (b) problem Z0.30) in whichu, is computed using interpolation
(0.18)(method 2). In (a), note the demonstrable impressive acyunéthe predictions irrespective of the
interpolation nodes. In (b), note that, on the regular nqdese Runge phenomenon that causes the true
error e, to diverge exponentially also does so for the predicted ddun The dotted lines in (a) indicate

the theoretical (asymptotic) convergence rafes32)that explain the marked disparity in the CNM and
INM errors for problem 1.

In figure 0.2 are presented both the true eregrand the newly predicted error bourtdsfor problems
1 and 2, as solved using INM method 2 on different interpofatiodes. In figure 0.2(a), which has the
same axis scaling as figure 0.1(a), note that both the CNM ldiMiérrors for problem 1 are predicted
extremely accurately by the computable bounds (0.24) ar&8)0@espectively. Note also that the CNM
error is orders of magnitude smaller than the INM error i tase. This discrepancy is now quantified.

Using well-known formulae for the errors incurred in bothgkange interpolation [8, (5.3.29)] and
GLQ [8, (4.7.26)], it is possible to use the exact solutioand kernelK in (0.1) to derive leading-order
explicit asymptotic estimates for the convergence ratgsofing numerical prefactors) of the errar as
N — co. If a superscriptin parentheses denotes the degree dodiifterentiation with respect tg, it can
be shown that the bounds necessary for the interpolatioiGai@l errors are respectivelp.™ | = O(1)
and||(K u)®¥| = O(N). Omitting algebraic details, the INM convergence rates:foin problem 1 can



be shown to be

P vm—— and — | =
AV (2N)' 2V NI N|N-1

for Legendre nodes (i.e. the CNM), Chebyshev nodes or extrand regularly spaced nodes respectively.
Appropriate scalar multiples of the theoretical rates ZD&e superimposed on the numerical errys
and computed bounds, in figure 0.2(a). The agreement is excellent, confirming (0a2) fully explains
the large disparity between the CNM and INM accuracies fertell-behaved” problem 1.

The corresponding results for problem 2 are presented ingfigi2(b), the bottom half of which con-
tains a vertically compressed version of the true errortigrdan figure 0.1(b), and the top half of which
reveals that, as expected, when regularly spaced nodemateyed for INM interpolation, the predicted
INM error bounds no longer approximate well the true INM estol his breakdown is again a manifesta-
tion of the Runge phenomenon. However, by contrast with lproli, the convergence rate @f cannot
be explicitly predicted because the theoretical bouhd¥ | < N!a™ and||(K u)®Y| < (2N)!a*~ are
over-pessimistic to the extent that they portend a divesgarie,, on even the Legendre and Chebyshev
nodes, that is not validated by the numerical results showfigure 0.2(b). In this case, all that can be
predicted is that the convergence rates of both the GLQ aadpiolation errors are of the same order, and
that the spectral convergence of the CNM degenerates tegxp@nential convergence, as evidenced by
the linearity of the convergence rates in the semilog pletréd.2(b).

N 1 1[ 2 }N 032)

0.5 Summary

A novel error analysis has been developed for the (GLQ) Nystnethod, for which errors are well-known

to be“difficult to estimate” [8, p.282]. The analysis has been demonstrated to yieldratprediction

of errors via unexpectedly simple to state and hithertoremkn explicit computations that utilise only the
computed numerical solution. For FIE2s in which the solui®infinitely continuously and boundedly
differentiable, computed error estimates are spectralueate and error convergence rates have been
predicteda priori. When higher derivatives of the solution are unboundedréancies between the CNM
and INM errors can be explicitly analysed so that the obsbquantitative breakdown of the approach in
the presence of the Runge phenomenon can be accuratelyfigaar@ngoing work is aimed at improving
the estimates (0.22) and (0.23) of required norm approximain order to preclude the situation, observed
for the test problems herein, that the predicted bounds argimally lower than the true errors.
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