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Abstract

We study the Cauchy problem for non-linear (semilinearptd partial diferential equations in
Hilbert spaces. The problem is severely ill-posed in thessesf Hadamard. Under a weak
priori assumption on the exact solution, we propose a new regalemzmethod for stabilising
the ill-posed problem. These new results extend some earbeks on Cauchy problems for
nonlinear elliptic equations. Numerical results are pnése and discussed.
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1. Introduction

Let H be a Hilbert space with the inner prodyct) and the nornfi.||, and letl. : D(L) c H - H
be a positive-definite, self-adjoint operator with compastrse onH. Let M be a positive
number, and consider finding a function [0, M] — H satisfying the Cauchy problem

U, =Lu+ f(zu(@), ze€(0,M)
u(0) = ¢, (1.2)
Uz(o) =0,

where the dat® is given inH and the source functiof will be defined later. The Neumann
condition in (1.1) need not to be necessarily homogeneauprdctice, the data € H is noisy
and is represented by the perturbed dsta H satisfying

llo® = ll <€, (1.2)

where the constart> 0 represents an upper bound on the measurement error. Saalkrpris
not well-posed because its solution may not exist and, dvieérxists, it does not depend con-
tinuously on the "noisy” Cauchy datgf. Hence, a regularization process is required in order to
obtain a stable solution.

Equation (1.1) is an abstract version which generalizesymaail-known equations. For a
simple example, if. = —A (negative of Laplace’s operator) arifz, u(z)) = —k?u(z) with k real
or purely imaginary, then the equation (1.1) becomes thenHeltz or modified Helmholtz equa-
tion, respectively, which arises in many engineering agpions related to propagating waves in
different environments or heat transfer in fins. More generflyl. = —A and f a nonlinear
function of u, equation (1.1) becomes the nonlinear Poisson equatiochwliencountered in



numerous applications in heat and mass transfer, chemsigetions, gas dynamics and fluid flow
in porous media, [2].

Nevertheless, there exist many studies on the linear pmble. f(z u(2) = a(zu(2) +
b(z), wherea andb are some given functions (usually taken to be zero) in Eql)(kee e.g.
[3,4,5,6,7,9,10, 13, 14, 16, 17] to mention only a few. Ondtieer hand, the Cauchy problem
for nonlinear elliptic equations has been much less ingastd, [11, 21], and it is the purpose of
this study to make advances into the semi-linear problefr).(1.

2. Mathematical analysis

We assume thdt admits an orthonormal eigenbaéts }n-1 in H, associated with the eigenvalues
such that

O<A1 <A< A3 .. lim A = 0.

n—oo

andf satisfies the global Lipschitz condition

If(z V1) — T(z V)l < Kllva = V3l (2.3)

for some constar independent ot, v;, v, with

1 1
0<K<——, C=zmaxys—,1;. 24
MC {vz } 4

More general local Lipschitz nonlinearities can also besadered, [19]. As shown in [18], the
solutionu € C([0, M]; H) is a weak solution of (1.1) ifi satisfies the integral equation

= ~ sinh( Van(z - 9)
u2) = Z [cosh( VanZ) g + f ( T )fn(u)(s)ds bns (2.5)
n=1 0 n

whereg, = (¢, ¢n) and fo(u)(s) = ( (s U(s)). 4n)). Sincez > 0, we know from (2.5) that, whem

becomes large, the terms cc(stﬁ/l_nz) and sini( Van(z - s)) increase rather quickly. Thus, these
terms are causes for instability. Hence, to regularize tbblpm, we have to replace these terms
by some stability terms. In the present paper, the unstaiblgien (2.5) is regularized by the
solutionU¢ defined as

Us() = ilcosh(\/ﬂ_nz)go,ﬁ+ f SN (VA= 9) ¢ 15y 9)ds

n=1 0 \//1_”
Ble)e T2
- fn u© d ns O, M s 2.6
J (B + & V) (U)(9)ds{¢n,  z€ [0, M] (2.6)

Where‘Prﬁ = <¢E, ¢n>, fa(U)(s) = <f(3, u<(s)), ¢n> and

cosh(y2) = %( e—\/ﬂ_nZ), sinh.(vn2) := %(

2

e Van(M-2)
B + &

e Va(M-2)

g V2
parevm C )



Herep(e) > 0 plays the role as the regularization parameter which hias tihosen depending on
the noises. Under thea priori assumption

lu(M)Il + llu (M)l < E (2.7)

whereE > 0 is some known given positive number, we will obtain the eestimate between the
exact solutioru and the regularized solutidd©.

To our knowledge, there has not been a regularization mdtratnlinear elliptic equations
which provides a convergence rate under the weak condizioh.(We also mention that, previ-
ously, in order to get a stability estimate, Zhang and We] g&sumed the stronger condition on
the exact solutiom:

Z @ Van(M+1) @), dn)> < E2, z€[0,M], (2.8)

n=1
whilst Tuanet al. [18] assumed that

(o0

2
Z &2 VAn(M-2) ((U(Z),¢n> + &\/)/ljs”)) < Eg, ze [0, M]. (2.9)

n=1

One can further remark that there are not too many functiowsich satisfy conditions (2.8)
or (2.9) and moreover, in practice, these conditions afiecdit to be checked. Therefore, in
our study we develop a new regularization method to obtarethor estimate under the weaker
assumption (2.7).

Our main results are stated in the following theorem:

Theorem 2.1. The integral equatioii2.6) has a unique solution Ue C([0; M]; H). Suppose that
problem(1.1) has a weak solution u which satisfi@s7). Let¢® € H be measured data such that

(1.2)holds. Choosg(e) > 0 such thatim,_,o8(€) = lim._o 55 = 0. Then, we have the following
estimate:

IU(2) - u@Il < Qe;MB(e) ™, ze [0, M, (2.10)
for any me (O, I — 1), where

( + n%)(C“E2 + 2,8(6)_262)
Q(e; m) = n ) (2.11)
1- 3(1+ m)K2C2M?
Moreover, there exists z (0, M) such thatim._,,z. = M and
M
) ~ U1 < Qe+ sup 1| || 2.12
0<z<M In (@)

Remark 2.1. (i) If we chooses(e) = €* witha € (0, 1] in (2.10)then, we get

U2 - u@Il < G 262_20)60_%2 ze [0, M]. (2.13)
©\ 1-Y(1+mkecemz ’
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(i) In order to obtain the tightest upper bound (8.10) we can minimize with respect to m
(0. 7oz — 1) the function Qe; m) defined in(2.11) Noticing that

ﬂ@OQ(e;mF lim Qe m) = oo,
oz 1)

and solving%{(e; m) = 0 we obtain the minimum pointyp = K—EAC — 1. Then the estimat@.10)
becomes

IU“@) - u@)ll < Qe Mmin)B(e) ¥, z€ [0, M], (2.14)
where
_ 2 VC*E2 + 28(€) 22
Q(e; Miyip) = > TKMG : (2.15)
3. Proof of Theorem 2.1
First we have the following lemma which will be useful in th@pf of the theorem.
Lemma 3.1. The following inequalities hold (far > 0 small):
2 Isinh(VA) _ Ble)
cosh(/1,2) < Ble) ™, < , ze[0,M], (3.16)
Vi, 2V
|Sinh(VAn(z = 9) < Eﬁ(e)*vz, O<s<z<M, (3.17)
Vi 2
- Van(s-2) .
ploe CBe)F, 0<z<s<M. (3.18)

<
VAi(B(e) + & VM)
Proof. First, we can deduce the following inequality:

- VAn(M-2 — VAn(M-Z -z
g Vih(M-2) _ € /IZ(M ) < (,8(6) N e_mM)M Sﬁ(é)_ﬁ. (3.19)
B+ &V (506) 1 e vim) (g + e i)

ZIn

This implies that

cosh(y/,2) = %(

e VAn(M-2)

_ Tz 1 _z _z
m'i‘e \M—)Sé(ﬁ(f) M+1)Sﬁ(6) M

and
|sinh (VA2 1 | e V(M2
VI 2VI|B(e) + e
where we have used (3.19) and that- ;.
The inequality (3.17) is obtained immediately by repladmgth z—sin the second inequality

in (3.16) and using that > 1/+/1;, whilst the inequality (3.18) is obtained as in (3.19) by
employing the inequality

— e_\//l_nz <

2,

1 ( e Vin(M-2) )<,3(€)‘vz
ple) + e Vi) = 242

~VAn(s-2) ~ Vn(s-2) sz_
A iW—M = 'B(e); : — < ,3(6)(/3(6) + e‘W_”M) e <Ble)F.
ﬁ(E) + € " (ﬁ(f) + e—\//l_nM) M (ﬁ(E) + e—\//l_nM) M




The proof of Theorem 2.1 consists of two steps.

Step 1. The existence and the uniqueness of a solution to (2.6).
Let us define the following norm on C([M4]; H):

Ihll = sup Ble)Ih@)ll,  ¥h e C([0; M]; H).

It is easy to show thak||; is a norm on C([OM]; H). For anyw € C([0; M]; H), we define

W@ =ilcosh(\/7nz>gon+ [ Si”“”j‘:i(z‘s)) L W)(9ds
) J n

ple)e 2
VA(B(e) + & VM)

fA(W)(9)dS|dne  z€ [0, M].

We claim that, for every,, w, € C([0, M]; H) we have
13(W1) = IWo)ll1 < KCMIwy — Wallz. (3.20)
First, using Lemma 2.1 we have two following estimates foea [0, M]:

2
> f SR 1, w9 - w9
n=1 0 n

2
ds

sinh.(VaAn(z - 9)) (fa(wa)(S) — fa(W2)(9))

< Z;Of N
< zi fzczﬁ(e)%z
n=1 0

< K*Cz f B0 wi(9) - wal9)Pds
< B(e)WK2C?Z sup {B(e)¥ Iwa(s) - wa(9)I1?} = Ble) ™ KC?Zlwi — Wl (3.21)

0<s<M

W9 ~ w9 ds

and

([ A@e e
Z( Van(B(e) + & Vi)

Ble)e Van(s-2) ~
<(M-2) f ‘ A LCRCRU S

<=2 [ cao |
n=1 2

< K*C*(M -2 f Ble) T [lwa(s) — wa(9)lI2ds

< B(e) ™ KECHM — 22wy — W . (3.22)
5

2
(fa(wa)(S) — fn(w2)(s))ds)

n=1

2
ds

2
ds




Then, for 0< z < M, using the inequalityg( + b)? < (1 + p)a? + (1+ %)) b2 for any real numbers
aandb andp > 0, we have

13W)(2) — IML) DI < Ble) ™ KZCA(L + p)ZlIwy — Wy |2
+B(e) ™ K2C2 (1 + i) (M = 2wy — Wal 2

By choosingp = *-%, we obtain

BEOTIIW) @ - IW) DI < KZCMZwy — wall2, Yz € (0, M) (3.23)
On other hand, letting= M in (3.21), we have
BA(ENI(W1)(M) = IWz)(M)I? < KZCZM?|lwy — wal 3 (3.24)
and lettingz = 0 in (3.22), we have
13(W1)(0) — J(W2) (O)|* < KZC2MA|[wy — Wal2. (3.25)

Combining (3.23) - (3.25), we obtain
BENI(W1)(2) — IW2)DIl < KEMIwy —Wolls, Yz € [0, M]

which leads to (3.20). SindéCM < 1, it means thad is a contraction. It follows that the equa-
tion J(w) = w has a unique solutiow € C([0; M]; H).

Step 2. Estimate the errdiU<(2) — u(2)|.
Differentiating (2.5) with respect & adding the result obtained to (2.5) and taking the inner
product withg,,, we get

oot f e_v%”]sfn(u)(s)ds:e-m[<u(M),¢n>+%]— f © s
This implies that

Un(@) := (U(2). #n) = cosh( Vn2) gn + oz %ﬁ fo(U)(9ds

= cosn(VT2e, + [ S Vj}:z‘ N weds

+| cosh(¥iz) - cosh(VAalen + [ Z Si”h%ﬂ_”z) _ S‘““Wj:in(z‘ S”] fL(U)(9)ds

- cosn(VI2n + [ T Vj:lfz‘ N wuy9ds

e [ s

= cosn(VTzer + [ S Vj:L(Z‘ N weds

(u(M), ¢n>] B fM Ble)e V(s
Vi 2(B(e) + e Vi)
6

Ble)eV
2(B(e) + & VM)

(. 0n) + f,(U(9ds

z



Using that

Z(M)’¢n
C s ) sc(Ku(M),qsn) ¥

expression (2.6) and Lemma 2.1 we obtain

(um), ¢n) +

(U(M), 6n)

)

Un(@) - un(2)

< cosh (v - ¢ + Zé((?)eﬁfz;zﬂ_:m (uM), 90) + <UZ(“V/2_;¢”>

SO M 9 - 1ulas

[ vf((ﬁ)(e)f(e)r) WU - (U(E|ds

< Bley gt — | + czﬁ(e)l"(<u(M>,¢n>+<uz(M),¢n>)

= f BT [1UYS - fu)S]ds+ f BOT| (U - RE|ds
o

< B(e) M |¢h — @nl + czﬁ(e)l——(<u(M),¢n>+<uz(M),¢n))

C
v f BT (U9 ~ f)(s]ds
0
From the inequality
2 1 2 1 2 2
(ar+ay+a3) <2 1+E aj+2 l+ﬁ as + (1 + m)ag
for any real numbera,, a,, a; andm > 0, we obtain

(9]

U@ - v
<21+ 2o Dl +3 1+ %)Z Cipe
M
NE Zm) Z czﬁ(e)z‘%[ f oL

<2(1+ )5(6) B+ (1+ D)CB(e B (M + I (M)IP)

n=1

(UMY, ) + (M), 60|

12
U - s

(1+m)

2 D eompop f BT 2I1(s US) - f(s uS)IPds

7



where we have applied the Holder inequality

M
s 1
[ Of B(e)

M

2 M
fn(UE)(S)—fn(U)(S)‘ds] < [ 12ds [ o
[

0

M
_
M Of B(e)

B(U)(S) - ()9 ds

NS - (L9 ds

This leads to

BOFAU@ - u@IP <2(1+ ),8(6) ( %)C“EZ

+(1+4m)K2C2M f B(e)F2U(s) - u(s)lIPds (3.26)
0

Setl(2) := B(e) " 2|U<(2) — u(@)||? for all z € [0, M]. SinceU¢, u e C([0; M]; H), the functionl is
continuous on [OM] and attains over there its maximupat some poing, € [0, M]. Therefore,
(3.26) yields

Ble)2US(2) - u(DI? < 2(1 + )/3(6) ( %) C*'E? + (1+4m)KZCZMZP
Choosingz = z; on the left-hand side of this inequality, we get
P < 2(1+ ),8(6) ( 1)(:“E2 + M eczyep
m 4
or,
[1 - @ ZCZMZ]P < 2(1 ; ) (€)% ( %)C“EZ - (1 ; %) (C*E2 + 28(e)2€?).

Sincem € (O, K2M2C2 - 1) it follows that the left hand-side bracket is positive. Thgplies that

for all ze [0, M] we have

B(e)F U@ - u@IP < P < Q¥(e; m).

Thus (2.10) holds.
Finally, in order to get the estimate (2.12)zat M, we use that

0<z=M

lu(M) = U@l < [lu(M) - u@@)ll + [lu(2) - U*(9)ll < ( sup IIUz(Z)II) (M =2 + Qe m)B(e) ™

For everye > 0, there exists a unique € (0, M) such thatM — z. = B(e)* 4. This implies that

ez - ) Using the inequality Ity > — for everyy > 0, we obtainV -z, < . This

leads to (2.12). Theorem 1.1 has been proved.

In((i



4. Numerical experiments

Let Q = (a,b) x (c,d) c R? be a rectangle and l&fl > 0 be a constant. Consider the following
Cauchy problem for the three-dimensional sine-Gordopt&lequation:

Au = f(x,y,zu) = %sin(u) +R(XY,2, (XV,2e€Qx(0,M), (4.27)
u(xy,0) = e(xy), (xy)€Q, (4.28)

UAxy,0)=0, (xYy)eQ, (4.29)

ux,y,2 =0, (XxY,2) €dQx (0, M). (4.30)

whereA is the three-dimensional Laplace operator. We ®ey, 2) = Ax(X, Y, 2)—3 sin(y(x, . 2)),
where

sin[qZ(x - a)(b - x)(y - ¢)(d - y) |
(X=X%)* + (Y —¥o)* +1
plays the role of the exact solution of the above problemaifiyrcontantsg, yo andg. In addition,
we can check that,(x,y,0) = 0 and thatp(x,y) = x(X Y, 0) = 0 is the exact Cauchy data of the
problem.
Using a uniform rectangular grid with a resolutionlak J in the xy-plane, which is defined
by nodal interior pointsx, y;) as

x(Xy,2 = (4.31)

. —a . "
X =10y + &, 5X—m, =11, |eN, (432)
d-c .
yJ de + C, 6)/ = ?, ] = 1, J, Je N*, (433)

we define the data input

o, = x(%.Y;, 0) + erand(x, y;) = erand. yj), (4.34)

which is disturbed by the pseudo-random ranyifunction determined uniformly on1, 1] and
€ > 0 denotes the amplitude of noise.

Then, for the rectangl® = (a, b) x (c,d) and homogeneous Dirichlet boundary conditions
(4.30) onoQ, the regularized integral equation (2.6) can be rewritsefollows:

() =ZZ[cosn(zJ_n) o)+ [ LED VA (£ (5, u(9), pmr)dls

m=1 n=1 \//l_mn
M (o
ﬁe (5-2) VAmn
- f(s UP(9), prn)dS| dn,  (4.35
| T e o) ]¢ (4.35)
whereg = B(e) and

mr(X — a) nr(y — C) [ mr 2 nmr \2

dmn(XY) = sm(W)sm( 1 c ) Amn = (b— a) + (d — c) : (4.36)
Denote the Fourier cdigcients of a functiorv(x, y) by
R 2 b d
<V’ ¢mn> =Vmn = m m L ﬁ V(X, y)¢mn(X, y) dXdy

Next part explains the numerical procedures for solvind485).
9



4.1. Calculation procedures

In order to solve Eq.(4.35) numerically, we shall adopt tieafl iteration. For a given dis-
crete datdej;} from Eq.(4.34), to obtain the left-hand-side of Eq. (4.3%,need to approximate
both of the Fourier cdé&cients, the double summation and the integrals includetienright-
hand-side. The main idea is to use trigonometric polyna@nisge [8], Chapter 2, which then
leads us to benefit of using the Fast Fourier Transform teclen{FFT). First, we model a data
function from its discrete values so that the calculatiothefFourier cofficients and double sum-
mation can be performed using the FFT, and then we numsrieadlluate the integrals involved.

Firstly, using the trigonometric polynomial approximati@}.36) the data<(x, y) is modeled
from {c,ofj} as follows:

(X y) = Z Z gomnsm(mn(x a))sm(%), (4.37)

m=1 n=1

where

Il
=

AE_22'JE.m¢ri.n7rj
P = o1 L A sn(3h ) m=Th =13 @39

is the so-called two-dimensional sine transform, withrigerse transformation given by

@i = ZZ‘pmnS'n( i)sin(\]njjl). (4.39)

m=1 n=1

The relationships betweegt,. and @ given in Egs. (4.38) and (4.39) can also be found in
[12], Chapter 12. So far, Egs. (4.37) - (4.39) givéX.y;) = ¢j; (the double summation) and
(¢, dmn) = @5,y (the Fourier cofficients) precisely. In addition, one has the discrete form of
Parseval’s identity

_il 2122

i=1 j=1

Pron

» .

m=1

Combining the latter identity with the triangle inequalibne can obtain, see [8], Chapter 2,
lle® — ¢l < €o, (4.40)

whereey = €/(b—a)(d—c) + Cy(6% + 67) \/||a§¢||2 +[|02¢]|? and C; is some positive constant

independent op, 6 andoy.
The calculations in Egs. (4.38) and (4.39) are performednataral way. For instance, the
sine transformgofj} — {95 (EQ. (4.38)) can be computed in two steps:

Step 1: Loop foii = 1,1,

2 . nnj 3
. J+1;¢ij n(J 1), n=13. (4.41)
Step 2: Loop fon=1,J
2 —iiw-sin(ﬂ) m=T1 (4.42)
Pon = L ) T :



Here, the subroutinsintlf of FFTPACKS, [15], is adopted for these calculations. Thelto
computational burden in bothandn-loops (Egs. (4.41) and (4.42)) is of order

| « O(JlogJd)+J=O(llogl) ~ O®J log(1)),
i-loop n-loop

which is equal to the number of operations on a one-dimemaitiector withl =« J components.
Similarly, calculation of the inverse transfor@g,} — {ef) (Eq.(4.39)) is performed using the
subroutinesintlb in the same manner.

Secondly, as mentioned before, a numerical solution to4E2p] can be found by a fixed-
point convergent iteration. To calculatefaprofile, we need to compute the integrals inside the
RHS of Eqg. (4.35) from a prioe®-profile. Therefore, the computation is performed on a fixed
mesh inz-direction, namely,

7z =(Kk-1)0, &, k=1K, KeN" (4.43)

TKAL
Using Fubini’s theorem, the integrals can be formed as

f<q), ¢mn) ds= <f(D ds ¢mn>

for eachm = 1,1, n = 1,J andz € [0, M], where the functiord = ®(x,y,z s, m, n) has only
discrete values for variablesands. For simplicity, we are going to approximate the integral

Sp
f d(s)ds (4.44)
St

from the values o, = O(s), | = 1_p Note thatAs = 5,1, — § = §, and interval in (4.44) belongs
to two casess; = 0, s, = z Or s; = %, S, = M, for eachz, € [0, M] given in Eq. (4.43). Now
using Newton-Cotes formulas (closed-typed), we have

Sp P
d(g)ds=6 Hpi Oi, (4.45)
L z; P 1
where (see [1], p. 886) the chieientsH,; are given by in Table 1 fop = 2,8,i = 1, p. For
p > 8, we also have that Eq. (4.45) can be written as
% 17 59 43 49
D(g)ds~ 6, —=P1+ —Dr + —DP3+ —Dyg + Dg + -+ - + D_
L (9 2(48 1+ 2502+ 7503+ 75Pat Os+ oo+ Opy
49 43 59 17
+4—8CI)p_3 + 4—8d)p_2 + 4—8d)p_1 + 4—8d>p), (4.46)

with the leading error proportional tas®.

We also approximate the functidnby its own trigonometric polynomials, thus,

| J ‘ |
m Z D (U, ;. 2), >q,y,-,z.)sin(I”:T'l)sin(anll)_

i=1 j=1

(f(Z|, U(Z|)), ¢mn> =

Note that the double summation in Eq. (4.35) is now finite.

Equation (4.40) indicates that the quality of data functgdrmodeled by the trigonometric
polynomials is dependent on both the noise ampliwaeesh resolutionsg andé,), and smooth-
ness of the approximated functign(i.e. ||02¢|| and||6§<,o||). The following test cases illustrate
such dependencies.
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Table 1: The cofficientsHp; for p = 2,8,i = 1, p.

p I Error
1 [ 23] 4]5]6] 7] 8
1 1 PDE) A 3
2| 3 2 7 )|AS4
1 4 1 a5 5
3 3 3 3 y %)( )lASl
3 9 9 3 _307E 5
4 8 8 8 8 §6())( )lASl
14 64 24 64 14 _ 800 7
S 45 45 45 45 45 945 |AS
61 = 375 250 250 375 95 _2731)(6’(5)| As|7
288 288 288 288 288 288 12096
7| AL 216 27 272 27 216 41 _9®‘8)(§)|As|9
140 140 140 140 140 140 140 1400
g | 5257 | 25039 | 9261 | 20923 | 20923 | 9261 | 25039 | 5257 _8183D(8)(§)| ASIg
17280 | 17280 | 17280 | 17280 | 17280 | 17280 | 17280 | 17280 518400

4.2. Test cases
We introduce two examples based on the test function (4.31).

e Examplel: Choosea=c=0,b=d=5 M =11,x%, =Yy, =25,q=-0.1. The graph of
the exact solution is shown in Fig. 1(a).
e Example2: Choosea=c=0,b=d=5M=11,% =Y =3,q=0.2. The graph of the

exact solution is shown in Fig. 1(b).

(a) Example 1

(b) Example 2

Figure 1: The analytical test functiogp$x, y, M) (Eq.(4.31)) for Examples 1 and 2.
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The aim of the numerical experiments is to observe the velairor given by

S 3L W,y M) - Uk, M)f
S S Uy M)

asp tends to zero, in two following cases:

§P(M) 1=

(4.47)

l.e=0: {goﬂ} represents exact data.
2. € > 0: {¢f;} represents measured data with random noise.

Here the computation domaf@ x [0, M] is meshed with resolutions = J = K = 2' — 1 for
l=6,9.

In the numerical practice of our study, the process of Pid@mation was terminated when
the relative errors between two sequent solutions werehess10°. Based on this, the number
of iterations was around 8 for all of test cases. The numleswlation of the integral equation
(4.35) in three-dimensions is time consuming, particyléwlobtain a desired accuracy, we need
to refine the three-dimensional mesh up to billions of grichjs Therefore, the numerical code
has been parallelized by OpenMP [20] in Fortran90.

Tables 2 and 3 show the relative erd@s#(M) (Eq. (4.47)) for Examples 1 and 2, respec-
tively. The computations were performed on a three-dinwradi mesh with four resolutions
| =J =K =2 -1forl = 6,9, for exact data wite = 0 and for noisy data witle > 0. As
shown in these tables, the magnitude of the relative M) depends on both of the mesh
resolutions and the noise amplituele

In casee = 0, convergence of numerical solution is improved with fin@simags decreases
until 8 = 10°. However, forg = 10°° the error could not be decreased further with the finest
mesh ( = J = K = 511), hence, a higher mesh resolution should be adoptedwiamé to obtain
a higher accuracy. In addition, Figure 2 shows the graphg(efy, M) for Examples 1 and 2
with the exact dat:{x,oﬂ} for the coarse mesh resolutibrx J x K = 63%. For too small such as

10°%, the instability phenomenon is manifested by the strongbjlating contour lines.

Table 2: Example 1, relative errof#(M) defined by Eq. (4.47). The computations were performed wiéish
resolutiond = J=K =2 —1forl = 6,09.

K=63 | K=127| K=255] K=511 K =511

B e=0 €=10% [ e=10° | e=10" | e=10" [ e=10"°
1.0E-1 | 7.3E-1 | 7.3E-1 | 7.3E-1 | 7.3E-1 | 7.4E-1 7.3E-1 7.3E-1 7.3E-1 7.3E-1
1.0E-2 || 1.3E-1 | 1.3E-1 1.3E-1 1.3E-1 1.1E+0 1.7E-1 1.3E-1 1.3E-1 1.3E-1
1.0E-3 || 1.7E-2 | 1.8E-2 | 1.7E-2 | 1.7E-2 | 1.1E+1 1.1E+0 1.1E-1 2.0E-2 1.8E-2
1.0E-4 || 6.BE-3 | 2.4E-3 1.9E-3 1.9E-3 Diverged | 1.1E+1 1.1E+0 1.1E-1 1.1E-2
1.0E-5 || 3.7E-2 | 1.0E-2 | 3.1E-3 1.4E-3 Diverged | Diverged| 1.1E+1 1.1E+0 1.1E-1
1.0E-6 || 2.3E-1 | 6.3E-2 | 1.9E-2 | 7.3E-3 | Diverged| Diverged| Diverged| 1.1E+1 | 1.1E+0

In case of noisy data with > 0, to show the sensitivity of the computational accuracydis@
of the data, we repeated calculations with a variety of naisplitudess = 10™' for | = 2,6, and
illustrated the numerical results only with the finest meshJ x K = 511, so that errors from
mesh resolution do not contribute d6®. These results are shown in Tables 2 and 3 and Figures
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Table 3: Example 2, relative errof#(M) defined by Eq. (4.47). The computations were performed wiésh
resolutiond =J=K =2'-1forl =6,9.

K=63 | K=127| K=255] K=511 K =511

B e=0 €=107° | e=10° [e=10" [ e=10°[e=10"°
1.0E-1 || 1.7E+0 | 1.7E+0 | 1.7E+0 | 1.7E+0 | 1.7E+0 1.7E+0 1.7E+0 1.7E+0 1.7E+0
1.0E-2 || 6.6E-1 | 6.6E-1 6.6E-1 6.6E-1 1.4E+0 6.7E-1 6.6E-1 6.6E-1 6.6E-1
1.0E-3 || 1.9E-1 | 1.9E-1 1.9E-1 1.9E-1 1.2E+1 1.3E+0 2.3E-1 1.9E-1 1.9E-1
1.0E-4 || 5.3E-2 | 4.3E-2 | 4.1E-2 | 4.0E-2 Diverged | 1.2E+1 1.2E+0 1.3E-1 4.2E-2
1.0E-5 || 1.1E-1 | 3.2E-2 | 1.3E-2 | 8.7E-3 | Diverged| Diverged| 1.2E+1 1.2E+0 1.2E-1
1.0E-6 || 6.6E-1 | 1.8E-1 | 5.4E-2 | 2.1E-2 | Diverged| Diverged| Diverged| 1.2E+1 | 1.2E+0

3 and 4 for Examples 1 and 2, respectively. ;Agends to zero but its value is still greater than
10e, the approximated solutiowf is still convergent in most cases, however, wiges smaller
than< 10e the numerical solutions start to diverge and become urestdilis is signaled by the
contour lines becoming non-smooth. As justified by Theoren r noisy data witle > 0, the
value ofg(e) should be chosen according to Remark 2.1 such that thdistasitimate (2.13) is
ensured.
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(e) Example 13 = 10°° (f) Example 28 = 10°°

Figure 2: Graphs aff(x, y, M) for Examples 1 and 2 with exact daﬁ%.
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(€)e=0,5=1073 (f) e =104, = 1073

Figure 3: Graphs af®(x, y, M) for Example 1 with data;fj, €>0.
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(€)e=0,5=1073 (f) e =104, = 1073

Figure 4: Graphs af®(x, y, M) for Example 2 with data;fj, €>0.
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