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Abstract

Dimensionality reduction via canonical variate analysis (CVA) is important for pat-
tern recognition and has been extended variously to permit more flexibility, e.g. by
“kernelizing” the formulation. This can lead to over-fitting, usually ameliorated by
regularization. Here, a method for sparse, multinomial kernel discriminant analysis
(sMKDA) is proposed, using a sparse basis to control complexity. It is based on the
connection between CVA and least-squares, and uses forward selection via orthog-
onal least-squares to approximate a basis, generalizing a similar approach for bino-
mial problems. Classification can be performed directly via minimum Mahalanobis
distance in the canonical variates. sMKDA achieves state-of-the-art performance in
terms of accuracy and sparseness on 11 benchmark datasets.

Key words: linear discriminant analysis, kernel discriminant analysis, multi-class,
multinomial, least-squares, optimal scaling, sparsity control.

1 Introduction

Dimensionality reduction is an important step in pattern recognition, clas-
sification and data visualization where data may exist in high-dimensional
feature spaces, and linear discriminant analysis (LDA) has played a central
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role in achieving this for over 70 years. LDA seeks a linear projection that max-
imizes the separation between data belonging to each of c ≥ 2 classes while
minimizing the separation of those belonging to the same class. The resulting
co-ordinate frame – the canonical variates – has well-documented properties
and, under certain circumstances, the associated discriminant functions prove
optimal for classification [1] while performing well in many realistic situations.
Nonetheless, in many cases of practical interest, recognition performance can
be substantially enhanced by allowing more flexible, non-linear, discriminant
functions. While explicit expansion of data in basis functions can resolve this
for problems of low dimension, the combinatorial increase in the number of
coefficients to be estimated may make this impractical in general. Over the
past decade a large body of theory based on reproducing kernel Hilbert spaces
has given a new perspective on many non-linear problems in machine learn-
ing [e.g. 2, 3] and much work has been carried out in generalizing LDA within
this framework. One key advantage of these kernel methods over explicit ex-
pansions is that they avoid the need to work explicitly in very high, possibly
infinite, dimensional feature spaces, instead leading to problems whose “size”
is bounded by the sample size, n. This may, itself bring problems when n is
large. In addition, kernels can be defined that deal with much more general
data types than those that are simply represented in a vector of numbers, e.g.
sequences, trees, graphs and more general data still.

The problem of generalizing LDA to provide more flexible discrimination has
received much attention and a plethora of solutions has been presented, some
of which address the multinomial problem [e.g. 4–11], while others consider
only the binomial (c = 2) case [e.g. 12–18]. Interestingly, while a key fea-
ture of the most widespread kernel machine – the Support Vector Machine
– is its sparse nature, most of these generalizations pay no attention to this
point. Sparsity control is of particular importance in kernel-based formula-
tions which, in their most straightforward implementations, depend on the
entire sample and can, therefore, strongly violate the principle of parsimony.
Such control is also necessary to ameliorate tendency to over-specialization,
can improve numerical conditioning and, of course, can reduce computational
burden in operation – of particular interest in real-time applications. We fo-
cus attention on the question of sparsity in the literature on kernelized dis-
criminant analysis for reasons of space. Of the approaches mentioned above,
only [10, 12, 15, 17–19] address, explicitly, the question of sparsity control
and, of these, only [10, 17] address the multinomial case. However, it is not
clear that the latter technique can be used other than in a “one-vs-all” (OVA)
or “all-vs-all” (AVA) strategy. We seek to address the multinomial problem
directly while achieving sparsity in the resulting classifier. In doing so we aim
to avoid the following problems associated with the use of binomial classifiers
for multinomial tasks.

The first is the need to train c or 1
2
c(c−1) individual classifiers, depending on
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choice of strategy. However, in a “train-once, use-many” task, this may not
be of particular concern for moderate c and the associated clock-time would
be highly dependent on the particular choice of classification engine anyway.
Nonetheless, considerable saving can be made when, as is the case here, the
dominant computation only has to be performed once. An associated training
issue relates to the balance between the classes. Even for an equiprobable
class distribution, the OVA approach leads to severe imbalance for large c.
The question of how best to handle this therefore arises, e.g. via stratification.
A second problem arises in operation, when a number of classifiers must be
run and their results analyzed to provide a predicted class value. A number
of methods (see [20] for a critical overview) has been championed for the
post-processing, each of which is claimed to have merit, although in [20] it is
argued that OVA performs equally as well as any of these. In general, while
the overhead of running numerous classifiers may not be an issue, for kernel
machines involving, potentially, the entire sample, it may be unacceptable so
that achieving sparsity can be operationally important. To be clear, the idea
of sparseness is related to how few sample instances need to be retained to
form an adequate basis for the underlying feature space or, equivalently, to
compute the necessary kernels during operation. An additional motivation for
solving the sparse multinomial problem directly, without recourse to multi-
classifiers lies in the fact that, even if each binomial classifier is itself sparse,
the union of the sets of retained samples across all classifiers may not be. A
further motivator for the use of LDA, rather than, say, a direct application of
multi-response least-squares, arises from a problem highlighted in [21, §5.1]:
if class centroids happen to be nearly collinear in feature space a catastrophic
collapse of the associated discriminant functions can occur leading to poor
performance. This has been called the “masking” problem.

The objective of this paper is to generalize the method devised by Billings and
Lee [12] that made use of the fact that, in the binomial situation, the canonical
variate directions are available form a simple least-squares formulation. This is
attractive because a widely used and effective method of sparsity control in the
from of a forward selection procedure based on the modified Gram-Schmidt
procedure – orthogonal least-squares (OLS) – can be applied [22]. To extend
the method to the multinomial situation (c > 2) we were inspired, initially, by
a result of Crownover [23] that permits a two-stage procedure for finding the
directions of the canonical variates involving a least-squares problem followed
by a small, easily managed, eigen-decomposition of order O(c). This contrasts
with some approaches [4, 11] which involve large eigen-decompositions of or-
der O(n). Our intention was then to apply a regressor selection technique
such as OLS to the least-squares stage. Subsequently, a more convenient for-
mulation [21] based on penalized optimal scoring was shown via canonical
correlation analysis to be able to provide exactly the canonical variates [24],
i.e. identical direction and scaling to LDA. This facilitates the computation
of Mahalanobis distance in canonical variates leading to a simple method for
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computing classification performance and hence speeding the cross-validation
and operational stages. Roth and Steinhage [8] developed a kernelized version
of the method of [21] but did not attempt to control sparsity thereby resulting
in a classifier that requires access to the full sample in operation.

In §2 the method of optimal scoring for discriminant analysis is is outlined
and re-expressed in dual co-ordinates preparatory to “kernelization” in §2.2.
The method of orthogonal least-squares is described in §2.3 and applied to
the formulation of §2.2 leading to the sparse multinomial kernel discriminant
analysis formulation. Section four examines the performance of the proposed
algorithm on nine benchmark multinomial classification problems and com-
pares this with the best results on these same benchmarks gleaned from 11 re-
cently published articles in the machine learning literature and a smaller com-
parison with classifiers specifically designed to be sparse. A further three-class
problem is examined in more detail including a visualization demonstrating,
graphically, the value of sMKDA in this domain. All results are comparable
with the current state-of-the-art in terms of accuracy and sparsity (where the
comparison is possible) 1 .

2 Discriminant Analysis via Optimal Scoring

The idea that LDA might be affected through linear regression is a natural one
since the key component is a linear transformation of the data onto a space of
lower dimension that satisfies certain conditions – maximal separation between
the classes in this case. In the binomial case the link between the least-squares
problem and Fisher’s discriminant function is well-known and explicit [e.g. 1]
provided that class membership is coded appropriately. The extension to more
than two classes is less straightforward. What seemed obvious in the binomial
case – a linear regression onto quantitative values that indicate membership
of one class or not – does not translate directly to the multinomial situation.
The multivariate regression onto, say, a binary-valued indicator matrix rep-
resenting membership does not, in general, determine the canonical variates
and performing discrimination in the resulting space can lead to very poor
classification performance under certain circumstances (masking) [21]. The
method of optimal scoring, which arises from canonical correlation analysis of
categorical variables, provides an answer to the question of how best to code
classes by assigning, optimally, real, quantitative values to category labels.
This leads to a two-stage optimization process, a linear regression followed by
a low-dimensional eigen-decomposition. The details of this are well described
in [21] so we simply sketch the steps of the derivation needed in the sequel.

1 Sparsity, if any, is not always reported in the articles reviewed.
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2.1 The Linear Case

For notational ease, we assume at this stage that the data are “centered”, i.e.
that they have had their mean value removed and we ignore, for the moment,
the question of regularization.

Consider a sample from Rd of size n, categorized into c groups each containing
ni, i = 1...c vectors. The task is to determine a projection of the data into a
space of lower dimension that maximizes, in some sense, the separation of the
groups. Denote the (n× d)-dimensional data matrix by: X = [x1, x2, . . . , xn]T

and the (n × c)-dimensional indicator matrix, Y indicate group membership
such that yij indicates that instance xi belongs to group j. The elements of
the c-dimensional vector, θ, assign numerical scores to each of the groups so
that the vector Yθ represents the “scored” outcomes. Then in [21] it is shown
that the canonical variates can be obtained by finding the set of vectors, θi,
βi that minimize the average-squared-residual, ASR,

ASR (θ, β) =
1

n
‖Y θ −Xβ‖2

2 (1)

subject to the normalization 1
n
‖Yθ‖2

2 = 1, and re-scaling.

The minimization can be achieved through a two-stage process, first by con-
sidering θ as fixed and solving the unconstrained minimization w.r.t. β:

β̂ =
(
XTX

)−1
XTYθ (2)

assuming X has full-rank. It then remains to optimize w.r.t. θ.

Inserting the RHS of equation (2) into equation (1) and applying the con-
straint, 1

n
‖Yθ‖2

2 = 1, gives the partially optimized ASR:

ASR (θ) = 1− 1

n

(
θTYTHYθ

)
(3)

where H = X
(
XTX

)−1
XT denotes the “hat” matrix arising from the regres-

sion. To minimize equation (3) w.r.t. θ the constraint is attached through the
Lagrange multiplier, µ, giving

1− 1

n

(
θTYTHYθ + µθTYTYθ

)
(4)

and by taking its gradient and equating to zero the following generalized eigen-
problem is obtained:
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YTHYθ = µYTYθ (5)

We express the result in this explicit form simply to establish that it is indeed
identical to that of Crownover [23, equation (12)]. While the eigen-vectors
obtained from solving equation (5) have the same directions as the LDA so-
lution, they are scaled differently and this is where the results of Crownover
[23] and of Hastie et al. [21] diverge.

The overall procedure can be expressed slightly differently, avoiding the, albeit
trivial, generalized eigen-problem, as follows [21]:

(1) Choose a matrix Θ0 that satisfies the constraint, 1
n
ΘT

0 YTYΘ0 = I, e.g.

Θ0 = diag
{

1√
n1

, 1√
n2

, . . . , 1√
nc

}
and let Y0 = YΘ0.

(2) Carry out a multivariable (multi-response) regression on Y0 and compute

Ŷ0 = XB, where B =
(
XTX

)−1
XTY0.

(3) Compute the eigen-decomposition of YT
0 Ŷ0 to obtain W, the matrix of

eigen-vectors corresponding to the k ≤ (c− 1) largest eigen-values 2 , λi,
i = 1, 2, . . . , (c− 1), in descending order.

(4) Adjust the matrix of regression coefficients thus: Bos ← BW.

The matrix, Bos, is shown [21, 24] to be identical to the canonical variates up

to a diagonal scaling, D = diag
{

1√
λi(1−λi)

}
, where the λi, i = 1, 2, . . . (c− 1)

are sorted into descending order, giving

Bcv = BosD = BWD (6)

This leads to an expression for the expression of a new datum in canonical
variates, thus:

ycv = xTBcv (7)

2.1.1 A Dual Formulation

Having established the basic idea we first note that, for a sparse kernelized
version, it is imperative to avoid the “centering” operation since this is an in-
herently non-sparse procedure in dual co-ordinates involving the entire sample
for every new instance. Since our ultimate aim is classification and/or visual-
ization, the absolute position of the sample in feature space is of little interest
and so an explicit offset will be maintained by augmenting the data matrix

2 A single, zero eigen-value will always exist owing to the centering of X.
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with a column of n ones in the usual fashion and extending the row dimension
of the coefficient matrix, B, from d to (d+1). Therefore, the trivial eigenvalue
found above is changed to a unit eigen-value which, along with its associated
eigen-vector, must be excluded before searching for the c− 1 largest.

In anticipation of our final objective, we re-formulate the results so that they
depend only upon inner-products between sample vectors. This is achieved
by noting that the coefficient matrix, B can itself be expressed as a linear
combination of the data matrix, X, i.e. B = XTA, dim A = (n×c). Substitution
for B and augmenting the model to incorporate an explicit offset leads to the
multivariable regression problem of minimizing:

∥∥∥∥∥∥∥
Y0 −

[
X 1N

]



XTA

αT




∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥
Y0 −

[
XXT 1N

]



A

αT




∥∥∥∥∥∥∥

2

F

(8)

with respect to α and A, where ‖·‖ indicates the Frobenius norm, and αT

denotes the c-dimensional (row) vector of constant offsets. While such a for-
mulation requires the solution of a degenerate N -dimensional system with,
typically, N À d, we shall not use it in its present form and defer the issue
for later.

2.2 Multinomial Kernel Discriminant Analysis (MKDA)

It is well-known that linear discriminants are likely to prove suboptimal in
many cases of practical interest. Indeed, it is only when the within class sam-
ples are normally distributed with common covariance matrices that the linear
development is optimal. Rather than appeal to a parametric form we permit
flexibility in the solution through a linear expansion in basis functions so that
the discriminant analysis is carried out in the space of basis functions rather
than in the original “measurement” space. Nonetheless, Hastie et al. [21] ap-
peal to the fact that canonical variates obtained in this way are themselves
sums of random variables which will have the effect of making the regressors
appear more normally distributed.

Consider the mapping f : Rd → F – the feature (inner-product) space –
whose evaluations at the data samples are fi = f (xi), i = 1, 2, . . . , n with
dim (fi) = ν – a large, possibly infinite, value. This yields a new data matrix,
F = [f1,f2, . . . , fn]T . Direct determination of the projection vectors using the
explicitly mapped data involves solving a ν-dimensional least-squares problem.
Commonly, ν > n so the dual formulation of § 2.1.1 offers a potential solution
provided that the inner products, 〈fi,fj〉 can be computed efficiently. This
“kernel trick” has been widely examined elsewhere [e.g. 2, 3] so we do not
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dwell on the technical details here.

Inner products between a wide class of functions are amenable to straightfor-
ward evaluation through the use of a reproducing kernel. Conversely, kernel
functions possessing certain properties correspond to inner products in some
feature space even if the explicit mapping, f , remains obscure. For example,
imagine a polynomial expansion of degree p of the original d-dimensional data.
This leads to feature space dimension of ν = (d+p)!

d!p!
, however, inner products

in this space can be carried out via the polynomial kernel, kpoly (xi,xj) =(
1 + xi

T xj

)p
. On the other hand, application of the gaussian radial basis

function kernel of “width”, p, kgrbf (xi,xj) = exp
(
−‖xi−xj‖22

2p2

)
, computes the

inner product in an infinite dimensional (ν = ∞) feature space spanned by the
eigen-functions of kgrbf . Many additional kernel functions can be found in [e.g.
2].

The kernel (Gram) matrix, K, with elements, ki,j = k (xi,xj), i, j = 1, 2, . . . , n,
is implicitly given by K = FFT thus replacement of XXT by K in equation (8)
and application of the algorithm, using a suitable pseudo-inverse, permits the
computation of linear discriminants in a feature space of arbitrary complex-
ity and to project the data in a non-linear fashion onto Rδ, 1 ≤ δ ≤ c − 1
for visualization or decision making. However, it is likely that in the current
formulation, severe over-fitting will occur leading to poor generalization.

2.2.1 Ridge Penalty

It is common to introduce a ridge-type penalty to combat ill-conditioning and
to induce smoothness (or reduce complexity) in the implied mapping, f . This
yields the following least-squares problem:

arg min
A,α

∥∥∥∥∥∥∥




Y0

0n×c


−




K 1n

R
1
2 0n×1







A

αT




∥∥∥∥∥∥∥

2

F

(9)

where R is an n×n-dimensional, positive semi-definite matrix. NB we do not
penalize the offset to avoid distorting the estimated outcomes [e.g. 25, p. 59].

Denoting the augmented regressor matrix as K̃ =
[
K 1n

]
, the optimal coef-

ficient matrix,
[
ÂT α̂

]T

, as B and the penalty matrix,




R 0n×1

01×n 0


, as R̃,

then the resulting modification to step (2) of the algorithm in § 2.1 is:
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B =
(
K̃TK̃ + R̃

)−1
K̃TY0 (10)

which corresponds to the result of Roth and Steinhage [8]. All other steps in
the algorithm and the final scaling follow as before.

While regularization in this way addresses the problem of overspecialization,
an, (n + 1)× (n + 1), least-squares problem must be solved. In cases where n
is large this may be infeasible or undesirable. Besides, sparse models are ap-
pealing in the sense that they attempt to fulfil the principle of parsimony (c.f.
Occam’s Razor) as well as being computationally less demanding in operation.

2.3 Sparse Multinomial Kernel Discriminant Analysis (sMKDA)

A key reason for approaching the MKDA problem from a least-squares per-
spective is that there exists a well-established method for regressor subset
selection known as the orthogonal least-squares (OLS) forward selection al-
gorithm – Billings and Lee [12] have very successfully addressed the binomial
kernel Fisher discriminant problem in this way. The forward selection pro-
cedure has been developed over many years and has been widely applied in
the field of non-linear systems identification. It is based on the observation
that the regressor matrix, K̃, has a decomposition, K̃ = PS where P has or-
thogonal columns and S is upper-triangular with unit diagonal 3 . From this,
the proportion of the total sum-of-squared-error (SSE) explained by each of
the columns of P can be determined independently of all other columns. This
permits a greedy, sequential approach that admits new regressors by choosing
the one that maximizes the reduction in SSE, at each stage. The algorithm
is terminated when SSE is adequately accounted for or a maximum accept-
able number of terms has entered the reduced basis. This is determined by
a user-defined threshold, retaining ns terms in the subset. There is a number
of ways the orthogonalization can be achieved and we use the one based on
the modified Gram-Schmidt procedure [26] for multivariable (multi-response)
systems 4 . The resulting (ns × c) coefficient matrix, Bols now takes the place
of B in the algorithm in § 2.1 and a new datum can be expressed in canonical
variates, thus:

ycv = kTBolsWD (11)

3 Here we consider only the matrix, K̃ but the idea applies equally to the data
matrix, X̃ or to F̃ if explicitly available.
4 The algorithm has been presented many times in the past and we see no reason
to repeat this here.
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where kT denotes the vector of kernel evaluations, k (xi,x) and i belongs to
the index set of the retained samples.

The extension of OLS to a regularized cost function is possible [27, 28] but is
only straightforward in the space of orthogonalized regressors where a diago-
nal penalty can be applied. This means that a direct comparison with, e.g. the
result from equation (10) is only possible when R ∝ STS, i.e. if the (diagonal)
penalty in orthogonal co-ordinates is Λ then the choice, R = STΛS, gives an
exactly equivalent optimization problem. This is mentioned only for informa-
tion and is not pursued further. Instead we focus on controlling complexity
through the construction of a suitable sparse basis via OLS in conjunction
with an appropriate choice of kernel parameter, p.

From the foregoing, it is clear that a means of selecting both the kernel para-
meter, p, and the sparsity of the basis, ns, is required. In [21] the use of gen-
eralized cross-validation is proposed alongside an additional “goal directed”
(e.g. classification performance) means of selecting a parameter that influences
the rôle of the effective number of degrees-of-freedom. We, instead, adopt a
direct, many-fold cross-validation approach ignoring smoothing at the regres-
sion stage by using misclassification rate as the figure-of-merit during cross-
validation. This is particularly convenient in the current formulation because,
as shown in [24], the Mahalanobis distance from class centroids (adjusted for
class prior distribution) can be simply and quickly computed in canonical
variates by the following expression:

∥∥∥ycv − ycv
j

∥∥∥
2 − 2 log p̂j (12)

where ycv
j is the mean of the projected training sample for the jth class, i.e.

the jth class centroid, and p̂j is the estimated prior probability of the jth class.

Further convenience arises from during cross-validation because computing
the OLS solution for nmax

s and fixed p delivers the solutions for all values of
ns up to and including the maximum permitted. The computational overhead
for the basic implementation of the OLS algorithm is estimated to be O (nsn)2

so, when a high degree of sparsity is either demanded or achievable, a con-
siderable saving in computational effort can be made compared with a full
two-dimensional search over p and, e.g. a regularization parameter.

Clearly, the dominant computation arises in the OLS algorithm and for certain
tasks, when both n and ns are sizeable, this will be become infeasible as is true
of many algorithms. We have computed the full OLS solution (ns = n) for a
range of sample sizes up to n = 5000 and with ns = 752 for a samples of size
n=10000, and the CPU times are shown in figure A.1. It is clear from this that
after approximately 10% of samples have been processed the time to process an
additional sample reduces considerably. This is a consequence of the forward
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selection strategy of the algorithm. As an example, the full OLS procedure for
a 5000× 5000 Gram matrix takes approximately 55 hours. The computations
are carried out in Matlab v7.5 running on a 2.6GHz dual-core AMD Opteron
processor with 4GB RAM. The major difficulty here is in maintaining the
Gram matrix in memory. It is important to note that this is not a limitation
of the OLS algorithm, simply one arising from our implementation. While it
may take a substantial amount of time to train sMKDA, this is not necessarily
a barrier to its adoption in a “train once, use many” scenario providing that
the resulting classifier is sufficiently compact and fast in operation.

3 Experimental Results

For illustration of our method we examine its performance first on a widely
studied set of multinomial benchmark problems followed by a more challeng-
ing task both in size and distribution. Here we exploit the simplicity of the
minimum Mahalanobis distance from class centroids for all decision making,
i.e. during cross-validation and test phases. We note, though, that this may
not provide the best possible performance for any given sample.

3.1 UCI Repository Benchmarks

Here the method described above is applied to nine datasets selected from the
UCI repository of machine learning databases [29]. The results are compared
with those of the best performing method on the same sets as reported in
11 recently published articles [30–40]. Because there is no standard for ex-
perimentation across these articles we have adopted the following procedure.
First, instances containing missing data are simply excised from each set and
each variable is normalized to zero mean and unit variance. Each set is then
randomly divided into a training and a testing sample five times, to ameliorate
sample bias. Results are then averaged across these replications. Prior distrib-
ution of classes is maintained (see Table A.5 in the Appendix). All experiments
use the gaussian radial basis function kernel and five-fold cross-validation is
used to estimate the optimal kernel parameter, p, and the number of samples
retained by the OLS procedure, ns. To ensure numerical stability, a small di-
agonal penalty, (10−9), is applied in the orthogonal co-ordinates (excluding
the offset). Finally, classification is achieved by assigning a sample to the class
corresponding to the nearest projected class centroid as per equation (12).
The experimental results are shown in Table A.1. The table compares, for
each of the nine datasets, the current published best results (based on overall
accuracy) and those of sMKDA. For each dataset, two rows are presented,
the upper containing the overall percentage accuracy (proportion of correctly
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assigned samples), the lower, the percentage retained samples (the number of
samples required to implement the model) which is the complement of sparsity.
Sparsity is not reported in [40] or in [34] (Dermatology, Thyroid and Vowel)
and is not applicable in the case of LDA (Zoo, [37]). We have reported 100%
retained samples for KNN and counted it in the overall average even though
KNN is not a “sparse” technique. In summary, sMKDA achieves greater ac-
curacy than the best reported in five out of nine cases, is marginally worse in
three more and has an approximately 3.5% shortfall in the Glass benchmark.
This latter can probably be explained by the extreme level of sparsity achieved
when compared with the published result for SMLR [36]. For every dataset
where the comparison could be made (five), sMKDA achieves substantially
better sparsity than competing methods. These summaries are reflected in
the grand means at the foot of Table A.1 indicating that the overall accuracy
of sMKDA is not significantly different from the best published techniques
but that, on average, it delivers more than three times the sparsity of the
competing techniques.

It is worth noting that, while table A.1 gives a comparison of sMKDA against
the best performing classifiers in terms of accuracy, some of these are not
specifically designed to be sparse. Even the basic SVM can often be improved
in this respect. Of the entries in table A.1 only Glass and Iris are from a
system (SMLR) specifically designed this way. In both cases sMKDA proves
to be the sparser. We have also examined results for these datasets and an
additional one – Yeast – [36] processed by the Relevance Vector Machine [41]
in a OVA mode. The RVM is also specifically designed to induce sparsity
and table A.2 gives the results. In summary, for this small comparison, it can
be said that while the RVM is substantially more parsimonious than SMLR
at the cost of some accuracy, sMKDA has comparable sparsity but better
accuracy than the RVM and is substantially sparser than SMLR but with
slightly poorer accuracy. Again, we do not wish to draw too firm a conclusion
from these comparisons because there are variations in experimental method,
but we believe they further support the competitiveness of our approach.

3.2 Thyroid disease database

An additional, moderately large dataset, also taken from the UCI repository of
machine learning databases [29] comprising 7200 records describing patients
grouped into three classes, hypo (C1), hyper (C2) and normal (C3) thyroid
function through 21 real and categorical attributes is used to evaluate per-
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formance. We denote this dataset “Thyroid 2” to avoid confusion with the
smaller thyroid-related sample of the previous subsection. As well as its size,
Thyroid 2 presents a challenge because the classes are grossly imbalanced with
over 92% belonging to the normal group. The dataset is pre-partitioned into a
training and a testing sample containing 3772 and 3428 samples, respectively.
Again, the class priors are approximately retained in the training and test-
ing samples and classes are assigned according to 12. A baseline, conventional
multinomial LDA is first computed, giving a test sample accuracy of 93.84%.
The contingency table for this is presented in Table A.3.

Then, applying sMKDA using five-fold cross-validation on the training sam-
ple to estimate the optimal kernel parameter and level of sparsity gives an
accuracy of 98.67% with p=5 and 111 (2.94%) retained samples. In operation
the classifier gives an accuracy of 97.72% on the testing sample. This shows
an increase in accuracy over the linear result of 3.88%. The contingency table
for this is presented in Table A.4.

What can be seen from Tables A.3 and A.4 is largely obscured by simply re-
porting the raw accuracies owing to the strong preponderance of normals. It
now becomes clear that the introduction of the more flexible sMKDA substan-
tially improves the class conditional accuracies for the minority groups. The
hit rate for hypo-thyroid function rises from 58.90% to 76.71%, almost 18%,
while for hyper-thyroid function, there is an almost 77% increase, from 1.69%.
These improvements are obtained at the cost of a 0.5% drop in the accuracy
on the normal population.

An important benefit of projecting data onto the most discriminatory canon-
ical variates is the ability to visualize it. In particular, since here c = 3 a
two-dimensional plot contains all the useful information about the sample.
Figures A.2 and A.3 emphasize the improved separation between classes, in
particular between C2 and C3. Figure A.2 clearly demonstrates how C2 is al-
most entirely embedded in C3 and, by examining the centroid positions, how
its members can easily be mistaken for those of C3. Figure A.3 then illustrates
how sMKDA separates them and the class centroids leading to a substantially
less ambiguous situation. The case is less striking for C1 as is reflected in the
statistics quoted above. It is also interesting to note that these figures support
the suggestion of Hastie et al. [21] that the effect of taking linear combina-
tions of the transformed data makes this sample at least appear to be more
normally distributed.
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4 Conclusion

A method for performing sparse, multinomial kernel discriminant analysis has
been proposed and shown to achieve state-of-the-art performance in terms of
both classification performance and degree of sparsity. The method is based
on the connection between multinomial linear discrimination and least-squares
and makes use of a widely used and highly successful method of achieving spar-
sity in least-squares problem, forward selection via orthogonal least-squares.
This generalizes the method for the binomial case put forward in Billings and
Lee [12]. The approach requires a least-squares solution which is computed in
order O (nsn)2 followed by an eigen-decomposition of order O(c). The choice of
a sparse basis is the sole means of complexity control considered here although
the formulation admits regularization in the form of a quadratic penalty on
the coefficients. The solution is genuinely sparse since it avoids the need to
retain all training samples for operational use and can perform classification
in a simple and direct way via minimum Mahalanobis distance in the canoni-
cal variates. The method has been evaluated on nine benchmark multinomial
datasets from the UCI repository of machine learning databases and has been
found to deliver comparable performance to the best published results across
11 recent machine learning articles. It has further been compared with meth-
ods designed to be sparse and again found to be competitive. An additional,
larger and highly imbalanced dataset has also been examined in more detail
and, again, performance there has been shown to be comparable with the
current state-of-the-art.

Issues for future consideration concern the use of regularization to control, di-
rectly, the smoothness of the mapping. This might be approached by extending
the current framework and using the Bayesian evidence framework to select
the regularizer automatically as suggested in [27, 28] or to attempt to avoid
explicit cross-validation by direct optimization of the ordinary cross-validation
statistic [42]. Such methods might profitably be extended to a recursive for-
mulation of the orthogonal least-squares algorithm [e.g. 43] to address the
computational requirements when n is very large. One disadvantage of the
forward selection approach is that it may prove sub-optimal in any given sit-
uation. Inducing sparsity as a consequence of optimization might, therefore,
prove beneficial and the adoption of a multivariable generalization of, say, the
LASSO algorithm [e.g. 44] or the method based on surrogate optimization
described in [18]. This would have the advantage of performing regularization
directly but would add to the cross-validation burden to select the degree of
regularization required. This latter problem could be ameliorated by using a
method based on “leave-one-out” cross validation – the PRESS statistic – such
as the one suggested in [45].
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A Appendix

The numbers of classes for the datasets along with their prior probabilities are
shown in Table A.5
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Table A.1
Results of applying sMKDA to nine datasets from the UCI repository of machine
learning databases. Accuracy (%), percentage retained samples (%), and kernel pa-
rameter, p, are averaged across the five data partitions and, where available, the
standard error is shown. For each dataset, accuracy appears on the first row and per-
centage retained samples (complement of sparsity) on the second. Best performers
are set in bold face type.

Dataset c n d
Published Best sMKDA

Method Results Results p

Dermatology 6 358 34 SVM [40] 97.60 ± 0.42 98.49 ± 0.15 14.75±3.5

Not Reported 18.30 ± 4.52

Glass 6 214 9 SMLR [36] 76.64 73.08 ± 1.13 3.85±1.21

93.37 9.11 ± 1.68

Iris 3 150 4 SMLR [36] 99.33 99.20 ± 0.30 5.75±2.70

50.37 6.33 ± 2.54

Tae 3 151 5 KNN [40] 64.83 ± 2.72 63.84 ± 1.52 1.00±0.35

100.00 65.07 ± 4.92

Thyroid 3 215 5 SVM [34] 96.60 ± 0.40 97.21 ± 0.33 2.20±0.62

Not Reported 8.95 ± 1.87

Vehicle 4 846 18 SVM [35] 87.47 86.67 ± 0.56 11.05±1.07

45.00 15.16 ± 2.21

Vowel 11 990 11 SVM [34] 95.20 ± 0.13 97.41 ± 0.43 10.45±0.27

Not Reported 23.91 ± 0.99

Wine 3 178 13 SVM [35] 99.44 99.78 ± 0.31 7.10±1.17

35.10 9.55 ± 3.05

Zoo 7 101 16 LDA [37] 97.00 99.41 ± 0.54 6.40±1.58

Not Applicable 14.11 ± 2.85

Mean Accuracy (%) 90.46 90.57 ± 0.59

Mean Retained Samples (%) 64.75 18.94 ± 2.74
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Table A.2
Comparison of sMKDA with RVM on three datasets: Glass, Iris and Yeast. For
each dataset, percentage accuracy appears on the first row and percentage retained
samples (complement of sparsity) on the second.

Dataset c n d RVM sMKDA

Glass 6 214 9 71.50 73.08 ± 1.13

7.67 9.11 ± 1.68

Iris 3 150 4 93.33 99.20 ± 0.30

13.70 6.33 ± 2.54

Yeast 5 208 79 94.23 96.44 ± 0.43

6.73 4.62 ± 1.54
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Table A.3
Contingency Table for Thyroid 2 testing data – LDA

Estimated

C1 C2 C3 Total

O
bs

er
ve

d C1 43 7 23 73

C2 1 3 173 177

C3 6 1 3171 3178

Total 50 11 3367 3428
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Table A.4
Contingency Table for Thyroid 2 testing data – sMKDA, p = 5, number of retained
samples = 111.

Estimated

C1 C2 C3 Total

O
bs

er
ve

d C1 56 10 7 73

C2 0 139 38 177

C3 7 16 3155 3178

Total 63 165 3200 3428
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Table A.5
Class Prior Probability

Dataset c Class Prior Probability

Dermatology 6 {0.310, 0.168, 0.198, 0.134, 0.134, 0.056}
Glass 6 {0.327, 0.355, 0.079, 0.061, 0.042, 0.136}
Iris 3 {0.333, 0.333, 0.333}
Tae 3 {0.325, 0.331, 0.344}

Thyroid 3 {0.698, 0.163, 0.140}
Vehicle 4 {0.235, 0.257, 0.258, 0.251}
Vowel 11 {0.091, 0.091, 0.091, 0.091, 0.091, 0.091, 0.091, 0.091, 0.091, 0.091, 0.091}
Wine 3 {0.331, 0.399, 0.270}
Yeast 5 {0.067, 0.130, 0.582, 0.168, 0.053}
Zoo 7 {0.406, 0.198, 0.050, 0.129, 0.040, 0.079, 0.099}
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