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Abstract

Bayesianism is fast becoming the dominant paradigm in archaeological

chronology construction. This paradigm shift has been brought about in

large part by widespread access to tailored computer software which pro-

vides users with powerful tools for complex statistical inference with little

need to learn about statistical modelling or computer programming. As

a result, we run the risk that such software will be reduced to the status

of black-boxes. This would be a dangerous position for our community

since good, principled, use of Bayesian methods requires mindfulness when

selecting the initial model, defining prior information, checking the reli-

ability and sensitivity of the software runs and interpreting the results

obtained. In this paper, we provide users with a brief review of the na-

ture of the care required and offer some comments and suggestions to help

ensure that our community continues to be respected for its philosophi-

cally rigorous scientific approach.

1 Introduction and Background

There is a plethora of books on the market that propound the Bayesian approach
to reasoning and inference. The best are very general and take rigorous philo-
sophical (e.g. Howson and Urbach, 1993) and/or mathematical (e.g. Bernardo
and Smith, 1994) standpoints, making them hard for those without appropri-
ate training to fully comprehend. The more subject-specific volumes (e.g. Buck
et al., 1996; Koop et al., 2007; Kéry and Schaub, 2012; Kaplan, 2014) are more
approachable but tend to provide the philosophical and theoretical ideas in sep-
arate sections or chapters from those on the applications and, hence, the former
are often overlooked. This observation is the starting point for an excellent book
by Mayo and Spanos (2010), from the introduction to which the following quote
is taken:

“Methodological discussions in science have become increasingly
common since the 1990s. . . in areas most faced with limited data,
error, and noise. . . To varying degrees, such work may allude to
philosophies of theory testing and theory change and philosophies of
confirmation and testing (e.g., Popper, Carnap, Kuhn, Lakatos, Mill,
Peirce, Fisher, Neyman-Pearson, and Bayesian statistics). However,
the different philosophical “schools” tend to be regarded as static
systems whose connections to the day-to-day questions about how
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to obtain reliable knowledge are largely metaphorical. . . The unin-
tended consequence is that the influence of philosophy of science on
methodological practice has been largely negative.”

Given the above, and the fact that both generic (Lunn et al., 2000, 2009) and
problem-specific (e.g. Buck et al., 1999; Haslett and Parnell, 2008; Ramsey,
2009; Blaauw and Christen, 2011) user-friendly software for Bayesian inference
is now available, it is very easy for archaeologists and other researchers to use
Bayesian methods without appreciating the important underlying philosophical
and mathematical assumptions on which they are based. So much so that sev-
eral so-called “Bayesian revolutions” have taken place in recent years (Brooks,
2003; Beaumont and Rannala, 2004; Shultz, 2007; Wilkinson, 2007; Kruschke
et al., 2012; Drummond et al., 2012; Bouckaert et al., 2014); including the one
known as the “third radiocarbon revolution” (Bayliss, 2009), with little associ-
ated discussion amongst the protagonists of their underlying presumptions.

This risks rendering such endeavours, at best, technically ill-founded – but
nonetheless publishable and useful for the user-community – and, at worst,
fundamentally scientifically flawed and misleading. Since Bayesian methods
currently feature so prominently in the archaeological literature, particularly
that relating to the chronology and prehistory of Europe (e.g. Buck et al., 1992;
Bayliss et al., 2007a; Manning, 2007; Whittle and Bayliss, 2007; Finkelstein and
Piasetzky, 2010; Whittle et al., 2011; Smyth, 2013; Wicks et al., 2014), and since
so few of these authors discuss why they have taken a Bayesian approach or,
indeed, why they themselves take a Bayesian standpoint on the philosophy of
science, now seems a good time to pause and reflect.

To describe oneself or the methods one uses as Bayesian is to make some
very specific claims about the way one approaches problems, the tools one uses
for tackling them and the way one interprets the results one obtains. One
can use Bayesian software simply because one is satisfied by the results one
obtains, but this is not sufficient to describe oneself as Bayesian. Nor is it
sufficient to describe the results obtained as Bayesian, unless one both uses
the software in a rigorous manner and does so in keeping with the underlying
tenets of Bayesian theory. It should be noted here that pragmatic use of theory-
dependent, degrees of belief in scientific reasoning is not sufficient to justify
the label Bayesian. In a similar vein, the idealistic use of theory-independent,
‘absolute facts’ (often coupled with the casual use of the term ‘proof’) does not
justify the term objective — even in the sense of recognising one’s biases, let
alone in the more problematic sense of studying ‘absolute reality’. The notion
of objectivity is further tarnished by the objection (e.g. Haraway, 1988) that it
has traditionally allowed the user of the term to distance themselves from any
ethical dimension touched on by their research.

In this paper we explore what it means to apply the term Bayesian to a
person or a methodology and ask: what behaviour do I need to exhibit to
reasonably consider myself a good Bayesian? Given that the focus of this volume
is Bayesian chronology construction for archaeological applications, we presume
the reader to have some knowledge of these approaches and we address our
detailed comments primarily to those who use, or are planning to use, these
methods to conduct their own analyses. We start, however, by setting the
Bayesian paradigm and its application within the wider context of philosophy
and science.
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2 Philosophy and science

We should explore a few ideas (from Western European traditions of science
and philosophy) so that we may continue without amplifying the potential for
misunderstanding. Philosophy, literally a ‘love of wisdom’, is an attempt to fully
explore problems within a robust methodology; it is also the historical precursor
to the subjects now termed the natural sciences. What became known as the
scientific method (the empirical methodology promoted, for example by Francis
Bacon in the Novum Organum Scientiarum, 1620) has changed, normatively,
over the past hundred years as the belief that an ‘objective’ scientific practitioner
may directly relate observations and generalise them into a ‘law’, has waned.
For a thorough philosophical examination of the ‘Received View’ and its demise
we recommend Suppe (1974).

In the early twentieth century, Einstein was among those to note that “No
amount of experimentation can ever prove me right; a single experiment can
prove me wrong.”(reproduced in Einstein, 2002). He was struggling with the
notion that scientific knowledge might be fallible and the distinction between ‘in-
duction’ and ‘deduction’ was central to his concern. Deduction, working from
general theories to experiments broadly designed to confirm them, had been
presumed to be sufficient in scientific endeavour and there was a tradition that
theories might inductively arise from the ‘clear and distinct ideas’ which had
categorised ‘truth’ since the time of Descartes (Third Meditation, in ‘Medita-
tions on First Philosophy’, 1641). So the scientific method, although differently
stated by many scientists, may be briefly characterised as induction leading to
hypotheses from which are deduced predictions that are tested by observation.
As Box (1976) puts it: “...science is a means whereby learning is achieved, not
by mere theoretical speculation on the one hand, nor by the undirected accu-
mulation of practical facts on the other but rather by a motivated iteration
between theory and practice...”.

We are reminded of the way that Arthur Conan Doyle makes his character,
Sherlock Holmes, use such disingenuous phrases as: “It is a capital mistake to
theorise before one has data. Insensibly one begins to twist facts to suit the-
ories, instead of theories to suit facts.”(Conan Doyle, 1892). This intensifies
the irony that Holmes almost exclusively uses abductive inference (first refer-
enced in Aristotle’s Prior Analytics, republished in Aristotle, 1938), from single
instances of data, rather than deduction and ignores the cases where, when
quantitative data are in short supply or qualitative data quality is poor (but as-
sociated qualitative observations and judgements are well developed) theorising
and constructing models before data are obtained may well be the foundations
of good, highly principled, subjective reasoning. A practical application of such
an approach will be outlined in Section 8.1. For those with no quantitative
data, however, abduction has its attractions and it has resurfaced recently as
a methodological tool since the social science adoption of qualitative research
(see, for example, Reichertz, 2004).

Indeed, at the time that Doyle was writing, it was becoming more tenable
that what had been seen as the causative foundations of ‘laws’ were in fact,
as the philosophers Hume (1711–1776) and Kant (1724–1804) had proposed,
the product of human psychological effects and the limitations of measurement
rather than eternal verities. Frank Ramsey, one of the Cambridge Apostles,
continues this investigation in Facts and Propositions (1927) (republished in

3



Ramsey, 1990). Thus as Poincaré in Science and Hypothesis (1902) asserted,
not only was absolute truth not possible within the strictures of science, but
‘truths’, per se, are matters of convenience for scientists rather than being more
logically valid than the ’truths’ that they replace. The notion of scientific ‘laws’
as inviolable was coming under intense scrutiny as examples which had stood
for 200 years were found wanting. Newton’s law of universal gravitation, for
example, which as Einstein noted (in his review article of General Relativity in
1916) has inconsistencies due to the deflection of light by the mass of our sun
and, as Duhem noted in 1914 (republished in Duhem, 1954) cannot as Newton
claimed, be based on Kepler’s second and third laws since it contradicts them.

One thing that Einstein had failed to account for, important in the Bayesian
framework, is that refuting instances (within a theoretical framework) rather
than simply destroying a theoretical under-pinning can, for a practical scientist,
lead to improvements of the original hypothesis by refining it. As Einstein was
discovering, Newtonian physical theories under-determine the physical universe
and uncertainty, rather than being a weakness to be avoided, was becoming
acknowledged as central to the scientific pursuit. A sign of this philosophical
maturity, away from simplistic mechanistic determinism, is that ‘laws’ (even
where quoted as such for brevity) are now widely thought of as contingent and
subject to varying levels of belief that may be best expressed as probabilities
subject to statistical reasoning – albeit that their reporting is not often so nu-
anced.

Alongside this development of philosophical ideas, the necessary probability
theory and applied statistical methods for handling and modelling uncertainty
were also developing so that, by the late 20th century, several schools of statisti-
cal reasoning were well established. Stephen Senn (2011, p. 50) points out that
there are four general approaches to statistical reasoning, three of which allow
for elements of subjectivity. These approaches contrast Bayesianism (avowedly
subjective) with the more classical/frequentist (notionally objective) approaches
to statistics but, within each of these, Senn also differentiates those who believe
it is possible to interpret derived probabilities as inferences about the ‘real’
world from those whose focus is solely the current model under investigation.
Of these, only those whose focus is on the current model and explore it within
the classical statistical framework are operating within the deductive mode and
might thus be described as objective. Such analytic a priori reasoning, however,
leads to truths that are so, solely by virtue of their definition. Newton’s first
two ‘laws’ of motion, for example, are inherent in their prior definitions.

In what follows we take an unapologetic, subjective, Bayesian approach to
scientific reasoning – not least since we are human, biased and fallible. We do
so, in part, because we hold to the relevant philosophical positions outlined here,
but also for practical reasons relating to the way in which modern archaeology
is practiced (for details see Section 7).

3 Bayesian philosophy of science

Given the large number of existing, good, general accounts of the Bayesian
philosophy of science written for a wide range of audiences (e.g. McGrayne,
2011; Lee, 2012; Stone, 2013; von der Linden et al., 2014), here we do not
attempt to provide even a summary of the complete paradigm. Instead, we
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focus on some key ideas that are particularly pertinent to its principled (or
good) use in archaeological inference.

Bayes’ theorem is often articulated as:

Posterior ∝ Likelihood× Prior

where Likelihood refers to a function (or collection of functions) of the pa-
rameters of a statistical model, Prior refers to a probabilistic representation of
what was known about the parameters before the current data were collected
and Posterior refers to the result of combining the model, data and the prior
knowledge (using statistical inference techniques) to arrive at an updated esti-
mate of the parameter values based on all three. Given these components if we
are to make good use of the theorem, we must take responsibility for the par-
ticular statistical distributions used to construct the likelihood and ensure that
our a priori knowledge about the parameters of those distributions is appropri-
ately represented. Each of these relies on personal (or collective) judgements
and hence subjective assessments of observations or experiences are what turns
a merely logically valid conclusion into one in which we can have realistic confi-
dence. Consequently, black-box use of Bayesian methods (other than those for
the very simplest problems) is unlikely to be principled.

To take responsibility does not require us to devise or implement models
ourselves, but it is necessary that we have a good intuitive feel for what we are
aiming to model and the nature of the representation being proposed by those
who develop the models and software we plan to use. To achieve this, those pro-
viding software have a responsibility to offer natural language (as well as tech-
nically correct) explanations of their modelling approach and implementation.
While those using or refereeing papers about such software have a responsibility
to read the explanations carefully and interact with the author about details
that are unclear or seem inappropriate for their needs. The reason this is so
important is that the next step involves specifying priors for parameters of the
model and, unless we have at least an intuitive understanding of the model and
see it as a useful representation of our underlying beliefs, we cannot possibly
provide such information reliably.

4 Subjective and objective priors

The choice as to how we specify priors is of necessity a personal one, but one
which we must be able to justify and articulate clearly if we are to take full
responsibility for the science that we do. There are currently two common
approaches, known as subjective and objective Bayes. However, the former
is a tautology and the latter an oxymoron. Simply by selecting a Bayesian
approach, we have committed to including prior knowledge in the inference
process and, in doing so, have selected a subjective scientific framework. To
then seek objectivity in prior definition is contradictory.

In practice for many real applications, including archaeological one’s, it is far
from desirable to claim objectivity since considerable expert knowledge exists
and we will do much better science if it can be formalised and included in the
data analysis process. Indeed many of us select the Bayesian framework precisely
because we seek a means to bring together informative, highly subjective, prior
knowledge and more formal, scientific, data in a coherent way. That said, there
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are circumstances in which we have little or no informative prior knowledge
about key parameters of our model. This occurs most often for what are called
nuisance parameters i.e. ones that are needed for mathematical or statistical
purposes and have no direct counterpart in the reality being modelled. We
want the way we model these parameters to have as little impact on the results
as possible and so we seek uninformative or vague priors. In so doing, we are
not becoming more objective, we are simply expressing our lack of knowledge in
a responsible way. In practice selecting priors with such characteristics can be
technically challenging and so it has become a major (pre)occupation of applied
Bayesian statisticians – some of whom call themselves objective Bayesians.

From the perspective of a user of Bayesian software, our responsibility is to
understand intuitively the nature of the prior distributions that the software
developer has coded, to check that for our purposes they seem reasonable and,
if not, to consider changing them — perhaps in consultation with the original
author/programmer. For vague priors on nuisance parameters, this is often the
limit of what is required since software developers typically invest considerable
effort in selecting default prior distributions for these parameters to ensure that,
under a range of likely data, the priors have negligible impact on the posteri-
ors. However for the parameters that have direct counterparts in reality and
about which we are likely to have at least some informative prior knowledge
our responsibilities extend further, since for these we will need to select suitable
parameterisations of the chosen distributions in order to represent our current
state of knowledge. Without such care one invalidates the Bayesian paradigm
and so is no longer, as we explore below, strictly engaged in a scientific pursuit.

5 Priors as degrees of belief

There are lots of examples of informative prior knowledge in archaeology since
evidence accrues slowly in bits and pieces and it requires expertise to draw it
all together. A classic example of this relates to the relative ages for the pa-
rameters of a chronological model. Both the model and our prior knowledge
of its parameters emerge as we excavate one or more sites and begin to under-
stand the stratigraphic and other chronological relationships. Thus, knowledge
is person-specific and time varying. The added complication is that all mod-
els are imperfect since they are representations of reality built for a particular
purpose. As the statistician George Box said “essentially, all models are wrong,
but some are useful” (Box and Draper, 1987, p. 424) and if we use them inap-
propriately or our needs are different from those of the original developer then
we are likely to run into difficulties. Thus we must choose a model that is fit
for purpose and choose our prior distributions in a responsible manner.

In selecting prior distributions, we must be clear whether we are seeking to
express personal or collective prior knowledge. The distinction is important,
since the beliefs held by individuals are typically different from one another
and more precise (i.e. less uncertain) than those of a wider group, even one
whose members share scientific and other cultural backgrounds. As a result,
use of personal prior distributions within a community in which others do not
share the same beliefs can lead to accusations of over-fitting (i.e. failure to
acknowledge unavoidable sources of uncertainty). Articulating precise personal
prior knowledge is, of course, to be encouraged where that knowledge is founded
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on clearly articulated expert judgement or other sources of evidence. However,
where this is absent, it may well be best to acknowledge the diversity and
work closely with those of other opinions to develop a shared, community-wide
statement of prior knowledge derived using formal elicitation techniques (see
below).

However we derive them, prior distributions are used to represent our per-
sonal or collective state of knowledge and so, providing that we explain where
our knowledge comes from and why we are representing it the way that we are,
we are each entitled to choose different prior distributions. Indeed it would be a
surprise if any two archaeologists looking at the same body of knowledge chose
to represent it using exactly the same narrative, interpretation, model or prior
distributions. For this reason, the key to principled prior definition is the ex-
planation we offer to go alongside the probabilistic choices that we make. Such
explanations will be partly generic and relate to the choice between specific
probability distributions and for these we may choose to rely in part on the ad-
vice of those with more technical, applied statistical, training than ourselves. All
explanations of prior selection, however, should contain substantial descriptions
that relate to the researcher’s real world observations or theories. These should
lead to very specific statements about the relative or absolute values of parame-
ters in the form of either clear qualitative statements (e.g. “for the stratigraphic
reasons articulated above, the true calendar dates of all of the samples in Phase
I must be older than those in Phase II”) or direct statistical ones (e.g. “we model
our prior knowledge of the length of time elapsed between the stratigraphically
older sample A and the younger sample B using a gamma distribution with
mean close to zero, but a large variance, to summarise our prior knowledge that
whilst the samples are from stratigraphically closely related contexts, there is a
small probability that even close stratigraphic relationships on this site indicate
long elapsed times”).

Such formalism is key because, without it, it is very difficult to avoid double
use and hence double weighting of information. For example, since data are
often collected before priors are specified, it is difficult to be sure that we have
not included information from the data in constructing the prior. The only way
to ensure that we do not is to explain, in some detail, how our prior was derived
— checking at each step that no recourse to the current data is required.

Thought of in this way, prior distributions represent degrees of belief which
are updated using the selected model and the most recently collected data to
arrive at posterior distributions which depend on all three. Posterior distribu-
tions are then themselves representations of belief which can, in turn, be used
as priors for the next piece of research and updated as new information comes
to light.

6 Formalising, managing and updating beliefs

For most archaeological purposes knowledge is uncertain because the real world
is stochastic (rather than deterministic) and because the information we have
access to is a degraded facet of a non-random part of past reality. Given this, we
need a way to formalise uncertain knowledge. As outlined above, Bayesians do
this using probability distributions and update knowledge using Bayes’ theorem.

Unfortunately, probability distributions and in particular conditional prob-

7



ability distributions (i.e. what we know about one parameter given a value or
distribution for another parameter) have properties that are often far from in-
tuitive (e.g. the Monty-Hall problem Selvin, 1975b,a; Rosenhouse, 2009). For
this reason encoding one’s beliefs using such distributions can be tricky. In-
deed, there is a discipline known as ‘knowledge elicitation’ devoted to helping
experts reliably encode their prior beliefs (O’Hagan et al., 2006). Some of these
techniques are adopted by those providing software for Bayesian inference in
archaeology, but there is still rather too much expected of the users given the
acknowledged difficulty of encoding one’s own beliefs reliably. This means that
some users are adopting default priors without really understanding the choices
they have made and others understand the choice, know it is not appropriate,
but have few options given that they are not statisticians or coders themselves.
More dialogue and work is certainly needed in this area in the coming years.

Even when one has a suitable model and has encoded one’s prior knowledge,
however, combining probability distributions for all but the simplest models
is not trivial. The task is essentially one of integrating over a large number
of inter-related and often complex probability distributions and this cannot be
done analytically. As a result, until the late 1980s most substantial applied
problems were not tractable within the Bayesian framework.

At that time, however, computers became more affordable and computation-
ally intensive simulation techniques began to be used in a wide-range of fields.
Statisticians adopted, Monte Carlo (MC) methods that had been widely used in
physics and Bayesian statisticians, in particular, adopted a class of these known
as Markov-chain Monte Carlo (MCMC) methods (Gelfand and Smith, 1990;
Gilks et al., 1996; Robert and Casella, 2010). Both MC and MCMC methods
are now widely used in archaeology with the former popular for exploring poorly
understood phenomena (e.g. Crema, 2012; Timpson et al., 2014) and the latter
for exploring joint probability distributions by sequentially sampling values for
individual parameters, conditional on the current values of all of the others.

A host of other simulation-based methods have been explored for Bayesian
inference; one of which, Approximate Bayesian Computation (ABC), has proven
useful in situations where the likelihood function cannot be evaluated. These
methods are mathematically well founded, but since they rely on presumptions
and approximations that MCMC methods do not, they add further problems
and so should only be used when MCMC is not an option. Such situations are
relatively common in biology and so ABC methods are increasingly common
in ecology and evolution studies. It is thus no surprise that the first uses in
archaeology have been for investigating patterns of evolutionary change (e.g.
Crema et al., 2014).

Bayesian chronology construction software, such as OxCal Ramsey (2009)
and BCal Buck et al. (1999), adopt MCMC methods and so (given the focus
of the current volume) it is these on which we will focus here. These tools
are powerful and effective, but bring with them a host of decisions and hence
responsibilities for users. There is not space here to discuss all of these in detail.
We simply highlight some that all principled users of such methods need to know
about and take responsibility for.

MCMC-based methods approximate by repeatedly sampling from the distri-
butions that we are seeking to estimate. Like all sampling methods, we need to
be sure that we are sampling from the distribution of interest and have taken a
sufficiently large and varied sample to explore it in its entirety. Key concepts
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here include the following.

• Burn-in: used to refer to samples taken at the start of the simulation
process which may not be very representative of the posterior distribution
and so are discarded.

• Convergence: used to describe the desired state of the sampler i.e. when
we are sampling from the correct distribution and so our samples can
reliably be used to estimate our posterior.

• Thinning and effective sample size: inter-related terms used to refer to the
process of storing only a sub-set of the samples to leave a sample size that
is smaller than the total but nonetheless conveys equivalent information
about the underlying distributions. This is important in situations where
neighbouring samples in the MCMC simulation are highly correlated and
thus contain less information than independent samples of the same size.
The goal is to store samples that are as close to independence as possible.

These ideas all require considerable knowledge of MCMC sampling theory
and techniques to appreciate in their entirety (for those interested in exploring
further we suggest: Gilks et al., 1996; Robert and Casella, 2010), but an intu-
itive understanding is adequate to make responsible use of well-written software
and to adequately document the methods and results obtained. Most software
providers, for example, now offer some automated convergence checking which
provides guidance about the amount of burn-in and thinning required. Users
need simply to understand intuitively the checks being conducted on their be-
half, ensure that they are adequate for their own needs and then record the
choices made in their writeup so that others may replicate and/or build appro-
priately on their work.

There is, however, no way automatically to ensure convergence of all param-
eters of a complex model. As a result, users should undertake reproducibility
experiments. This involves making multiple runs of the sampler for each model,
with different start values for the sampling chains, to check that the results
obtained for key parameters (i.e. the ones that are most important to them and
others likely to rely on their work) are the same to an appropriate level of accu-
racy. Appropriate here is of course a relative term. In dating, for example, we
will require a different level of accuracy in the historic period from the palae-
olithic in order for results to be useful. So our reproducibility experiments, and
the accuracy to which we report results, should reflect this.

Since applied Bayesian statistics involves so many personal judgements we
all also have responsibility for exploring the sensitivity of the posterior distribu-
tions we obtain. We can achieve this by varying our likelihoods and priors and
then observing and reporting on the resulting changes in the posteriors. Such
investigations are an essential part of any good Bayesian analysis since without
them we, and others who rely on us, have no idea how robust our results are
nor can we safely base any conclusions on them. Should they turn out not to be
robust to key decisions we have made, which for large or complex models is not
unusual, we will of course have to explore the inductive/deductive hypothesis-
observation cycle again to examine why this is the case before deciding on a
principled way forward.
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7 Bayesian archaeology

Classical (or frequentist) approaches to statistical inference are generally con-
structed around repeated experiments within a given inductive theoretical frame-
work and rely on phrases like “in the long-run we expect . . . ”. Such arguments
might be appropriate in some particular applications in archaeology, for ex-
ample when considering characteristics of the output from a long-running Me-
dieval pottery production site, but are much harder to justify in general since
the ‘long-run’ here tends to be a substitute term for repeatedly modelling cir-
cumstances approaching infinity in one or more dimensions and in prehistory
such circumstances are rare. For example, suppose we are seeking to interpret
a small collection of cultural artefacts from a single excavation at, say, a short-
lived Bronze Age occupation site in the south-west of England. We might think
of this as a one-off experiment to explore a relatively poorly understood past
culture from which little of the total past activity is preserved. In such situ-
ations does it ever make sense to say “in the long-run we expect . . . ”? Our
feeling is not, since even if we located and fully excavated all of the remaining
well-preserved sites (or even had access to all those ever occupied) our total
sample size would still, likely, be very small and the variability between them so
great that generalising from one to the totality would be unscientific and very
probably also unreasonable.

In addition, in archaeology we typically have very little control over what
information we gain access to and when, but we may have alternative theories
that compete for a fit to the current data. Much of our information arrives in
a haphazard fashion as we do field and laboratory work. To interpret data that
arrives in this way within the classical statistical framework, we have a choice.
The first option is to interpret each dataset in isolation from the others as they
arise and then use a meta-analytic approach to draw together the disparate
information at the end. There are well-established protocols for doing this, but
considerable information is lost in the process since we combine only the final
results from each study, not the raw data. The alternative is to wait until all
of the data have been collected and then analyse them together. The difficulty
here being that there is no point at which all data become available not least
since new sites can be discovered or more funding become available. So, we
need a way to update knowledge a bit at a time in the light of changing expert
opinion and new data — the Bayesian statistical framework is ideally suited to
this and the classical one, for structural mathematical reasons rather than ones
of ideological preference, is not.

Archaeological science, by its nature, uses a mixture of intellectual ap-
proaches: some based in the sciences and some the humanities. We are seeking
to blend scientific data with the interpretations, opinions and expertise of hu-
man researchers. The Bayesian paradigm offers a framework for formalising this
process elegantly and robustly and has been shown, by more than twenty years
of illustration, to be a powerful tool in archaeology.

To us these observations, taken together with the fact that Bayesian meth-
ods are now relatively easy to learn and to apply, make it surprising that they
are applied to so few problems in archaeology. Although there are proof-of-
concept examples in several application areas in Buck et al. (1996) and others
have also published examples (Orton, 2000; Millard, 2002; Millard and Gow-
land, 2002; Byers and Roberts, 2003; Millard, 2004, 2005; Finke et al., 2008;
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van Leusen et al., 2009; Fernandes et al., 2014), there is really only one ap-
plication area where Bayesian methods can be said to be routine: absolute,
scientific-dating-based chronology construction. There is one other application
area with close connections to archaeology, that of phylogeny (both genetic and
linguistic), where use of Bayesian methods is also increasingly routine (Drum-
mond et al., 2004; Edwards et al., 2007; Kitchen et al., 2009; Drummond et al.,
2012; Bouckaert et al., 2014). Here, however, methodological development was
driven largely by the genetics and linguistic research communities. Even areas
such as relative dating via seriation and image processing for archaeological field
survey data (both considered in Buck et al., 1996) have not, as far as we are
aware, seen routine adoption of Bayesian methods.

It seems unlikely that chronologists are the only philosophical Bayesians in
the archaeological community, so why are they the only ones routinely using such
methods? It may be that they are the only ones with a critical mass of users
large enough to invest the time and energy to learn such methods and/or that
they are the only ones with obvious, and generally not very contentious, prior
information (in the form of stratigraphic information) that they simply cannot
afford to ignore. However, there is also a key characteristic of the problem
which means that it is obviously a probabilistic one i.e. scientific dates are
usually provided to users as probability distributions (in the from of laboratory
estimates with standard errors). Given that, in the case of radiocarbon dating,
calibration also requires statistical inference, it is then fairly easy to see why
some users of Bayesian chronology construction techniques describe themselves
as “pragmatic” users of Bayesian methods (e.g. Bayliss and Ramsey, 2004) and
why philosophers of science refer to them in much the same way (Steel, 2001).

Some such pragmatic users are also well-informed about the nature of the
underlying philosophical and mathematical framework in which they are work-
ing and hence do a good job. Others are less well-informed and make unsup-
ported assumptions or use only parts of the framework: for example, picking
and choosing the tools they find most useful without checking that their the-
oretical underpinnings are appropriate for the data to hand. In so doing they
obtain results that are not robust to statistical scrutiny or are simply not as
powerful as they might otherwise have been. Such mis-uses should not deter
us from developing and advocating Bayesian methods where we perceive utility,
they should simply encourage us to seek to be more careful in their use.

8 Looking to the future

More than twenty years since the first proof-of-concept papers, Bayesian chronol-
ogy construction is now routine (at least in European prehistory) and, as a re-
sult, there is a wealth of literature about its use and application within that
particular community. Nonetheless there is potential for much greater benefit,
both amongst chronologists and in the wider archaeological community.

8.1 What-if experiments

One powerful, but underused application of the Bayesian framework, is the
what-if experiment. These were first suggested for chronology construction by
Christen and Buck (1998) and have been advocated since, amongst others, by
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Bayliss and Ramsey (2004). These involve the simulation of data, prior to or
instead of the collection of real data. The benefit is that we can explore the likely
gains to be made from data collection at little cost. To utilise this approach
one first constructs a model e.g. a relative chronological model based purely on
stratigraphic evidence; this can be done before any scientific dating evidence
has been obtained. One then uses the model to parameterise data simulation at
locations where future absolute dating evidence might be obtained. For example
at stratigraphic locations where suitable samples for scientific dating have been
obtained.

By then analysing the simulated data in exactly the same way that any
future real data would be analysed, we can explore the likely benefit of sending
particular groups of samples for dating as opposed to others. In situations where
we are keen to achieve a specified accuracy on particular parameters of our
model, for example relating to the dates of key events on our site, we can carry
out numerous simulation experiments to ascertain which of our datable samples
are likely to achieve this and thus target available funds at those samples.

Such what-if experiments are cheap, have clear benefits to funding agencies
and researchers alike and should help resolve at least some issues without the
need for buying real data at all. For example, if the dating accuracy needed
cannot be obtained even if we buy scientific dates for all the datable samples
from a site, it would surely be better to know this ahead of time and not buy
the dates. Given the power of this approach and the fact that software such
as OxCal (Ramsey, 2009) has facilitated it for some time, we feel that there
is considerable untapped potential here. Certain funding bodies, including the
Natural Environment Research Council Radiocarbon Facility already advocate
the use of such methods in their FAQ for applicants (Ramsey, 2014) and so
presumably they appear in funding applications. Destpite this, although there
are published examples, most notably those led by Alex Bayliss (e.g. Bayliss
and Ramsey, 2004; Bayliss et al., 2007b; Bayliss and Woodman, 2009), few of
these compare the what-if experiment directly with the analysis of subsequently
obtained real data. More such comparisons would surely be valuable and our
feeling is that this approach should become routine.

8.2 Applications beyond chronology

As was clear from Buck et al. (1996), we see real potential for more widespread
use of Bayesian methods in archaeology so why have these still to take off? One
reason might be that problems, other than chronological and phylogenetic ones,
often do not give rise to data which obviously take the form of probability distri-
butions; although many, in fact, do simply because they arise from the stochastic
world in which we live. The issue here is that archaeologists rarely have the lux-
ury of repeat observations and so do not readily see their data as they are;
samples (albeit often small ones) that could be represented probabilistically.
It may simply be that, for greater scientific authenticity, more collaboration is
needed with applied statisticians to help devise suitable representations.

Another reason for lack of more widespread adoption might be that, in ap-
plication areas other than chronology, the associated prior information is often
more contentious than that from stratigraphy. However, the facility to explore
the consequence of holding different prior opinions is one of the powers of the
Bayesian paradigm which is not available within alternative statistical frame-
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works. It requires those who hold different opinions to formalise them within
the rigour of probability theory and thus to explore explicitly the beliefs they
hold. As de Finetti noted in 1931 — probability is required to predict to what
extent something is true and since what informs this prediction is a subject with
experience and beliefs, “the logical instrument that we need is the subjective
theory of probability” (de Finetti, 1989). It also provides the machinery to pro-
vide posterior probability statements about the consequences of each person’s
beliefs on an analysis of the same data and allows us to compare the results
quantitatively. In this way we may reach conclusions about the impact of differ-
ing opinions on the final interpretations we make. Published examples of such
uses are rare, however, and it would be good to see more in the archaeological
literature.

8.3 Closing remark

Returning to an issue alluded to in the Abstract, the powerful methods now
used so ubiquitously in chronology construction grew from close collaboration
between Bayesian statisticians and archaeologists who were intuitively Bayesian,
but did not have the formal mathematical training to develop tailored, Bayesian
methods for themselves. This close collaboration was the key to developing
methods that were not just novel statistically, but were also truly useful to the
user community for whom they were designed. Such close collaboration is, how-
ever, rare and in danger of being lost altogether unless those who benefit most
take action. It is widely acknowledged that there is an international shortage
of statisticians (so much so that it is a priority funding area for the UKs Engi-
neering and Physical Sciences Research Council) and so if we want to maintain
a connection between the two disciplines we must seek to cultivate it. For ar-
chaeological users of statistical tools and methods, this means actively seeking
to build strong working relationships with applied statisticians during research
design, seeing them as full members of research teams and costing their time
into budgets at the funding stage. Without action of this sort we risk losing
our place as one of the very few applied scientific communities that are cited by
philosophers (e.g. Steel, 2001) as Bayesian.
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