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Abstract

The magnetorotational instability (MRI) is thought to be a powerful source of turbulence and
momentum transport in astrophysical accretion discs, but obtaining observational evidence of its
operation is challenging. Recently, laboratory experiments of Taylor—Couette flow with externally
imposed axial and azimuthal magnetic fields have revealed the kinematic and dynamic properties of
the MRI close to the instability onset. While good agreement was found with linear stability analyses,
little is known about the transition to turbulence and transport properties of the MRI. We here report
on a numerical investigation of the MRI with an imposed azimuthal magnetic field. We show that the
laminar Taylor—Couette flow becomes unstable to a wave rotating in the azimuthal direction and
standing in the axial direction via a supercritical Hopf bifurcation. Subsequently, the flow features a
catastrophic transition to spatio-temporal defects which is mediated by a subcritical subharmonic
Hopfbifurcation. Our results are in qualitative agreement with the PROMISE experiment and
dramatically extend their realizable parameter range. We find that as the Reynolds number increases
defects accumulate and grow into turbulence, yet the momentum transport scales weakly.

1. Introduction

The magnetorotational instability (MRI) is of great importance in astrophysics. First discovered by Velikhov [1]
in 1959, it remained unnoticed until 1991 when Balbus and Hawley [2] realized its application to accretion disc
theory. Accretion discs are astrophysical systems that consist of ionized gas and dust orbiting a massive body.
Planets and stars are formed from this initially dispersed matter. The physical mechanism of accretion is
straightforward: a parcel of viscous fluid in the differentially rotating disc loses its angular momentum over time
and falls onto the central object. To explain the astrophysically observed rates of accretion, however, one must
assume a turbulent transport of angular momentum in the outward direction [3]. In so-called Keplerian discs
the angular velocity profile of gas follows the law

O~ 2, 1)
which is hydrodynamically stable according to the Rayleigh criterion for rotating fluids [4]:
d ( rZQ)Z
——— >0 for stability. )
’

Ionized accretion discs, however, are necessarily magnetized and the MRI may still act in rotating flows, provided
the angular velocity decreases with radius, which is true of Keplerian flows (1).

The growth rates of the MRI and the parameter ranges in which it acts were determined in several linear
analyses [2, 5-8], but these do not provide information about the flow structure and scaling of angular
momentum transport after nonlinear saturation. In the last two decades there has been a great deal of numerical
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Figure 1. (a) Schematic of the Taylor—Couette geometry with azimuthal magnetic field. A liquid metal is confined between two coaxial
cylinders of radii r, and r,,, which can rotate independently at angular velocities €2; and €2,. In this work the rotation rate is fixed at
= Q,/Q; = 0.26 and an azimuthal magnetic field of the form (r;/r) By is imposed, where ris the radial coordinate. (b) Instability
region of the AMRI. Blue circles correspond to the points at which our simulations were conducted, the red dashed line to the curve of
maximum growth rate and the green solid line is a fit to the latter of the form Ha = aRe”, where a =0.71and b= 1.55.

Table 1. Dimensionless parameters of the magnetohydrodynamic Taylor—Couette problem.

Abbrev. Parameter Definition Range
6 Radius ratio /1, 0.5
«@ Axial wavenumber (geometrical parameter) 2w /L, 0.5-4.5
I Angular velocity ratio Qo/Y 0.26
Pm Magnetic Prandtl number v/n 1.4 x 1076
Re Reynolds numbers of inner cylinder Oind/v L 1480-9333
Ha Hartmann number Bod ( o ] 90-457
pv

work concerned with the nonlinear properties of the MRI. Simulations are usually performed with the shearing
sheet approximation, which is a local model of an accretion disc with shear-periodic boundary conditions in the
radial direction [6]. The main disadvantage of this model is the influence of boundary conditions on the
geometry of the observed modes and transport scaling. In particular, the length of the computational box fixes
the modes that appear and determines their nonlinear saturation. As it is not clear how the length should be
selected, the interpretation of the transport scaling becomes quite involved [9].

These theoretical results and numerical simulations inspired physicists to realize the MRI in laboratory
experiments. In 2001 Ji et al [10] and Rudiger and Zhang [11] independently suggested the possibility of directly
observing magnetorotational instabilities in a cylindrical vessel made of two co-axial and independently rotating
cylinders containing a liquid metal alloy (see figure 1(a)). The standard form of the MRI (SMRI), which they
proposed, emerges when a purely axial magnetic field is imposed, but this has not yet been achieved in
experiments. The difficulty is that liquid metals have very small magnetic Prandtl numbers (e.g. Pm ~ 107 for
gallium alloys), leading in this case to very large Reynolds numbers (Re = 107) necessary to observe the SMRI
(see table 1 for the definitions of Reand Pm). In fact, such high Reynolds numbers have never been achieved even
for non-magnetic Taylor—Couette flows. A further difficulty of Taylor—Couette experiments in the quasi-
Keplerian regime arises because of Ekman vortices that arise adjacent to the endplates. Unless a very specific
endplate arrangement is used, the Ekman vortices extend deep into the flow and even at moderate Reynolds
number the basic Couette flow cannot be obtained experimentally [12]. The resulting velocity profiles are no
longer quasi-Keplerian and hydrodynamic instabilities render the flow turbulent even in the absence of
magnetic fields [13, 14].

Hollerbach and Riidiger [7] proposed instead a combination of axial and azimuthal magnetic fields, giving
rise to the helical MRI (HMRI) at much lower Re ~ 103 for Hartmann numbers Ha ~ 10 (see table 1 for the
definition of Ha). This was successfully observed [15, 16] in the Potsdam-ROssendorf magnetic instability
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experiment (PROMISE) facility. Both the SMRI and HMRI consist of axisymmetric toroidal vortices, which are
stationary for the former but travel axially for the latter. Hollerbach et al [8] realized that although a purely
azimuthal magnetic field does not yield any axisymmetric instabilities, non-axisymmetric modes can be
destabilized. The resulting azimuthal MRI (AMRI) arises in Taylor-Couette flow at Re ~ 103 for Ha ~ 10%[8],
and a recent upgrade of the PROMISE power supply made its experimental observation possible [17]. In
PROMISE the endplates are split into two parts and the inner (outer) one is attached to the inner (outer)
cylinder. Although this configuration is acceptable at Re < 3000, as studied experimentally, endplate effects
become dominant atlarger Re. Because of this, and of the practical impossibility of generating a purely azimuthal
magnetic field experimentally, it is challenging to actually identify the AMRI modes in the experimental data
unambiguously (see [17]).

Despite this recent experimental progress in realizing magnetorotational instabilities in the laboratory, little
is known about their bifurcation scenario, transition to turbulence and transport properties as Re increases. In
this work we address these points for the AMRI. We perform direct numerical simulations of the coupled
induction and Navier—Stokes equations using axially periodic boundary conditions, thereby avoiding undesired
endplate effects and focusing on the features intrinsic to the AMRI. We find that the laminar quasi-Keplerian
flow becomes unstable to a wave rotating in the azimuthal direction and standing in the axial direction.
Subsequently, we identify a new bifurcation scenario giving rise to spatio-temporal defects via a subcritical
subharmonic Hopfbifurcation. As the Reynolds number is further increased, the flow becomes turbulent and
outward momentum transport is enhanced, albeit at a weak rate. The results are in good qualitative agreement
with the PROMISE observations [17] and substantially extend the parameter range explored experimentally.

2. Governing equations

We consider an incompressible viscous liquid metal that is sheared between two independently rotating
cylinders of radii r; (inner) and r,, (outer). The angular velocity of the cylinders are €; and €2, respectively, and
an external azimuthal magnetic field (/) By, where ris the radial coordinate, is imposed. The relevant fluid
properties are the electrical conductivity o, the kinematic viscosity v, the density p and the magnetic diffusivity
7. The velocity field u is determined by the Navier—Stokes equations (3), whereas the magnetic field B is
determined by the induction equation (4), which represents a combination of the laws of Ampere, Faraday, and
Ohm. The equations were rendered dimensionless by using the gap between cylinders d = r, — 7 for length,
d?/v for time, and B, for the magnetic field. In dimensionless form they read

5 Ha?
(0 +v-V)v=-Vp+ V¥ + ==(V x B) x B, 3)
Pm
(& - va)B =V x (v x B), 4)
Pm

together with V - v = V - B = 0. Here p is the pressure, Ha the Hartmann number, and P the magnetic
Prandtl number. The dimensionless parameters of the system are specified in table 1. Following the PROMISE
experiment [17], we use a magnetic Prandtl number of Pm = 1.4 x 107° (corresponding to the alloy
Ga¥’In?*5 Sn!2%), aradius-ratio of § = 0.5 and arotation-ratio of ;1 = 0.26. This places the velocity profile in
the quasi-Keplerian regime, for which the angular velocity decreases radially, whereas the angular momentum
increases, i.e. 62 < p < 1.

2.1.Boundary conditions
We employ cylindrical coordinates (r, ¢, z) € [, ,] X [0, 27] X [0, L,], for which the no-slip velocity
boundary conditions at the cylinders read

l/ld)(fi, o, z) = Re, ua(ro, o, z) = U Re. (5)

Periodicity in the axial direction is imposed with basic length L,. The background circular Couette flow
V = V (r)eg isasolution to the equations and boundary conditions given by

1 o 1 1
V(r)—H—é[(;Re—6Re)r+m(Re—uRe)?]. 6)

The magnetic field is also assumed to be periodic in the axial direction. In the radial direction the boundary
condition depends on the material of the cylinders. Typically two idealized cases are considered in the MRI
problem: insulating and conducting cylinders. These lead to slightly different results, as theoretically
demonstrated by Chandrasekhar [18]. However, the difference is not great, and here we will consider only the
case of insulating boundaries. Assuming the Fourier expansion for each variable
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A= > > Agm(nexpli(akz + me)], @

|k|<K |m|<M

one obtains the following boundary conditions for B:
Forcase k = m = 0:

By=B, = 0. (8)
Casek=0,m = 0:

B, +iBy=0, B.=0 (4onn, —onr). ©)
Case k = 0:

where B, (x) denotes the modified Bessel function I, (x) for r = r, and Ky, (x) for r = rp,and B, = 0, B,. See
Willis and Barenghi [19] for a detailed derivation.

0, akBy— B, =0, (10)
r

2.2. Brief remarks on symmetries of rotating magnetohydrodynamic flows

The basic circular Couette flow (6) has SO(2) x O(2) symmetry, where SO(2) represents the rotational symmetry
in the azimuthal direction. In the axial direction the group O(2) may be written as O(2) = Z, x SO(2), where
Z,isareflection (up—down symmetry) and SO(2) the translational symmetry in the z direction. The presence of
purely axial or purely azimuthal imposed magnetic field does not change the symmetry group of the system.
Hence if the primary instability is a Hopf bifurcation the resulting states can be either standing or traveling waves
(TWs) in the axial direction [20]. By contrast, a combined helical magnetic field breaks the reflection symmetry
and only TWs can be observed [21]. Finally, if the bifurcating solution is non-axisymmetric, as in the AMR], this
will generically be a rotating wave in the azimuthal direction.

3. Numerical method

In the numerical simulations only the deviation from the basic flow u = v — V is computed. Its governing
equations read

(EL*VZ)u:Npr, V-u=0, (11)

which are supplemented with homogeneous boundary conditions u = 0. Here N stands for the nonlinear term
in the Navier—Stokes equations (3), which contains the advective terms and the Lorentz force:

N:ux(V><u)—(V~V)u—(u-V)V+Pg(V><B)><B
m

—u x (V xu) — (V/Ndu+ QV/uge, — u,(l + 8,)Ve¢ + P&(v x B) x B. (12)
m

Spatial discretization is accomplished via the Fourier expansion in the azimuthal and axial directions (7), and as
the variables are real, their Fourier coefficients satisfy the property Ay, = A% _,,, where A* denotes the
complex conjugate.

The pseudospectral Fourier method is the most efficient choice for periodic boundary conditions. Because
of their great accuracy at low resolutions, spectral methods have also been used to discretize the hydromagnetic
Taylor—Couette flow problem in the radial direction [19, 22]. In these works the Chebyshev collocation method
was chosen because of its simplicity. Nevertheless its computational and storage costs scale as O(N?), where N is
the number of radial points, making computations at large Reynolds number impractical. Petrov—Galerkin
formulations reduce the cost to O(IN) and have been also used in hydrodynamic Taylor—Couette flows [23, 24].
However, the treatment of the radial boundary conditions becomes very cumbersome for the magnetic field. We
here use the finite-difference method in the radial direction. Radial derivatives are calculated using 9-point
stencils to (9 — j)th order, where jis the order of the derivative. This results in banded matrices with associated
O(N) cost, while providing excellent accuracy. Reference [25] provides a more thorough discussion of these
computational issues and the accuracy of the finite-difference method applied to hydrodynamic Taylor—
Couette flow.

A second-order scheme is applied to the time discretization t1 = q At, based on the implicit Crank—
Nicolson method. Applying this method to the Navier—Stokes equations, we find

(1748t = V2)utt! = (1/A¢ + V2)ud + No+i — Vp,  VZp =V . NIt (13)
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where N7+ is an estimate for the nonlinear terms (Euler predictor, Crank—Nicolson corrector). In cylindrical
coordinates the r- and ¢-components of the Laplacian operator couples the two components, and for a Fourier
decomposition they are complex operators. Programming complexity and computational cost of inversion for
ufand u 1 1 can be reduced, however, by considering

Uy = u, £ 1iugy, ie. u, = %(qu + u,), Uy = —%(m — u,), (14)

where the + are taken respectively. The equations governing these components separate and the Laplacian
operator is now real (9, — im),

1
(0= V2)us = No = (Vp),,  VE=V2— =+ 50 (15)

3.1. Influence-matrix method

The natural approach to solving (13) is to invert for p and then for u?*!. All the boundary conditions are on u?+!,
however, there are none on p, and it is well known that primitive variable formulations are subject to loss of
temporal order if inappropriate boundary conditions are enforced on p [26]. For the magnetic field, there appear
at first sight to be too few boundary conditions, and further, the components of B are coupled in the boundary
condition. Itis shown here that the influence-matrix method resolves these issues, the appropriate boundary
conditions can be satisfied to machine precision, and temporal order is retained. We show first how the method
is applied for time integration of the velocity field, similar to [27]. An analogous approach is applied to the
magnetic field.

3.1.1. Method for the velocity field
We write the time-discretized Navier—Stokes equations (13) in the form

!Xuq+1 = Yu? + N9+ — Vp,

lvz =V (Yuq + N'ﬁ%), (16)

where g denotes time #,. This form is sixth order in r for u?*! and second order for p, without the solenoidal
condition explicitly imposed. In principle this system should be inverted simultaneously for p and u?*! with
boundary conditions u?*! = 0and V - uf™! = 0. In practice it would be preferable to invert for p first then for
u’t!, but the boundary conditions do not involve p directly. Note that the Yu? term has been included in the
right-hand side of the pressure-Poisson equation, so that it corresponds precisely to the divergence of the
equation for u* !, This ensures that any non-zero divergence in the initial condition is projected out after a
single time-step. We split the system (16) into the ‘bulk’ solution, {a, p},

Xii = Yul + Nit2 — Vp,

lVZ' =V- (Yuq + NfH%), a7
with boundary conditions @ = 0 and d,p = 0, and the auxiliary systems
oo
with two sets of boundary conditions, u’ = 0 with 8,p’ = {0, 1}and {1, 0}onr = {7, 1, },and
{xu =0, (19)

with boundary conditions ufr = {0, 1}, u’ = {0, 1}, u, = {0, i} and similarly their reversed versions on
{n, 1, }. These dashed functions may be precomputed, and will be used to correct the approximate boundary
conditions used to calculate and p = 0.

The system (18) provides, with the two boundary conditions, two linearly independent functions u;- that
may be added to @ without altering the right-hand side in (17). Similarly the system (19) provides a further six
functions. The superposition

8
wtl=a+ ) g (20)
=1

may be formed in order to satisfy the eight original boundary conditions, u?™! = 0and V- ui™! = 0 on
r = {n, 1, }. Substituting (20) into the boundary conditions, they may be written
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Aa = —g(ﬁ), Q1)

where A = A(g(uw'))isan 8 x 8 matrix. The appropriate coefficients required to satisfy the boundary conditions
are thereby recovered from the solution of this small system for a. The error in the boundary conditions g (ul +1
using the influence-matrix technique is at the level of the machine precision.

The auxiliary functions u]/ (r), the matrix A and its inverse may all be precomputed, and the boundary
conditions for u’ have been chosen so that . are purely real, u, is purely imaginary, and A is real. For each
timestep, this application of the influence matrix technique requires only evaluation of the deviation from the
boundary condition, multiplication by an 8 x 8 real matrix, and the addition of four functions to each
component of u, each either purely real or purely imaginary. Compared to the evaluation of nonlinear terms,
the computational overhead is negligible.

3.1.2. Method for the magnetic field
Consider the induction equation (4) time-stepped without V - B = 0 enforced. Evolutionof ) = V - Bis
then governed by the divergence of (4),

_ 1l
onp = va Y. (22)

In addition to the boundary conditions derived in [19], the condition ¢ = 0 must be satisfied on the boundary
to avoid introduction of divergence into the domain. Then (4) has the appropriate number of boundary
conditions, and ¢» = V - B should remain zero for a solenoidal initial condition.

To prevent accumulation of divergence from artificial internal sources, i.e. discretization error, it is
commonplace to introduce an artificial pressure I1 [28]. The discretized system is then as in (16) where one reads
B for u and IT for p. The boundary condition for II is any choice such that, when one computes II for a given B4,
itis found to be constant when V - B? = 0[29]. The choice 0,11 = 0isapplied here. When comparing with the
problem for the velocity, here the difficulty is not the coupling of the boundary condition for B with IT, but
between the components of B at an insulating boundary.

Here the system is split as in (17) for the ‘bulk’ solution, with approximate boundary condition B = B4 on
{r, 1, }. Thisis then corrected precisely via the influence matrix requiring only the simple auxiliary system

XB' =0, (23)

with boundary conditions B, = {0, 1}or {1, 0}and B, = {0, i} or {i, 0} on {7, 7, }.
Problem (23) separates for the three components, which, with the two boundary condition options for each,
provides six functions B]-' (r). The correction is then

6
Bi*! =B + ) a; B (24)
j=1

Let g, (B) = 0 denote the insulating boundary conditions and solenoidal condition evaluated at r; and r,,.
Substituting (24) into the boundary conditions, they may be written Aa = —g(B), where A = A(g(B'))isa
6 x 6 matrix. The appropriate coefficients required to satisfy the boundary conditions are recovered from
solution of this small system for a.

Again, the auxiliary functions B]( (r), the matrix A and its inverse may be precomputed, and the boundary

conditions for B’ have been chosen so that B/ are purely real, B is purely imaginary, and A is real. At the end of
the timestep, the solution is solenoidal and satisfies the boundary conditions to machine precision.

3.2. Implementation notes and parallelization

The Taylor—Couette flow code was written in Fortran90. Nonlinear terms are evaluated using the pseudo-
spectral method and are de-aliased using the 3/2 rule. The Fourier transforms are performed with the FFTW3
library [30] and matrix and vector operations are performed with BLAS [31]. Each predictor—corrector iteration
involves the solution of banded linear systems with forward—backward substitution using banded LU-
factorizations that are precomputed prior to time-stepping. These operations are performed with LAPACK [32].
The code was parallelized so that data is split over the Fourier harmonics for the linear parts of the code:
evaluating curls, gradients and matrix inversions for the time-stepping (these linear operations do not couple
modes). Here all radial points for a particular mode are located on the same processor; separate modes may be
located on separate processors. Data is split radially when calculating Fourier transforms and when evaluating
products in real space (nonlinear term of the equations). The bulk of communication between processors occurs
during the data transposes.
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3.3. Numerical validation

The code was validated against several published linear stability results, as well as three-dimensional nonlinear
simulations of the coupled induction and Navier—Stokes equations. We tested the inductionless limit Pm =0
and finite Pm, obtaining excellent agreement in all cases.

3.3.1. Linear stability of Couette flow subject to magnetic fields
Linear instabilities were detected in the calculations by monitoring the kinetic energy of the deviation from
circular Couette flow after introduction of a small disturbance. In the linear regime we write

u' ~ exp(At + i[kz + mg)), E ~ |U'|? ~ exp(2ot),

where A = o0 + iw is a complex number; the imaginary part wis the oscillation frequency and the real part o the
growth rate of the dominant perturbation. The latter is readily extracted from the relationship log(E) ~ 2ot.
We first reproduced the classical results of Roberts [33], who considered the inductionless limit Pz = 0 for
narrow gap geometry § = 0.95 and stationary outer cylinder. For a Hartmann number of Ha = 5.477 he
obtained a critical Reynolds number of Re. = 281.05 with associated critical axial wavenumber of o = 2.69 and
m=0.In our simulations we fixed @ = a, and obtained Re. = 281.055 using N = 33 radial points. For finite
magnetic Prandtl number Pm = 1 we reproduced the results of Willis and Barenghi [34] for wide gap 6 = 0.5
and stationary outer cylinder. For Ha = 39, and o = 2.4 and m = 0 they found Re. = 60.5, which is in good
agreement with our result (Re. = 60.3). In order to test the azimuthal magnetic field we reproduced recent
results of Hollerbach et al [8] for the AMRI. For example at Pm = 0, Ha = 316, Re = 1000, 6 = 0.5 and
u = 0.26, they obtained o = —78.6 for wavenumbers o = 7.17 and m = 1, which is in very good agreement
with our value 0 = —78.7.

3.3.2. Nonlinear simulations
Willis and Barenghi [35] explored dynamo action in Taylor—Couette flow. They first solved the Navier—Stokes
equations in the absence of magnetic field and subsequently applied a small magnetic disturbance to test whether
it grew into a dynamo. In the axisymmetric Taylor-vortex regime axisymmetric magnetic fields were found to
decay, in accordance with Cowling’s anti-dynamo theorem. Non-axisymmetric magnetic fields may be excited,
however, and for Re = 136.4, 6 = 0.5, Pm = 2, a = 1.57 and stationary outer cylinder they observed that the
magnetic disturbance grows for m =1 (0p,,,— ~ 0.2, leading to dynamo action), whereas it decays for m =2
(0B,m=2 ~ —1.4). Wereproduced this setting using N =41, K= 16 and M = 12 and obtained o3 ,,—; ~ 0.16 and
0B,m=1 ~ —1.42,1in good agreement with [35].

Finally, we compared results of the axisymmetric HMRI (helical field B = By (e, + yey)) obtained with the
spectral code of Hollerbach [22]. A typical diagnostic quantity is the torque at the cylinders

G~ —27rr3£[&] ~ 27rr2[& — 8ru¢]. (25)
rl r r
The laminar flow torque will be used as a scale, so that the dimensionless ratio G/ Gj,pina: measures the intensity
of angular momentum transfer relative to laminar flow. We choose the parameters Re = 300, Ha = 10,

6 = 0.5, v = 2, @ = 0.314, which are well into the nonlinear regime. After nonlinear saturation the
dimensionless torque on the cylinders obtained with our code for N= 81 and K= 192 was G/ Glaminar = 1.4122,
which is in excellent agreement with the code of Hollerbach (G/Gaminar = 1.4123).

4. Primary instability: standing waves (SWs)

In the experiments of Seilmayer et al [17] the AMRI was explored near the onset of instability for two different
Reynolds numbers Re = 1480 and 2960, and Hartmann numbers in the range Ha € [0, 160]. The experiments
have an aspect-ratio of 10. Here we selected a periodic domain of length L, = 12.6, and initialized the
simulations by disturbing all Fourier modes with the same amplitude, thus allowing the axial wavenumber to be
naturally selected. Because of the symmetries (see section 2.2), two different Hopf-bifurcation scenarios are
possible [21]. In the first one, the z-reflection symmetry is broken and depending on the initial conditions either
upward TWs (with k > 0 modes) or downward TWs (with k < 0 modes) may be observed. In the second
scenario, the z-reflection symmetry is preserved and a SW emerges. This is a combination of upward and
downward TWs for which positive and negative k modes are in phase and have exactly the same amplitude. In
both scenarios waves rotate in the azimuthal direction.

We found that at Re = 1480 the circular Couette flow (6) becomes unstable at Ha. = 107. The emerging
pattern is a SW with dominant mode (k, m) = (£8, 1), so that eight pairs of vortices fit in the domain.
Figure 2(b) shows the square of the amplitude of the complex Fourier coefficient Ay ; for increasing Ha. As
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Figure 2. Primary instability: a standing wave arises through a supercritical Hopf bifurcation. (a) Standing wave with k =9
(corresponding to nine vortex-pairs in the axial direction) at Re = 1480, Ha = 150 and L, = 12.6 (long domain). From left to right:
isosurfaces of axial velocity v, = £0.005 (normalized with the velocity of the inner cylinder §2;7;), contours of axial and radial velocity.
The aspect ratio of the colormaps has been stretched by a factor of 0.6. (b) Onset of instability at Re = 1480. The critical Hartmann
numberis Ha, ~ 107 with critical axial mode k = 8. The square of the amplitude of the Fourier coefficient Agz) 1 dependslinearly on
Ha — Ha close to the critical point as expected in a Hopf bifurcation. The coefficient A_g; has the same amplitude as Ag j,
confirming that the axial reflection symmetry is preserved (standing wave).
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Figure 3. Onset of spatio-temporal chaos. (a) Dimensionless torque for AMRI versus Ha for Re = 1480 and Re = 2960. Eckhaus
instability at Re = 1480: the branches of the black curve belong to different axial wavenumbers (k = 8, 9 and 10) of the standing wave.
Bistability at Re = 2960: in the yellow-shaded region standing waves (green) and defects (red) coexist; between them there is an
unstable branch or edge state (blue). (b) Perturbation growth rates o (normalized with 2;) as a function of Ha for Re = 1480 and
Re=2960. Positive values of o correspond to instability.

expected in a Hopf bifurcation, A,f) w X Ha — Ha. near the onset of instability, and this relationship holds up to
Ha = 112. The vortex arrangement of the SW at Ha = 150 is shown in the flow snapshot of figure 2(a). In this
case the mode k = 9 was naturally selected. Thus the dominant axial wavenumber depends on Ha because of the
Eckhaus instability, as also observed in hydrodynamic Taylor—Couette flow [36]. The torque changes
respectively with axial wavenumber (black curve on the figure 3(a)), so at the same parameter value states with
different wavenumber and torque can be realized depending on the initial conditions. Further increasing Ha the
instability is gradually damped until it disappears at Ha & 175. Over the whole Hartmann range the additional
torque due to the SW never exceeds 1% of the laminar flow (see figure 3(a)), indicating very weak transport of
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Figure 4. (a) Defects at Re = 2960, Ha = 190 and L, = 12.6 (long domain). From left to right: isosurfaces of axial velocity

(v, = £0.01[€1;]), contours of axial and radial velocity. (b)Onset of turbulence. Isosurfaces of axial velocity (v, = £0.0125 [;1]),
contours of axial and radial velocity. Re = 4000, Ha =264 and L, = 12.6. The aspect ratio of the colormaps has been stretched by a
factor of 0.6.

angular momentum. The maximum in torque correlates well with the maximum growth rate from the linear
stability analysis shown in figure 3(b).

5. Onset of spatio-temporal chaos

At Re=2960 a Hopf bifurcation occurs at Ha. = 120 and the emerging SW remains stable until Ha = 160.
Increasing Ha beyond this point a catastrophic transition to spatio-temporal chaos is observed: the vortex
structure is damaged and the up—down symmetry is broken (figure 4). Between Ha = 130 and 160 thereisa
hysteresis region in which both SW and spatio-temporal chaos (defects) are locally stable (see figure 3(a)). In this
Ha-range, if the initial condition is a SW from another run with slightly different Ha, this remains stable.
However, when starting for example from a randomly disturbed Couette profile the flow evolves directly to
defects.

This catastrophic transition suggests a subcritical bifurcation. We investigated this hypothesis by computing
the unstable branch separating defects and SW. For this purpose we combined time-stepping with a bisection
strategy as follows. If the SW is slightly disturbed, then the flow should rapidly converge to the SW because it is
locally stable. The same applies to defects. For intermediate initial conditions the flow should take a long time
before asymptotically reaching either the SW or the defects. Such initial conditions were generated here by
performing alinear combination between two selected flow snapshots of SW and defects. This combination was
parametrized with a variable (3, for which 5 = 0 corresponds to SW and (3 = 1 to defects. With the bisection
procedure, refining (3 results in an initial condition successively closer to the manifold (or edge) delimiting the
two basin boundaries. The edge is comprised of those initial conditions that tend neither to defects nor to SW,
and the attractor in this manifold is referred to as an edge state [37].

Figure 5 shows that as initial conditions are taken closer to the edge, the temporal dynamics become simple
as the edge state is approached. At Ha = 155, which is very close to the destabilization of the SW, the dynamics
appear to exhibit a damped oscillation (see figure 5(b)). Unfortunately, it is difficult to establish whether the
oscillation finally decays or saturates at a tiny amplitude, as expected close to the bifurcation point. At
Ha = 140, however, which is further from the bifurcation point, the oscillation saturates at non-zero amplitude
(see figure 5(a)). This suggests that the edge state is a relative periodic orbit (or modulated wave) emerging ata
subcritical Hopf bifurcation of the SW. Despite this simple temporal behaviour, the spatial structure of the edge
state is complicated (see figures 6(a)—(c)). It consists of along-wave (subharmonic) modulation of the axially
periodic pattern of the SW, which can be seen as a precursor to defects (compare figures 6(a) and (b) to 4(a)). We
expect that as Ha is further reduced the edge state suffers a bifurcation cascade and becomes chaotic. This should
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Figure 5. Edge tracking procedure at Re = 2960. (a) Ha = 140 and (b) Ha = 155. Green curves evolve toward the standing wave state
and red curves toward defects, although all of them start very close to the edge state. Oscillations at Ha = 155, which is close to the
destabilization point of the standing wave, appear to decay, while at Ha = 140 they saturate. Time is normalized using the inner
cylinder rotation frequency 1/€);,i.e. t =t - Re.
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Figure 6. Edge state at Re = 2960 and L, = 12.6. (a) Close to the bifurcation point, Ha = 155: isosurfaces of axial velocity

v, = £0.0135 [€2;1;]. (b) Far from the bifurcation point, Ha = 140: isosurfaces v, = £0.012 [2;1;]. (c) Contours of axial and radial
velocity, Ha = 140. The aspect ratio of the colormaps has been stretched by a factor of 0.6. The edge state consists of along-wave
modulation of the standing wave.

continuously connect to defects and stabilize at a turning point for Ha 2> 130, which is the lowest Ha for which
defects remain stable.

6. Turbulent transport of momentum

As the Reynolds number is further increased, defects are expected to grow gradually into turbulence. Although it
would be very interesting to perform a two-parameter study of the dynamics in Ha and Re, this is
computationally expensive and beyond the scope of the current work. We here chose to follow a parameter path
of the form

Ha = a Re?, (26)

with a=0.71 and b = 1.55. This path is shown as a solid green line in figure 1(b) and provides a very good
approximation to the curve of maximum growth rate of the linear stability analysis (red dashed line). It goes deep
into the instability region and so we expect the instability to fully develop as Re increases with Ha subject to (26).

10
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Figure 7. (a) Turbulent flow in a short domain at Re = 9333, Ha =456.7 and L, = 1.4. Axial velocity isosurfaces v, = +0.011 [€;r],
contours of axial and radial velocity. (b) Dimensionless torque as a function of Realong the parameter path Ha = a Re?, witha=0.71
and b = 1.55. This path is shown as a green line in figure 1(b).
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Figure 8. Transition to turbulence. Evolution of radial velocity perturbation u, at the point (r, ¢, z) = (1.5, 0, 0) with time (a) at
Re = 1480 and Ha = 150 (standing wave); (b)—the same at Re = 2960 and Ha = 140 (edge state); (c)—at Re = 2960 and Ha = 190
(defects); (d)—at Re= 9333 and Ha = 456.7 (turbulence). Time is scaled using the inner cylinder rotation frequency 1/;, i.e.

t = t - Re; velocities are normalized with the velocity of the inner cylinder ;7.

At Re=4000 the vortices are small at the inner cylinder and remain quite large at the outer cylinder
(figure 4(b)), and at Re = 9333 this tendency develops into rapidly drifting small vortices at the inner cylinder
and slow large vortices at the outer cylinder (figure 7(a)). There is no preferred direction in the system; vortices
can travel up or down, both at the inner and outer cylinders.

The qualitative difference between SW, defects and turbulent flow is apparent in time series of the radial
velocity v, taken at the mid-gap between the cylinders (r, ¢, z) = (1.5, 0, 0). Figure 8(a) shows that the radial
velocity of the SW oscillates periodically around zero. The edge state features a slow temporal frequency
modulating the oscillation of the SW (figure 8(b)). For defects at Re = 2960 the time series is mildly chaotic. As
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Figure 9. Comparison to PROMISE experiment: angular drift frequencies of the waves at (a) Re 1480 and (b) Re 2960. Blue and red
lines correspond to experimental results, black to our nonlinear simulations; the green line denotes outer cylinder rotation
Q,/8 = 0.26. The waves rotate at approximately the outer cylinder frequency and slow down with increasing Ha.

Reincreases toward turbulence the velocity pulsates in a very chaotic manner (figure 8(d)). However, the main
frequency associated with the AMRI can still be discerned. By comparing all panels it becomes apparent that this
frequency scales with the rotation-rate of the inner cylinder. This is consistent with the linear stability analysis of
[8], and with the studies [38, 39], where it is shown that in the low Pm limit the AMRI is an inertial wave.

The transfer-rate of angular momentum between the cylinders is important for accretion-disc modelling.
We checked the torque scaling for increasing Re numbers (see figure 7(b)) along the parameter path (26). The
dimensionless torque increases with Reaccording to the scaling law

G ~ Rel"'3, 27)

which is surprisingly low compared to hydrodynamic experiments in the Rayleigh unstable regime [40]. We
believe that this torque scaling comes close to being an upper bound for the torque scaling of the AMRI in the Re
range studied here because the maximum in torque correlates well with maximum growth rates at low Re (see
figure 3). However, we must caution that in hydrodynamic Taylor—Couette flow different maxima of the torque
have been observed as a function of the relative rotation of the cylinders [41]. Atlarge Re these are not correlated
to the maximum growth rate of the primary instability. Similar phenomena may occur for the AMRI.

7. Discussion

We showed that the AMRI in Taylor—Couette flow manifests itself as a wave rotating in the azimuthal direction
and standing in the axial direction, thereby preserving the reflection symmetry in the latter. In order to compare
to experimental observations [17] we computed the angular drift frequency of the wave. This is shown in figure 9
after being normalized with the rotation frequency of the inner cylinder. The wave rotates at approximately the
outer cylinder frequency (dashed line) and slows down as the Hartmann number increases, which is in
qualitative agreement with the experimental data. Note, however, that in the experiment two frequencies are
simultaneously measured, corresponding to the up- and down-traveling spiral waves, respectively. Although in
the SW the two frequencies are identical, in the experiment the asymmetric wiring creates B, and B, components
of magnetic field which break the reflectional symmetry. As a result, up and down spirals travel with different
frequencies, similar to co-rotating Taylor—Couette flow in which the reflection symmetry is broken by an
imposed axial flow [42]. Another difference is that in the experiment the flow becomes unstable at lower Ha,
which may be explained by the different boundary conditions in the experiment from our simulations. In the
experiment copper cylinders are used, so perfectly conducting walls would be a closer boundary condition for
the magnetic field. More significantly, in the experiments the cylinders are of finite length, so to reproduce their
results exactly a no-slip condition on end-plates should be used. We have applied periodic boundary conditions
in the axial direction, which more accurately model the accretion disc problem and allow us to compute high
Reynolds number flows more efficiently.

As Reincreases, a catastrophic transition to spatio-temporal chaos occurs directly from the SW. In a range of
parameters SW and chaos are both locally stable and can be realized depending on the initial conditions. We
have shown that the first step in this transition process is a subcritical Hopf bifurcation giving rise to an unstable
relative periodic orbit, which has been computed using an analogue of the edge-tracking algorithm introduced
by Skufca et al [37] in shear flows. This unstable relative periodic orbit consists of a long-wave modulation of the
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axially periodic pattern of the SW and destroys the homogeneity of the vortical pattern. It can thus be seen asa
temporally simple defect precursor of the ensuing spatio-temporal chaos. Because of the computational cost we
could not track further instabilities on the unstable branch, which we speculate result in chaotic flow before the
dynamics stabilize at a turning point (Ha = 130 at Re = 2960). After the turning point defects are stable and can
be computed simply by time-stepping.

We believe that such long-wave instabilities are ubiquitous in fluid flows. In linearly stable shear flows, such
instabilities of TWs were found to be responsible for spatial localization [43, 44]. In fact, in pipe flow the ensuing
localized solutions, which are also relative periodic orbits, suffer a bifurcation cascade leading to chaos [45]. One
difference is that in pipe flow the TWs are disconnected from laminar flow, where the SW of the AMRI is
connected to the circular Couette flow.

Our simulations were performed with a powerful spectral DNS method, which we have developed and
validated with published results to excellent agreement. The method allowed us to compute flows up to
Re = 10*. As Reincreases, defects accumulate and the flow becomes gradually turbulent. Although we found
that the AMRI exhibits a weak scaling of angular momentum transport, with G oc Re!!6, we expect that larger
magnetic Prandtl numbers Pm (realistic for accretion discs) may result in a stronger scaling. Astrophysically
important issues such as the precise angular momentum transport scalings obtained for different values of P,
and also for different choices of imposed field (e.g. SMRI, HMRI, AMRI) will be the subject of future
investigations.
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