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Abstract 14 

The occurrence of thrust-sense tectonometamorphic discontinuities within the exhumed 15 

Himalayan metamorphic core can be explained as part of the Main Central thrust system. 16 

This imbricate thrust structure, which significantly thickened the orogenic midcrustal 17 

core, comprises a series of thrust-sense faults that all merge into a single detachment. The 18 

existence of these various structures, and their potential for complex overprinting along 19 

the main detachment, may help explain the contention surrounding the definition, 20 

mapping, and interpretation of the Main Central thrust. The unique evolution of specific 21 

segments of the Main Central thrust system along the orogen is interpreted to be a 22 

reflection of the inherent basement structure and ramp position, and structural level of 23 

exposure of the mid-crust. This helps explain the variation in the timing and structural 24 

position of tectonometamorphic discontinuities along the length of the mountain belt. 25 
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1. Introduction 27 

Investigation of the role the middle and lower crust plays during the development of 28 

orogenic belts has led to a better understanding of internal convergence accommodation 29 

processes. In the Himalaya, this type of investigation has recently demonstrated that the 30 

exhumed mid-crust, or Greater Himalayan sequence (GHS), which was previously 31 

thought to be relatively homogeneous and characterized by diffuse pervasive strain (e.g. 32 

Grujic et al., 1996; Jamieson et al., 1996; Searle et al., 2006; Larson et al., 2010), is 33 

actually cut internally by a number of cryptic, thrust-sense shear zones commonly 34 

referred to in the literature as tectonometamorphic discontinuities (e.g. Montomoli et al., 35 

2014; Cottle et al. 2015). The GHS is characterized by amphibolite to granulite, and 36 

locally eclogite, facies metamorphism (Kohn, 2014), often with an inverted metamorphic 37 

sequence at its base (e.g. Mallett, 1875; Bordet, 1961; Gansser, 1964; Hashimoto et al., 38 

1973; Arita, 1983). These rocks are thought to represent the metamorphosed and 39 

deformed equivalents of the former sedimentary wedge that was built upon the northern 40 

passive margin of India prior to collision with Asia and the closure of the Tethys ocean 41 

(Parrish and Hodges, 1996; Searle et al., 1997; Myrow et al., 2003; Murphy, 2007). 42 

Discontinuities within the GHS have been identified in various locations along the length 43 

of the orogen (Figure 1; Table 1), recognized mainly through abrupt breaks in pressure 44 

and temperature estimates and/or pressure-temperature-time ± deformation (P-T-t(-D)) 45 

paths (e.g. Carosi et al., 2010; Corrie and Kohn, 2011; Larson et al., 2013; Montomoli et 46 

al., 2013; Rubatto et al., 2013; Warren et al., 2014; Ambrose et al., 2015). 47 

The discovery of these cryptic structures within the Himalaya has led to a 48 

transition away from geologic models that have either not accounted for deformation 49 



within the high-grade core (e.g. DeCelles et al., 2001; Robinson et al., 2006; Webb et al., 50 

2007; Robinson, 2008), or implicitly assumed that deformation was diffuse and pervasive 51 

throughout its history (e.g. Searle and Szulc, 2005; Larson and Godin, 2009; Larson et 52 

al., 2010). The widespread recognition of thrust-sense faults within the GHS implies that 53 

deformation was localized on discrete structures for at least the later part of the finite 54 

strain history recorded by these rocks (Cottle et al., 2015). Moreover, it also indicates that 55 

the GHS has been significantly thickened (Montomoli et al., 2013; Larson and Cottle, 56 

2014; Ambrose et al. 2015) and that shortening estimates made based on structural 57 

restorations (e.g. DeCelles et al., 2001; McQuarrie et al., 2008; 2014; Long et al., 2011a; 58 

Khanal and Robinson, 2013; Webb, 2013), which are acknowledged as minimums, may 59 

actually severely underestimate real shortening values.  60 

As interpreted, these discontinuities have typically been classified into one of two 61 

end-member types: early (late Oligocene to earliest Miocene) in-sequence thrust 62 

structures (e.g. Carosi et al., 2010; Corrie and Kohn, 2011; Kohn et al., 2005; Larson et 63 

al., 2013; Montomoli et al., 2014; 2013) or late (middle Miocene) out-of-sequence thrust 64 

structures (e.g. Grujic et al., 2011; Warren et al., 2011a; 2014; Kellett and Grujic, 2012; 65 

Larson and Cottle, 2014). Attempts to reconcile the data characterizing the various 66 

tectonometamorphic discontinuities mapped along the Himalaya into a coherent 67 

kinematic model have been focused on, and informed primarily by, data from the early 68 

in-sequence structures (e.g. Montomoli et al., 2014). The majority of these types of 69 

structures have been identified near the middle of the exhumed midcrustal core in west-70 

central Nepal (Carosi et al., 2010; Corrie and Kohn, 2011; Kohn et al., 2005; Montomoli 71 

et al., 2013), whereas discontinuities farther east are typically younger in age and occur 72 



as out-of-sequence thrusts structurally higher in the exhumed metamorphic core (Daniel 73 

et al., 2003; Grujic et al., 2011; Warren et al., 2011a; 2014). The existing kinematic 74 

models for the evolution of these structures are not compatible with the variability in the 75 

type of structure that occurs along the orogen (i.e. in or out-of-sequence), the differences 76 

in timing, or why the structures occur at different structural levels in different locations. 77 

This study attempts to elucidate the development of these discontinuities and their 78 

variability along and across the orogen as part of an integrated imbricate thrust system 79 

model.  80 

 81 

2. Previous Interpretations 82 

The current model proposed to explain the development of major thrust-sense 83 

tectonometamorphic discontinuities within the migmatitic rocks of the GHS suggest all 84 

such structures along the orogen are part of one feature, ‘the High Himalayan 85 

Discontinuity’ (Montomoli et al., 2014). In this model, the rocks in the hanging wall of 86 

the structure were initially metamorphosed deep in the hinterland and then thrust towards 87 

the foreland (Carosi et al., 2010; Corrie and Kohn, 2011; Montomoli et al., 2013). As 88 

hanging wall rocks were translated southward, metamorphism occurred in the overridden 89 

footwall (e.g. Pêcher, 1989; Harrison et al., 1997; Hubbard, 1996; Long et al., 2011b). 90 

Therefore, metamorphism in the footwall and hanging wall is expected to be diachronous 91 

with earlier, typically higher temperature metamorphism in the hanging wall and later, 92 

higher pressure metamorphism in the footwall (Figure 2; Montomoli et al., 2014). As 93 

interpreted, the development of the High Himalayan Discontinuity is thought to have 94 

occurred in the late Oligocene or earliest Miocene (Montomoli et al., 2014), at least 95 



partially coeval with motion along the South Tibetan detachment system, a top-to-the-96 

north-sense structure marking the top of the GHS (Figure 2). After movement along the 97 

High Himalayan Discontinuity ceased, deformation migrated towards the foreland and 98 

down structural section initiating activation of the Main Central thrust (Figure 2; 99 

Montomoli et al., 2013).  100 

This High Himalayan Discontinuity model was largely developed for structures 101 

observed in west-central Nepal. There, along the Himalayan front, the GHS can be very 102 

thin - only a few kilometers in structural thickness (e.g. locations 3 and 4 in Figure 1). 103 

This contrasts sharply with the GHS exposed in eastern Nepal and neighbouring regions 104 

where it is in excess of 30 km thick (e.g. locations 12-16 in Figure 1). In the High 105 

Himalayan Discontinuity model of Montomoli et al. (2014), a single structural break is 106 

interpreted to occur along the length of the orogen that connects recognized 107 

discontinuities. There are, however, incompatibilities between the various recognized 108 

structures in their timing of displacement and the structural level at which they occur. In 109 

Bhutan and adjacent NE India, for example, the Kahktang thrust and equivalents (Laya 110 

and Zimithang thrusts) were active near the top of the GHS in the mid-Miocene (Daniel 111 

et al., 2003; Grujic et al., 2011; Warren et al., 2011a; 2014), not near the middle of the 112 

GHS during the late Oligocene as the High Himalayan Discontinuity is interpreted to be 113 

in areas farther west (Carosi et al., 2010; Montomoli et al., 2013). Moreover, in contrast 114 

to the High Himalayan Discontinuity in the model of Montomoli et al. (2014), structures 115 

in the eastern Himalaya are interpreted as out-of-sequence thrust faults that post-date 116 

metamorphism in the footwall (e.g. Grujic et al. 2011; Warren et al. 2014). Similar 117 

interpretations have been made for an unnamed and undated structure in northern Sikkim, 118 



which has been tentatively correlated to the Laya thrust in nearby Bhutan (Rubatto et al., 119 

2013). The only structure identified in the eastern Himalaya with apparently similar 120 

characteristics as the High Himalayan Discontinuity is the High Himal thrust (Goscombe 121 

et al., 2006; Imayama et al., 2012). The data used to infer timing of displacement on that 122 

structure, however, are entirely from the footwall of the fault and as such do not constrain 123 

metamorphism in the hanging wall or movement across it. Based on monazite 124 

petrochronology from both sides of the High Himal thrust in the Kanchenjunga region, 125 

Ambrose et al. (2015) reinterpreted the structure as an out-of-sequence thrust that was 126 

active between ca. 20 and 18 Ma and that the data Imayama et al. (2012) used to infer 127 

movement on the High Himal thrust actually mark a distinct, structurally lower, 128 

discontinuity. The Ambrose et al. (2015) study actually outline no less than five 129 

tectonometamorphic discontinuities in the Kanchenjunga region, which demonstrates the 130 

potential complexity of deformation within the GHS and calls further into question the 131 

interpretation of recognized discontinuities across the orogen as a single structure.  132 

 133 

3. Development of the Main Central thrust system 134 

 The variability in timing, structural position, and number of discontinuities 135 

observed along the orogen requires the development of a new kinematic model. Recent 136 

studies have interpreted the development of thrust-sense structures in the GHS as part of 137 

a larger system (Larson and Cottle, 2014; He et al. 2015; Ambrose et al. 2015). The 138 

interpreted processes are similar to underplating thermal-kinematic models (e.g. Avouac, 139 

2003; Bollinger et al. 2006; Herman et al. 2010) and inferred crustal thickening via 140 

duplexing (Murphy, 2007; Grandin et al. 2012; Cannon and Murphy, 2014) for material 141 

structurally below the GHS in the footwall of the Main Central thrust. In an imbricate 142 



thrust system model, differences in the kinematic evolution between spatially distinct 143 

areas may reflect changes in regional geology such as crustal ramp geometries and/or the 144 

initial thickness of the GHS protoliths. It also has important implications for the evolution 145 

of the Main Central thrust.  146 

The definition, position, and kinematic significance of the Main Central thrust, a 147 

crustal scale, orogen-wide fault/shear zone, have been the subject of much debate (e.g.  148 

Upreti, 1999; Yin, 2006; Searle et al., 2008; Mottram et al., 2014) leading to various 149 

studies re-interpreting and potentially misinterpreting previously published data based on 150 

different definitions of the structure. A wireframe construction of the kinematic model 151 

presented herein (Figure 3) potentially sheds some light on why interpretations of the 152 

Main Central thrust have been so varied in its definition and mapped location (e.g. 153 

Upreti, 1999; Searle et al. 2008). 154 

In the proposed kinematic model, the thickening and southward translation of the 155 

GHS is accomplished through the development of an imbricate thrust system with the 156 

sequential addition of material to the hanging wall (Figure 3A, B). The active fault in the 157 

area of subcretion, effectively the Main Central thrust, changes with each slice of 158 

material that is added. Once the former sole thrust is no longer active it becomes part of 159 

the over-riding plate, whereas the newly active structure becomes the sole thrust. The 160 

thrusts merge both up-dip and down-dip from the ramp. This results in the progressive 161 

overprinting of the various deformation histories along a single structure (the Main 162 

Central thrust) both towards the foreland and the hinterland (Figure 3C, D). This type of 163 

evolution for the Main Central thrust could result in significantly different geologic 164 

histories recorded in a region, depending on the structural level of exposure and other 165 



factors (see below) that may control kinematic history and potential thrust system 166 

development in that area. 167 

The South Tibetan detachment system may allow early lateral ductile flow of the 168 

mid-crust (e.g. Jamieson et al. 2006) or wedging (e.g. Webb et al. 2007) of the mid-crust 169 

southward (Figure 3A). In the first case, the South Tibetan detachment system would 170 

accommodate channel flow before or during imbricate thrust stacking (Larson and Cottle, 171 

2014); in the second possibility the South Tibetan detachment system would develop as a 172 

roof back-thrust of the imbricate system (He et al., 2015). In either case, movement along 173 

the structure ceases as the thrust system evolves. 174 

 175 

4. Integrated Kinematic Model 176 

Initial development of tectonometamorphic discontinuities within the GHS 177 

occurred at similar times across (at least) Nepal with the High Himalayan Discontinuity 178 

(Montomoli et al., 2014) initiating in the Dolpo region of west –central Nepal at ca. 26-27 179 

Ma (Carosi et al., 2010; Montomoli et al., 2013) and the earliest structure initiating in the 180 

Kanchenjunga region between 31 and 26 Ma (Ambrose et al., 2015). In both areas, 181 

geochronology and P-T data indicate that over-thrusting of the hanging wall resulted in 182 

prograde metamorphism in the footwall (Montomoli et al., 2014; Ambrose et al., 2015). 183 

Following this early, shared history, the spatially distinct differential development of the 184 

Himalayan mid-crust may be related to regional geologic changes such as crustal ramp 185 

geometries, structural level of exposure, or the location of the brittle-ductile transition 186 

(e.g. Bollinger et al., 2006; Cannon and Murphy, 2014).  187 



In west-central Nepal, where the exposed GHS along the Himalayan front is as 188 

thin as 3 km (Le Fort et al., 1987; Carosi et al., 2007; 2010), deformation migrated 189 

structurally lower from the High Himalayan Discontinuity with the addition of the 190 

metamorphosed and deformed High Himalayan Discontinuity footwall (Figure 4; Carosi 191 

et al., 2010; Montomoli et al., 2013). Movement along the base of that imbricate, mapped 192 

as the Main Central thrust, occurred between ~19 and 13 Ma  (Montomoli et al., 2013), 193 

post-dating local movement on the South Tibetan detachment system (Carosi et al., 194 

2013). In eastern Nepal, where the exposed GHS is typically >30 km thick (e.g. 195 

Schelling, 1992), the development of the GHS was significantly different. Multiple 196 

imbricates were added to the Main Central thrust system between 24 and 20 Ma (Figure 197 

4; Ambrose et al., 2015). The difference observed between the regions may reflect: 1) 198 

progressively deeper erosion levels (with respect to the crystalline core) from west to east 199 

across the orogeny (Webb et al. 2011), or 2) a more pronounced ramp structure in eastern 200 

Nepal that increased the volume of material accreted from the footwall. In the 201 

Kanchenjunga region, movement of the thrust sheets toward the foreland appears to have 202 

slowed by ~ 20 Ma. This may reflect encroachment of a significant change in footwall 203 

lithology leading to a change in fault geometry. Deformation then stepped out-of-204 

sequence, towards the hinterland, cutting the previously imbricated GHS and driving 205 

deformation back towards the foreland (20 – 18 Ma). The location of the out-of-sequence 206 

thrust may be related to the position of the GHS above the main crustal ramp (e.g. Kellett 207 

et al., 2009; Warren et al., 2011a).  208 

A similar history, with distinct timing, is postulated for the GHS of Bhutan and 209 

NE India. There, out-of-sequence thrusting occurs both significantly later (14-11 Ma) and 210 



farther toward the hinterland (Grujic et al., 2011; Warren et al., 2011a; 2014). This may 211 

reflect a similar lithologic change in the footwall encountered farther towards the 212 

foreland (Figure 4); the GHS moving along the basal detachment would take longer to 213 

encounter the effects of the forced change in fault geometry, thereby impeding its 214 

movement later than that in the Kanchenjunga region. Moreover, the GHS would have 215 

translated farther south by the time deformation slowed and out-of-sequence thrusting 216 

began. The resulting out-of-sequence thrust, located above the dominant crustal ramp 217 

(e.g. Kellett et al., 2009; Warren et al., 2011a), would have cut through the GHS later and 218 

higher up in the structural section (Figure 4). 219 

Subsequent to the development of the Main Central thrust system in west-central 220 

Nepal, and the out-of-sequence thrust faults that cut the imbricate stack farther east, the 221 

GHS in all areas appear to have been largely exhumed through the development of the 222 

Lesser Himalayan duplex and concomitant erosion (e.g. DeCelles et al., 1998; McQuarrie 223 

et al., 2014; 2008; Robinson et al., 2001). The development of that duplex structure 224 

occurred at different times along the orogen corresponding to the time at which 225 

deformation was focused on different units in the down-going plate. In west-central 226 

Nepal, cooling of the GHS occurred between ca. 15 and 8 Ma; dominated by the earlier 227 

ages (Martin et al., 2014; Vannay and Hodges, 1996). Whereas exhumation and 228 

associated development of the Lesser Himalayan duplex in western Bhutan is much 229 

younger, with exhumation interpreted to have occurred between 9 Ma and the present day 230 

(McQuarrie et al., 2014). 231 

A thrust imbricate model for the kinematic evolution of the GHS does not 232 

invalidate models of lateral midcrustal flow. ‘Channel’-type flow could occur during 233 



coeval movement along the Main Central thrust and South Tibetan detachment system, 234 

however, it would be relatively short-lived phenomena, with thrust imbrication being the 235 

dominant convergence accommodation process. Some published thermo-mechanical 236 

models (e.g. HT111; Jamieson et al. 2006) actually demonstrate vertical juxtaposition of 237 

formerly laterally adjacent rock units within the mid-crust during lateral transport, 238 

resulting in a similar final geometry to that presented herein. As modeled, however, the 239 

timing of juxtaposition and exhumation are not compatible with existing data. 240 

5. Summary 241 

The variation in the timing and structural position of tectonometamorphic 242 

discontinuities identified along the Himalaya is interpreted to reflect fundamental 243 

differences in the development of the Main Central thrust system. As described herein, 244 

these differences are interpreted reflect variations in the underlying basement/ramp 245 

structure of the basal detachment and perhaps structural level of exposure with respect to 246 

the mid-crust. This model is consistent with available along and across-strike geologic 247 

controls in the Himalaya and provides an integrated solution to help explain the 248 

occurrence and development of cryptic structures within an evolving orogenic midcrustal 249 

core.  250 

 251 
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7. Figure Captions: 260 

Figure 1 – Simplified geologic map (after He et al., 2015) showing the spatial 261 

distributions of mapped tectonometamorphic discontinuities within the exhumed 262 

Himalayan mid-crust. See Table 1 for references corresponding to locations. 263 

 264 

Figure 2 – Summary diagram of activity on the High Himalaya Discontinuity (HHD) and 265 

subsequently the Main Central Thrust (MCT) based on Montomoli et al. (2014). 266 

Movement of different particles demonstrates relative movement across the structures. 267 

Timing constraints are from western Nepal (Montomoli et al. 2013). STDS – South 268 

Tibetan detachment system. 269 

 270 

Figure 3 – Evolution of the Main Central Thrust (MCT) system. The structure evolves 271 

such that the current floor thrust at any given time later becomes inactive as new material 272 

is incorporated into the thrust system. Motion along active structures is accommodated 273 

away from the site of addition along pre-existing faults potentially resulting in complex 274 

over-printing and/or protracted motion. Final exposure of the exhumed Himalayan 275 

metamorphic core above the Lesser Himalayan (LH) Duplex results in the surface 276 

exposure of a number the faults that comprise the Main Central Thrust system. Colors 277 

identify different discontinuities that in (D) merge up and down-dip into a single structure 278 



(black) in present-day geometry. Throughout Himalayan development each would have 279 

been the Himalayan sole thrust. STDS – South Tibetan Detachment System. 280 

 281 

Figure 4 – Conceptual development of the Main Central Thrust system at different points 282 

along the length of the orogen. See text for detailed discussion. 283 

 284 
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Highlights 

‚ Variable development of discontinuities is related to along strike changes 

‚ The Main Central thrust system significantly thickened the mid-crust 

‚ Complex overprinting during activity along the Main Central thrust is expected 

*Highlights (for review)
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P (GPa) T (˚C) Age (Ma) P (GPa) T (˚C) Age (Ma)

1 1 Garhwal, NW India 0.7-1.2Ĺ ~550 - 1.4-0.8Ļ ~750 - ER+TE - Spencer et al., 2012

2 Karnali, NW Nepal 0.8-1.1Ĺ 600-630 - 1.0-0.5Ļ 650-720 - AvPT - Yakymchuk and Godin, 2012

3 Mangri Shear Zone , Mugu 

Karnali, W Nepal 

0.9-1.1 665-700 21-17 0.7-0.8 690-700 25-18 ER (21-17 ) Montomoli et al., 2013

4 Toijem Shear Zone , Lower 

Dolpo, W Nepal 

0.7-0.9Ĺ 640-675 43-33 0.63 620-640 29-17 ER (26-17 ) Carosi et al., 2010

5 Kalopani Shear Zone , 

Annapurna, central Nepal

0.7 450-650 35 1.0 650-750 34-35 ER (23-15 ) Vannay and Hodges, 1996;  Godin et al., 

2001

Bhanuwa Thrust , Modi 

Khola, central Nepal 

1.0-1.2 550-700 33-24, 22-17 1.1-1.4Ļ 700-775 26-24, 23-21 ER+TE (23-19 ) 

or  (16-

10)

Martin et al., 2010; Corrie and Kohn, 2011;  

Martin et al., 2014

Sinuwa Thrust , Modi Khola, 

central Nepal 

1.1-1.4Ļ 700-775 26-24, 23-21 1.1-1.4Ĺ 730-800 32-27, 22-19 ER+TE (27-19 ) Martin et al., 2010; Corrie and Kohn, 2011;  

Martin et al., 2014

7 1 Manaslu-Himal Chuli, central 

Nepal 

0.6-1.3Ĺ 525-650Ĺ 21.5, 15-12 1.1-0.30Ļ 640-675 26-15 ER ~21 Larson et al., 2010, 2011; Kohn et al., 2001

8 Langtang Thrust , Langtang, 

Nepal

0.75-1.0 680-800 36-16, 15-13 0.6-0.95 750-850 31-21,19-16 ER (20-16 ) Reddy et al., 1993; Fraser et al., 2000; Kohn 

et al., 2005;  Kohn, 2008

Nylam Thrust , Bhote Kosi, 

Nepal 

0.3-1.3Ļ 600-700 - 0.3-0.9Ļ 700-800 48-30, 19-14 ER (30-19 ) Wang et al., 2013

1 Main Central Thrust , Bhote 

Kosi, Nepal

0.8-1.0 620-650 - 0.9-1.5 660-720 - PE - Wang et al., 2015

1 "Lower Discontinuity" , Tama 

Kosi Region, Nepal 

0.64-0.7 610-640 10-8 1.0-0.7Ļ 700-750 23-19, 19-14 PE (14-8 ) Larson et al., 2013; Larson and Cottle, 2014

"Upper Discontinuity" , Tama 

Kosi Region, Nepal

1.0-0.7Ļ 700-750 23-19, 19-14 - - 24-21, 19-16 PE (22-19) Larson and Cottle, 2014

11 Likhu Khola, Nepal 0.9-1.3Ĺ 725-900 - 0.3-1.0Ļ 750-900 27-23, 22-15 AvPT (22-15 ) From et al., 2014

12 Khumbu Thrust , Everest 

Region, Nepal

0.4-0.6 600-700 32-21 - - 24 AvPT, 

ER

- Searle et al., 1999, 2003; Simpson et al. 

2000; Jessup et al., 2008

"Lower Discontinuity" , Arun 

Region, Nepal

0.6-07 550 - 0.8-1.0Ĺ 600-650Ĺ - PE - Groppo et al., 2009

"Upper Discontinuity" , Arun 

Region, Nepal

0.8-1.0Ĺ 600-650Ĺ - 0.7-1.0Ĺ 650-800Ĺ - PE - Groppo et al., 2009

High Himalayan 

Thrust ,Tamor/Ghunsa, 

Kanchenjunga, Nepal 

0.5-1.2Ļ 700-800 30-28, 27-18 0.6-0.4 700-850 - AvPT, 

PE

~ 20 Goscombe et al., 2006; Imayama et al., 

2010, 2012; Ambrose et al., 2015

Kanchenjunga Duplex, Nepal Ambrose et al., 2015

15 "Age Discontinuity" , 

Northern Sikkim 

0.8 750-850 31-28, 28-

25, <25

0.9 750-850 26-23, 23-

20, 20-17

PE - Rubatto et al., 2013

16 Laya-Kakhtang Thrust , 

Bhutan 

0.3-0.6 ~650 22-17 0.8-1.0Ĺ 750-800 15-13 ER (13- 10) Swapp & Hollister 1991; Davidson et al., 

1997; Grujic et al., 1996, 2002, 2011; Daniel 

et al., 2003; Warren et al., 2011a, b

17 Zimithang Thrust,  NE India 0.8-09 535-715Ļ 27-16 - 535-630Ĺ  17-12 ER, TB (12 -7) Warren et al., 2014
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Table 1: Metamorphic and Geochronologic Contstraints Defining Interpreted Tectonometamorphic Discontinuities

1Indicates interpreted structure is equivalent to the 'MCT' of Jamieson et al. (2004). Ĺ indicates an increase up structural section, Ļ indicates decreasing values up structural section. 
Where multiple age ranges are present, the first indicates prograde-path metamorphism, the second indicates retrograde-path/decrompression metamorphism. In the one case were 

three ranges are given, the third range indicates late stage isobaric cooling. Parentheses indicate the ages are interpreted to bracket movement. Ages in italics are from monazite; 

underlined ages are from zircon, grey ages are from thermochronologic constraints. ER = 'traditional' exchange reaction and net transfer reaction thermobarometry; TE = 

thermodynamic equilibrium - based thermobarometry; AvPT = THERMOCALC-based thermobarometry; PE = Phase equilibria modelling-based thermobarometry; TB - titanium in 

biotite thermometry.

(Name),  Location
Footwall Hanging Wall PT 

Method

Shear 

Zone Age 

(Ma)
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