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The validity of the semiclassical approximation is investigated during the preheating phase

in models of chaotic inflation using a modification of a criterion previously proposed for

semiclassical gravity. If the modified criterion is violated then fluctuations of the two-point

function for the quantum fields are large and the semiclassical approximation is not valid.

Evidence is provided that the semiclassical approximation breaks down during the early

stages of preheating, well before either scattering effects or backreaction effects are important.
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The semiclassical approximation has been used to study the effects of quantized fields on a

classical background field in a wide variety of scenarios including black hole evaporation [1], the

decay of an electric field due to the Schwinger effect [2], heavy ion collisions in nuclear physics [3],

and preheating in chaotic inflation [4, 5]. It is expected to be valid in cases where quantum effects

are small, such as the initial stages of the evaporation of a solar mass black hole. At the opposite

end of the spectrum is the case of preheating in models of chaotic inflation. Preheating occurs

immediately after the inflationary phase and is a period in which the rate of particle production

is extremely rapid, resulting in strong backreaction effects upon the inflaton field [6, 7]. It is not

known whether the predictions of the semiclassical approximation can be trusted when quantum

effects are so large.

The semiclassical backreaction equations for quantum fields coupled to a classical background

field arise out of the one loop effective action for that field [8]. As such they would typically be

expected to break down when backreaction effects are large and terms coming from higher loops

may be important. One way around this is to use a large N expansion where N is the number

of identical quantum fields. The semiclassical backreaction equations become exact in the limit

N → ∞. This expansion has been used in cases such as preheating [5, 9] where backreaction effects

are significant.

For the semiclassical approximation to be valid, quantum fluctuations about the mean of what-

ever quantity couples the quantum fields to the classical background field(s) must be small. One

way to characterize these fluctuations in semiclassical gravity is through the two-point function for

the energy-momentum tensor. However, for the symmetric part of this two-point function there

can be state-dependent divergences [10], and different renormalization schemes can yield different

results when the points come together [11]. To overcome these difficulties a criterion was given

in [12] that relates the validity of the semiclassical approximation in gravity to the stability of so-

lutions to the linear response equation, which results when the semiclassical backreaction equation

is perturbed about a solution to that equation. The linear response equation has a term which

involves the perturbed energy-momentum tensor, so renormalization proceeds in the usual way and

there are no state dependent divergences.

The criterion states that the large N semiclassical approximation in gravity will break down

if any linearized gauge invariant quantity constructed from solutions to the linear response equa-

tions with finite non-singular initial data, grows without bound. It has been shown to be satisfied

for massive and massless free scalar fields in flat space in the Minkowski vacuum state [12], and
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for conformally invariant free fields in the expanding part of de Sitter space, when spatially flat

coordinates are used, the fields are in the Bunch-Davies state, and scalar perturbations are consid-

ered [13]. Tensor perturbations for conformally invariant free fields were investigated in [14] and it

was found that they are bounded, so the criterion is satisfied in that case as well.

In both flat space and the expanding part of de Sitter space the character of the solution to

the semiclassical backreaction equations does not change in time. However there are important

situations such as preheating where the question of the validity of the semiclassical approximation

becomes a time dependent one. There are two reasons for this in preheating. First, the damping of

the inflaton field due to the backreaction effects of the produced particles is not uniform in time and

in particular does not go on for an arbitrarily long period of time. Second, one of the approximations

that is usually made when the semiclassical approximation is used for preheating is that interactions

between the produced particles are neglected. This should be a good approximation at early times

but interactions become important at later times [4].

The above criterion needs to be modified in such cases in order to take the time dependence of

the background field into account. Since the criterion is related to the stability of the solutions it

is useful to consider situations in which there is an instability but the system is only observed for

a finite amount of time. For such systems one will find that perturbations grow rapidly during the

allotted time. However, they obviously cannot grow without bound and further, if the perturbations

are small enough initially then they will not have time to grow to a large enough size to become

significant. Thus it is the rapid growth of a perturbation rather than its size which indicates an

instability.

The criterion is also stated only for gravity and needs to be modified in a straight-forward

way to cover other cases. We propose the following: The large N semiclassical approximation

will break down if any linearized gauge invariant quantity constructed from solutions to the linear

response equation with finite non-singular initial data, grows rapidly for some period of time. By

linear response equation we mean the equation that is obtained by perturbing the semiclassical

backreaction equation about one of its solutions.

In this paper we continue an investigation begun in [15], where we adapted the criterion in [12] to

check the validity of the semiclassical approximation in models of preheating in chaotic inflation1, in

1 A different type of backreaction problem that is also relevant to inflation is the generation of density perturbations
during the inflationary phase. The backreaction in this case involves the generation of fluctuations in the gravita-
tional field due to quantum fluctuations of a scalar field. The resulting quantum to classical transition has been
described in terms of squeezed states in Refs. [16, 17]. In the type of backreaction problem we are considering for
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which rapid damping of the inflaton field occurs, and found evidence that quantum fluctuations are

large in between the two periods of rapid damping. Here we study in great detail the relationship

between solutions to the linear response equation and quantum fluctuations, and use the results

to relate the size of the fluctuations to the particle production rate. We also include a case in

which there is no rapid damping. We find evidence that quantum fluctuations are large and the

semiclassical approximation breaks down whenever the particle production rate is high, including

during the early stages of preheating when scattering effects ignored in our model and backreaction

effects on the inflaton field are small.

We consider a model of chaotic inflation for which the inflaton field φ is coupled to N identical

massless scalar fields ψi with a coupling of the form
∑

N

i=1 g
2φ2ψ2

i
. Full backreaction effects for this

coupling have been investigated in detail in Refs. [4, 5, 18] (although not all of these were in the

context of the large N expansion or for massless quantum fields). After a standard rescaling of the

coupling constant g [5], the problem reduces to the coupling of the inflaton field to a single scalar

field ψ, and the semiclassical backreaction equation for the inflaton field is �φ−(m2+g2〈ψ2〉)φ = 0.

As in [5] we work in a flat space background and consider only homogeneous and isotropic solutions

for φ.

The mass of the inflaton field can be scaled out of the equations using t → mt and φ → φ/m,

with similar changes of variable for other relevant quantities. (See [5] for details.) The result is

φ̈+ (1 + g2〈ψ2〉)φ = 0 , (1a)

〈ψ2〉 =
1

2π2

∫

ǫ

0

dkk2
(

|fk(t)|
2 −

1

2k

)

+
1

2π2

∫ ∞

ǫ

dkk2
(

|fk(t)|
2 −

1

2k
+
g2φ2

4k3

)

−
g2φ2

8π2

[

1− log

(

2ǫ

M

)]

, (1b)

f̈k + (k2 + g2φ2)fk = 0 . (1c)

Note that 〈ψ2〉 is independent of the positive constant ǫ and thatM is a mass scale which typically

enters when computing renormalized quantities for massless fields [5].

The linear response equation can be derived as in [12] by taking a second variation of the effective

preheating, quantum fluctuations are averaged over when the quantity 〈φ2〉 is computed. This quantity is then
coupled to the classical inflaton field as shown in Eq. (1a).



5

action. The result is

(�−m2 − g2〈ψ2〉)δφ− g2δ〈ψ2〉φ = 0 , (2a)

δ〈ψ2〉 = −ig2
∫

d4x′ φ(x′)δφ(x′)θ(t− t′) 〈[ψ2(x), ψ2(x′)]〉+ δ〈ψ2〉SD . (2b)

Here δ〈ψ2〉SD comes from a variation in the state of the quantum field.

The linear response equation can also be derived by perturbing the semiclassical backreaction

equation about one of its solutions. We illustrate this for homogeneous and isotropic perturbations.

The equation for the inflaton field (1a) and the mode equation (1c) are perturbed in the usual way,

keeping quantities that are first order in δφ and δfk. The perturbed mode equation is then solved

in terms of the solutions to (1) with the result:

δfk = Akfk +Bkf
∗
k + 2g2i

∫

t

0

dt′ φ(t′)δφ(t′)fk(t
′) [f∗k (t)fk(t

′)− fk(t)f
∗
k (t

′)] . (3)

The coefficients Ak and Bk are related to a change of state and are fixed by the initial values of

δfk and its first derivative. Such a change in state (as pointed out in [19] for semiclassical gravity)

must occur if the original state is a second order or higher adiabatic state [8].

The linear response equation in this case is

δφ̈+ (1 + g2〈ψ2〉)δφ+ g2φδ〈ψ2〉 = 0 , (4a)

δ〈ψ2〉 =
1

2π2

∫

ǫ

0

dkk2 (fkδf
∗
k + f∗k δfk)

+
1

2π2

∫ ∞

ǫ

dkk2
(

fkδf
∗
k + f∗k δfk +

g2φ δφ

2k3

)

−
g2φ δφ

4π2

[

1− log

(

2ǫ

M

)]

. (4b)

For the fourth order adiabatic states used in [5], we find that Ak = 0 to linear order. An explicit

expression for Bk can easily be obtained but we will not display it here.

If one can find solutions to (1) then it is easy to generate approximate solutions to (2a). One

simply takes two solutions, φ1 and φ2, which have nearly the same values at the initial time t = 0,

and evolves them numerically in time. If we define the difference between the solutions to be

δφe ≡ φ2 − φ1, then δφe satisfies the equation:

δφ̈e + (1 + g2〈ψ2〉1)δφe + g2(〈ψ2〉2 − 〈ψ2〉1)(φ1 + δφe) . (5)

The linear response equation (4a) in this case is

δφ̈+ (1 + g2〈ψ2〉1)δφ+ g2 φ1 δ〈ψ
2〉[φ→ φ1] = 0 . (6)
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Here, and below, the square brackets after δ〈ψ2〉 give instructions as to how this quantity, which

is given in (4b), is to be evaluated. Note that the first two terms in these equations have the same

form. Thus, δφe, which is a solution to (5), is also an approximate solution to (6) so long as the

amplitude of the oscillations of φ1 is much larger than the amplitude of oscillations of δφe and

δ〈ψ2〉[φ→ φ1, δφ→ δφe] ≈ 〈ψ2〉2 − 〈ψ2〉1.

Given the structure of Eq. (6) it is possible to go further and separate out the part of the

perturbation driven by δ〈ψ2〉. For simplicity we choose the starting values for φ2 and φ1 such that

φ2(0) = φ20, φ1(0) = φ10, and φ̇2(0) = φ̇1(0) = 0. Then let

δφe = φ2 − φ1 = cφ1 + δφc , (7)

with c = (φ20−φ10)/φ10. Substituting into (6) and using (1a) one finds that if δφe is an approximate

solution to (6), then δφc is an approximate solution to the equation

δφ̈c + (1 + g2〈ψ2〉1)δφc + g2φ1δ〈ψ
2〉[φ→ φ1, δφ→ δφc, Ak → 0, Bk → 0]

= −g2φ1δ〈ψ
2〉|[φ→ φ1, δφ→ cφ1] . (8)

The term on the right hand side is a source term which depends on δ〈ψ2〉 in (4b) evaluated with

φ = φ1 and δφ = cφ1. Since the initial conditions are δφc(0) = δφ̇c(0) = 0, at early times the

growth of δφc is driven by the source term.

Given that the point of our criterion is that the semiclassical approximation breaks down when

quantum fluctuations are significant, for the specific case of preheating the criterion can be further

revised to state that the semiclassical approximation breaks down if either of the quantities δφe or

δφc grow significantly for some period of time. The reason it is important to include δφc is because

δφe ∼ c cos(t) at early times before backreaction effects due to the quantum fields are important.

However, quantum fluctuations can still be significant at this time.

An important question is, what does the breakdown of the semiclassical approximation mean if

backreaction effects are small? If the breakdown is due to quantum fluctuations then there will be

a sensitivity to initial conditions which will make it virtually impossible to determine in a detailed

manner the damping of the inflaton field using the semiclassical approximation even at early times

when there is only a small amount of damping.

As an illustration it is interesting to first look at a toy model in which 〈ψ2〉 in (1a) is replaced

by the last term in (1b) with ǫ/M chosen so that this term is equal to −φ2/g2 and the resulting

equation for φ is φ̈ + (1 − φ2)φ = 0. Then g2δ〈ψ2〉 = −2φ2 and the source term for δφc is 2cφ3.
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FIG. 1: Plotted are δφ (upper curve) and δφc for the toy model described in the text with φ(0) = 10−1 and

δφ(0) = 10−5. The upper curve has been offset by 4× 10−5.

The solutions for φ are stable for the starting values 0 < φ(0) < 1 and φ̇(0) = 0. In this case it is

easy to solve the linear response equation directly. The results for φ(0) = 10−1 and δφ(0) = 10−5

are shown in Fig. 1. One sees that over the range shown there is linear growth in the amplitude of

δφc while the amplitude of δφ does not grow significantly initially. This pattern of early growth of

δφc is also seen in the solutions to the full set of backreaction equations.

In [6] it was predicted that there are two qualitatively different types of solutions to the back-

reaction equation for φ. For one there is a relatively slow damping of the inflation field while for

the other there is a period in which the inflaton field is rapidly damped. In [5] Eqs. (1) were

solved numerically and it was found for a flat space background that rapid damping of the inflaton

field occurs whenever g2φ20
>
∼ 2 for models in which the starting values are φ0 = φ(t = 0) and

φ̇(t = 0) = 0. Rapid damping does not occur for significantly smaller values such as g2φ20 = 1.

Whenever rapid damping does occur it is observed to happen twice and there appears to be no

significant damping after that. These effects are illustrated in the upper panels of Fig. 2 where the

inflaton field is plotted as a function of time for g2φ20 = 1 and g2φ20 = 10.

Examination of the plots in Fig. 2 shows that in both cases δφe grows exponentially at about

the time that a significant amount of damping of φ first occurs, while δφc grows exponentially

starting at much earlier times. After δφc grows to be comparable in size to δφe the two quantities

are nearly identical and cannot be distinguished on the scale of the plots. For g2φ20 = 1 a small

amount of damping of φ occurs very quickly followed by a much slower damping rate which goes on

for a long time. During this latter period δφ grows approximately linearly in time. For g2φ20 = 10

the exponential growth of δφe continues through the end of the second rapid damping period and
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FIG. 2: Numerical solutions to the full set of equations (1) are shown for the inflaton field φ in the upper

panels. In the lower panels |δφe| (dashed curves) and |δφc| (solid curves) are plotted. For each plot g = 10−3.

For the upper left panel g2φ2
0
= 1 and the upper right one g2φ2

0
= 10. In the lower left panel δφe is the

difference between solutions to (1) with g2φ2
0
= 1 + 10−5 and g2φ2

0
= 1. In the lower right panel δφe is the

difference between solutions to (1) with g2φ2
0
= 10(1 + 10−5) and g2φ2

0
= 10.

then all growth appears to cease.

Using the detailed analysis of the particle production in [5] we find that the rate of growth of

δφc appears to be closely tied to the overall particle production rate. It is exponential when the

particle production rate is high, approximately linear in time during periods of slow damping when

the rate is much smaller, and is negligible after the second rapid damping phase when the particle

production rate is negligible (in cases where rapid damping occurs).

It is clear from the rapid growth of δφc at early times that our revised criterion for the validity of

the semiclassical approximation during preheating is violated during the early stages of preheating,

well before either scattering effects or backreaction effects are important. This has been shown

explicitly for a flat space background. As pointed out in [6], the flat space approximation does
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not always give an accurate account of the details of the preheating process because the expansion

of the universe can have a significant effect on the parametric amplification process. Nevertheless

our results strongly suggest that during preheating whenever there is a period in which a lot of

parametric amplification occurs, the semiclassical approximation breaks down.

Given that the semiclassical approximation breaks down for preheating, one can ask what it

should be replaced with. Since the breakdown happens before significant damping of the inflaton

field occurs, one can legitimately solve the mode equation using solutions to the mode equation

when the g2〈ψ2〉φ term is neglected. Thus one can investigate the amount of particle production

that occurs before backreaction effects become important and one can use that information to

determine the time at which they become important. What one cannot do is to follow the detailed

evolution of the inflaton field using the semiclassical approximation. Once backreaction effects

become important a significant amount of particle production will have taken place. This should

make it possible to compute the backreaction of the particles on the inflaton field by using a

different type of approximation in which the classical equations of motion for the quantum fields

are solved using random initial conditions [20–23]. This method has the additional advantage

that it is possible to include interactions between the fields. Interestingly, in at least one case2 the

results of a calculation using this method are similar in nature to those obtained in [5] by solving the

semiclassical backreaction equations. So even though the solutions to the semiclassical backreaction

equations cannot be trusted in detail for preheating, they may still give a good qualitative picture

of the initial and intermediate stages of the preheating process.

This is the first application that has been made of the criterion in [12] for the validity of the

semiclassical approximation when particle production effects are significant. We think it likely,

but cannot be certain, that our results generalize to similar situations. Thus the semiclassical

approximation may never be valid, at least in terms of its detailed predictions, when there is a high

rate of particle production.
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Roura, E. Verdaguer, Phys. Rev. D. 87, 064019 (2013).

[20] S. Yu. Khlebnikov and I. I. Tkachev, Phys. Rev. Lett. 77, 219 (1996).

[21] T. Prokopec and T.G. Roos, Phys. Rev. D 55, 3768 (1997).

[22] S. Khlebnikov and I. I. Tkachev, Phys. Rev. Lett. 79, 1607 (1997).

[23] G. Felder and I. Tkachev, Comput. Phys. Commun. 178 929 (2008).


