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The adiabatic limit of wave map flow on a two torus

J.M. Speight∗

School of Mathematics, University of Leeds
Leeds LS2 9JT, England

Abstract

The S2 valued wave map flow on a Lorentzian domain R × Σ, where Σ is any flat

two-torus, is studied. The Cauchy problem with initial data tangent to the moduli space

of holomorphic maps Σ → S2 is considered, in the limit of small initial velocity. It is

proved that wave maps, in this limit, converge in a precise sense to geodesics in the

moduli space of holomorphic maps, with respect to the L2 metric. This establishes, in a

rigorous setting, a long-standing informal conjecture of Ward.

1 Introduction

Wave maps are the analogue of harmonic maps in the case where the domain is Lorentzian.
They satisfy a semilinear wave equation which has been heavily studied, in the simplest non-
trivial case of S2 target space, as a model PDE system involving a manifold-valued field
[21]. The wave map equation is particularly interesting in the case where the domain is
(R × Σ, dt2 − gΣ), with (Σ, gΣ) an oriented Riemannian two-manifold. In this case, the static
wave map problem is conformally invariant, so static solutions on Σ = R2 in particular have no
preferred scale: they can be dilated to any size without changing their energy. This suggests
that time-dependent solutions with initial data close to a static solution might collapse and
form singularities in finite time, an issue which has been heavily studied both numerically
and analytically mainly for Σ = R2, N = S2, within a certain rotational equivariance class.
Numerical studies of increasing sophistication suggested that finite-time collapse can occur,
and suggested formal models of the collapse process [11, 1, 13, 17]. The first rigorous proof
of blow-up came in the work of Krieger, Schlag and Tataru [8], who proved the existence of
rotationally equivariant initial data, of topological degree n = 1, leading to finite-time col-
lapse. Rodnianski and Sterbenz subsequently proved existence of equivariant initial data of
every degree n ≥ 4 leading to finite-time collapse, and proved that collapse is stable to small
perturbations of the initial data, at least within the equivariance class [19]. These results were
extended to every degree n ≥ 1 in work of Raphael and Rodnianski [18], which also established
detailed asymptotics and universality properties of the collapse mechanism. For a thorough
discussion of blow-up of wave maps, see [17, 18].
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This paper addresses a different analytic issue from singularity formation, namely the
validity of the geodesic approximation to wave map flow. To motivate this, one should think
of wave maps R × Σ → S2 as (formal) critical points of the action functional

S =

∫
dt (T −E), where T =

1

2

∫

Σ

|φt|2, E =
1

2

∫

Σ

|dΣφ|2. (1.1)

It follows (from Noether’s Theorem) that they conserve the total energy T + E. A rather
general argument of Lichnerowicz [12] shows that for any map φ : Σ → S2 of topological
degree n ∈ Z (subject to suitable boundary conditions, if Σ is noncompact), E ≥ 4π|n|, with
equality if and only is φ is ± holomorphic. So holomorphic maps, if they exist, minimize
potential energy in their homotopy class. Let us denote by Mn the moduli space of degree n
holomorphic maps Σ → S2. Consider a wave map φ(t) with φ(0) ∈ Mn and φt(0) ∈ Tφ(0)Mn

with ‖φt(0)‖L2 small. By conservation of E + 1
2
‖φt(t)‖2

L2 , one expects that φ(t) will stay
close to Mn, on which E attains its minimum value, for as long as the solution persists. This
led Ward to suggest [29], in the specific case Σ = R2, that such wave maps should be well
approximated by the dynamical system with action S, but with φ(t) constrained to Mn for all
time. Since E is constant on Mn, this constrained system is equivalent to geodesic motion on
Mn with respect to the L2 metric (obtained by restricting the quadratic form T to TMn). A
similar approximation had previously been proposed by Manton [15] for low energy monopole
dynamics, and the geodesic approximation is now a standard technique in the study of the
dynamics of topological solitons [16].

Geodesic motion on M2 (for Σ = R2) was studied in detail in [10]. There is a technical
problem: the L2 metric is only well-defined on the leaves of a foliation of Mn and one must
impose by hand that φ(t) remains on a single leaf. This turns out to be ill-justified (it precludes
singularity formation for n = 1, for example, in contradiction of [8, 18]). This technical
deficiency is removed if we choose Σ to be a compact Riemann surface. Here geodesic motion
in Mn is globally well-defined, if incomplete [20], and the L2 geometry of Mn is quite well
understood, at least for some choices of Σ and n [14, 22, 23, 24].

The question remains: is geodesic motion in Mn really a good approximation to wave map
flow in the adiabatic (low velocity) limit? The purpose of this paper is to prove that it is,
for times of order (initial velocity)−1 at least in the case where Σ is any flat two-torus. More
precisely, we will prove:

Theorem 1.1 (Main Theorem). Let Mn denote the moduli space of degree n ≥ 2 holomorphic
maps from a flat two-torus Σ to S2. For fixed φ0 ∈ Mn and φ1 ∈ Tφ0

Mn consider the one
parameter family of initial value problems for the wave map equation with φ(0) = φ0, φt(0) =
εφ1, parametrized by ε > 0. There exist constants τ∗ > 0 and ε∗ > 0, depending only on the
initial data, such that for all ε ∈ (0, ε∗], the problem has a unique solution for t ∈ [0, τ∗/ε].
Furthermore, the time re-scaled solution

φε : [0, τ∗] × Σ → S2, φε(τ, p) = φ(τ/ε, p)

converges uniformly in C1 to ψ : [0, τ∗] × Σ → S2, the geodesic in Mn with the same initial
data, as ε→ 0.
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To prove this we will adapt the perturbation method devised by Stuart to prove validity
of the geodesic approximation in the critically coupled abelian Higgs and Yang-Mills-Higgs
models [25, 26]. The wave map problem has a key similarity with these gauge-theoretic prob-
lems, namely a moduli space of static solutions which minimize energy in their homotopy
class and satisfy a system of first order “Bogomol’nyi” equations. (For wave maps, the Bogo-
mol’nyi equation is the condition that φ be ± holomorphic, i.e. the Cauchy-Riemann equation.)
Roughly, the idea is to decompose the solution φ(t) as φ(t) = ψ(t) + ε2Y (t) where ψ(t) ∈ Mn,
and control the growth of a suitable Sobolev norm of the error Y (t) uniformly in ε by means
of energy estimates. One concurrently shows that the projected trajectory ψ(t) converges to
a geodesic in Mn.

In comparison with Stuart’s work on vortices and monopoles, the situation we study is
simpler in two respects: we work on a compact domain Σ (rather than R2 or R3), and our
system has no gauge symmetry. On the other hand, the wave map problem introduces two
new challenges for the method.

First, our field is manifold-valued, so it is not clear a priori what the decomposition φ(t) =
ψ(t) + ε2Y (t) really means. In preliminary work on this problem, it was suggested that the
correct formulation was φ(t) = expψ(t) ε

2Y (t), where exp : TS2 → S2 is the exponential map
[5]. In fact, this turns out not to have the analytic properties required by Stuart’s method
(except for rotationally equivariant wave maps). In this paper we isometrically embed S2

in R3 and use the ambient linear structure to project as usual, φ(t) = ψ(t) + ε2Y (t). This
choice is simple, but has significant repercussions: Y is no longer tangent to the map ψ (not
a section of ψ−1TS2), and must satisfy a nonlinear pointwise constraint to ensure that φ is S2

valued. The evolution of Y is governed by a nonlinear wave equation whose (spatial) linear
part is the Jacobi operator Jψ for the harmonic map ψ : Σ → S2. It turns out that Jψ is not
self-adjoint when acting on non-tangent sections (such as Y ). Since self-adjointness of (the
analogue of) Jψ is crucial for Stuart’s method, we must devise a way round this: we replace Jψ
by an “improved” Jacobi operator Lψ, which coincides with Jψ on tangent sections, but is self-
adjoint on all sections, and introduce compensating nonlinear terms into the wave equation
for Y using the pointwise constraint. Further difficulties result: Lψ, unlike Jψ, does not define
a coercive quadratic form on the L2 orthogonal complement of TψMn. We must work instead
with a weaker near-coercivity property, which turns out to suffice for our purposes.

Second, while Σ is compact, the moduli space Mn is not. Of course, the vortex and
monopole moduli spaces, dealt with by Stuart, are also noncompact, but in those cases,
moving to infinity corresponds to (clusters of) solitons separating off and escaping to infinite
separation, a well-controlled process. For wave maps, by contrast, approaching the boundary
of Mn at infinity corresponds to one or more lumps collapsing and “bubbling off”. In this
process, ψ becomes singular and both geodesic motion and wave map flow become badly
behaved. To handle this, we must keep careful track of the position (of ψ ∈ Mn) dependence
of our various estimates, and modify Stuart’s a priori energy bound so that we simultaneously
control the error Y (t), the deviation of ψ(t) from the corresponding geodesic, and the distance
of ψ(t) from ∂∞Mn.

It is interesting to speculate to what extent Theorem 1.1 can be generalized. It is clear that
the proof presented here generalizes quite easily to the case of a general compact Riemann
surface, provided n is sufficiently large compared with the genus of Σ. The reason for restricting
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to the case Σ = T 2 is mainly one of presentation: the existence of global cartesian coordinates
makes it straightforward to define the various function spaces, for example. Generalizing the
target space is not so straightforward. The wave map flow R × Σ → N has the appropriate
“Bogomol’nyi” form for Stuart’s method to apply whenever Σ, N are both compact kähler
manifolds (in fact, it suffices for Σ to be co-kähler). The choice N = CP k, k ≥ 2, is of
some interest in mathematical physics, for example. But here the reliance on an isometric
embedding N ⊂ Rp becomes very problematic. It seems likely that some variant of Theorem
1.1 does remain true for general compact kähler targets, but proving it would require a rather
different approach, perhaps along the lines sketched in [27].

One should note that Theorem 1.1 gives no information about singularity formation for
wave maps on R × Σ because, although there certainly are geodesics ψ(τ) which hit ∂∞Mn

in time τ0 < ∞, and the corresponding wave maps do converge uniformly to ψ(τ) on some
interval [0, τ∗], there is no reason to expect τ∗ = τ0. In fact Raphael and Rodnianski have
shown that singularity formation of equivariant wave maps on R2 deviates significantly from
the dynamics predicted by the (suitably regulated) geodesic approximation [18]. Since blow
up is a (spatially) local phenomenon, these results presumably apply in some form on the
torus, which would imply τ∗ < τ0. Nontheless, the geodesic approximation (on compact Σ or,
regulated, on Σ = R2) predicted finite time blow-up of wave maps in (2 + 1) dimensions, and
this prediction turned out to be correct. The geodesic approximation also makes predictions
about the genericity of blow up. It is not hard to prove, for example, that generic geodesics
on M1 for Σ = S2 do not hit the boundary at infinity. It would be interesting to see whether
the full wave map flow has this property (i.e. generic Cauchy data tangent to M1 have global
smooth solutions). The analogue of Theorem 1.1 for Σ = S2 could provide a starting point
for proving such results.

The rest of the paper is structured as follows. In section 2 the moduli space Mn of holo-
morphic maps is introduced and its key property, Proposition 2.1 (existence of a smooth local
parametrization about any point), established. In section 3, the projection of the wave map
flow to Mn is defined, and the coupled system satisfied by ψ and the error section Y is derived,
equation (3.15). In section 4, some standard functional analytic definitions and results are
introduced. Our aim here, and in the remainder of the paper, is to make the proof accessible to
a wide mathematical physics audience, not just experts in PDE. In section 5 a local existence
and uniqueness theorem for the coupled system (3.15) governing (ψ, Y ) is proved, Theorem
5.1. Of course, local existence and uniqueness of wave maps in this context is not new; the
extra, and new, information we obtain here is local existence and uniqueness of the projection
to Mn. This is the engine underlying Stuart’s method, and we go through the argument in
some detail, not only because there are certain new aspects we have to deal with which Stuart
did not (e.g. preservation of the pointwise constraint on Y ), but also because the requirements
of Picard’s method for this proof determine our choice of function spaces, a point which is
not obvious (to the non-analyst) in Stuart’s original applications of the method [25, 26]. In
section 6 the key near-coercivity property of the quadratic form associated with the improved
Jacobi operator is proved, Theorem 6.5 (roughly, that 〈LψY, LψLψY 〉L2 controls the H3 norm
of Y ). In section 7 energy estimates are established which bound the growth of Y (t). Finally,
in section 8, the coercivity properties and energy estimates are combined to prove long time
existence of the solution (ψ, Y ), and establish convergence to the corresponding geodesic in
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Mn. An appendix presents the proofs of some basic analytic properties of the nonlinear terms
in the coupled system for (ψ, Y ) which are used repeatedly in section 5.

2 The moduli space of static n-lumps

Static wave maps are harmonic maps φ : Σ → S2, that is, solutions of the harmonic map
equation

φxx + φyy + (|φx|2 + |φy|2)φ = 0 (2.1)

or, equivalently, critical points of the Dirichlet energy

E(φ) =
1

2

∫

Σ

|φx|2 + |φy|2. (2.2)

Maps Σ → S2 fall into disjoint homotopy classes labelled by their degree n ∈ Z, which we
may assume, without loss of generality, is non-negative. An argument of Lichnerowicz [3, p39]
shows that, in the degree n class, E(φ) ≥ 4πn, with equality if and only if φ is holomorphic.
Furthermore, all harmonic maps Σ → S2 of degree n ≥ 2 are holomorphic [4]. So the moduli
space of interest, Mn, is the space of degree n holomorphic maps Σ → S2. Such maps are
called “n-lumps” by analogy with the case Σ = C, where the Dirichlet energy density typically
exhibits n distinct local maxima, which may loosely be thought of as smoothed out particles,
or lumps of energy.

The global topology of the space Mn is quite complicated, for example, M2
∼= [Σ ×

PSL(2,C)]/(Z2 × Z2), [23]. For our purposes local information will suffice, however. Given a
smooth variation φs of φ = φ0 ∈ Mn we have dE(φs)/ds = 0 at s = 0 (since φ is harmonic)
and

d2E(φs)

ds2
= 〈V, JφV 〉 =

∫

Σ

V · JφV. (2.3)

where V = ∂sφs|s=0 ∈ Γ(φ−1TS2) is the infinitesimal generator of the variation and

JφV = −Vxx − Vyy − (|φx|2 + |φy|2)V − 2(φx · Vx + φy · Vy)φ (2.4)

is the Jacobi operator at the map φ [28, p155]. This operator is self-adjoint and elliptic, and its
spectrum determines the stability properties of φ. By the Lichnerowicz argument, φ minimizes
E in its homotopy class, so spec Jφ is non-negative. Given a variation φs through harmonic
maps, that is, a curve in Mn through φ = φ0, its infinitesimal generator V = ∂sφs|s=0 satisfies
JφV = 0. Hence TφMn ⊂ ker Jφ. For a general harmonic map φ : M → N between Riemannian
manifolds, the converse may be false, that is, there may be sections V ∈ ker Jφ ⊂ Γ(φ−1TN)
which are not tangent to any variation of φ through harmonic maps, and in this case the space
of harmonic maps M → N may not be a smooth manifold around φ. It is important for us to
rule out this kind of bad behaviour in our case. More precisely, we need:

Proposition 2.1. Given any φ0 ∈ Mn, n ≥ 2, there exists an open set U ⊂ R4n and a smooth
map ψ : U × Σ → S2 such that,

(i) for each q ∈ U , ψ(q, ·) ∈ Mn,
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(ii) there exists q0 ∈ U such that φ0 = ψ(q0, ·), and

(iii) ψµ = ∂ψ/∂qµ, µ = 1, 2, . . . , 4n span ker Jψ(q,·).

Proof. Choose any p ∈ S2 such that both p and −p are regular values of φ0 (such p exists by
Sard’s Theorem). Then φ : Σ → S2 is in Mn if and only if sp ◦φ, its image under stereographic
projection from p, is meromorphic, of degree n, that is, a degree n elliptic function. The most
general degree n elliptic function is [9]

(sp ◦ φ)(z) = λ
σ(z − a1) · · ·σ(z − an)

σ(z − b1) · · ·σ(z − bn)
(2.5)

where σ is the Weierstrass sigma function, λ, a1, . . . , an, b1, . . . , bn are complex constants, λ 6= 0,∑
ai =

∑
bi mod Λ and {ai}∩{bj} = ∅. Hence, we may parametrize a general point φ ∈ Mn

by 4n real numbers qµ, for example, the real and imaginary parts of λ, a1, . . . , bn−1 having
set bn = a1 + · · · + an − b1 − · · · − bn−1. Further, φ manifestly depends smoothly on q and
z. Hence we have a smooth map ψ : Ũ × Σ → S2 satisfying properties (i) and (ii). By our
choice of p, sp ◦ φ0 has n distinct zeroes and n distinct poles, so {ψµ} at q = q0 are linearly
independent sections of ψ(q, ·)−1TS2, and hence, by smoothness, also linearly independent on

some neighbourhood U of q0 in Ũ . As explained previously, ψµ span a subspace of ker Jψ(q,·),
so it remains to show that ker Jφ has dimension 4n for any φ ∈ Mn.

It is known [28, p174] that ker Jφ is isomorphic, as a complex vector space, to H0(Σ, L),
the space of holomorphic sections of the line bundle L = φ−1T ′S2, where T ′S2 denotes the
holomorphic tangent bundle of S2. Since φ has degree n and T ′S2 has degree 2, L has degree
2n. Now, by the Riemann-Roch formula [6]

dimH0(Σ, L) − dimH1(Σ, L) = degL = 2n (2.6)

since Σ has genus 1. But, by Serre duality, H1(Σ, L) ∼= H0(Σ, K ⊗ L∗)∗ where K is the
canonical bundle of Σ. Now K is trivial, so K ⊗ L∗ has degree −2n, and hence has no
holomorphic sections, whence H1(Σ, L) = 0. It follows that ker Jφ has real dimension 4n, as
required.

We can regard qµ as local coordinates on Mn. Given the initial data φ1 ∈ Tφ0
Mn of interest,

we choose and fix such a ψ : U×Σ → S2 and denote by q0 ∈ U and q1 ∈ R4n those vectors such
that φ0 = ψ(q0, ·) and φ1 = qµ1ψµ(q0, ·). Here, as henceforth, we use the Einstein summation
convention on repeated indices. We also choose and fix a compact neighbourhood K of q0 in
U . In a slight abuse of notation, we will also use the symbol ψ to denote the associated map
U ⊃ K → Mn ⊂ (S2)Σ, so ψ(q) will denote the holomorphic map z 7→ ψ(q, z). We will also
use ψ(t) as shorthand for ψ(q(t)), meaning a general curve in Mn.

There is a natural Riemannian metric on Mn, the L2 metric, whose components in the
local coordinate system qµ are

γµν(q) = 〈ψµ, ψν〉 =

∫

Σ

∂ψ

∂qµ
· ∂ψ
∂qν

. (2.7)

The associated Christoffel symbol is

Gµ
λν(q) = γµα〈ψα, ψλν〉 (2.8)
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where γµν is the inverse metric and ψµν = ∂2ψ/∂qµ∂qν . This is the metric whose geodesics
approximate wave maps in the adiabatic limit.

3 Projection of wave map flow and the coupled system

The wave map equation for φ : R × Σ → S2 ⊂ R3 is

φtt − φxx − φyy + (|φt|2 − |φx|2 − |φy|2)φ = 0. (3.1)

Given ε > 0, a small parameter, we decompose φ as

φ = ψ + ε2Y (3.2)

where, at each fixed time, ψ(t, ·) : Σ → S2 is a degree n harmonic map, and Y : Σ → R3.
We may think of ψ(t) as a curve in Mn, the moduli space of degree n harmonic maps, and Y
as the “error” incurred by projecting φ(t) to ψ(t). It is useful to think of Y as a section of
ψ−1R3, where R3 = S2 × R3 is the trivial R3 bundle over S2, and ψ−1R3 is its pullback to Σ.
With this is mind, we refer to Y as the “error section”, and to any Z : Σ → R3 with Z ·ψ = 0
pointwise as a ”tangent section” (in bundle language, Z is a section of ψ−1TS2 ⊂ ψ−1R3).
Clearly, Y is not a tangent section (unless Y = 0). Since both ψ and φ are S2 valued, Y must
satisfy the pointwise constraint

ψ · Y = −1

2
ε2|Y |2. (3.3)

For a given curve ψ(t), if φ is a wave map then Y must satisfy the PDE obtained by substituting
(3.2) into (3.1),

Ytt + JψY = k + εj (3.4)

where Jψ is the Jacobi operator associated with the harmonic map ψ(t) : Σ → S2 and the
terms on the right hand side are

k = −(ψττ + |ψτ |2ψ)

j = 2(ψτ · Yt)ψ + ε{(|Yt|2 − |Yx|2 − |Yy|2)ψ + (|ψτ |2 − 2ψx · Yx − 2ψy · Yy)Y }
+2ε2(ψτ · Yt)Y + ε3(|Yt|2 − |Yx|2 − |Yy|2)Y. (3.5)

We have here introduced the slow time variable τ = εt as a book-keeping device. The precise
expression for j is not important. What matters is its qualitative form: it depends only on
ψ, ψτ and Y and its first derivatives, and the dependence is smooth (polynomial, in fact).

Superficially (3.4) looks exactly analogous to the corresponding equation in Stuart’s anal-
ysis of vortex dynamics [25], but this is deceptive. As already noted, the Jacobi operator
is a self-adjoint, elliptic, second order linear operator Jψ : Γ(ψ−1TS2) → Γ(ψ−1TS2) whose
spectrum determines the stability properties of the harmonic map ψ [28]. It is important to
realize, however, that in (3.4) Jψ is acting on Y , which is not a tangent section. So in (3.4), Jψ
is precisely the same operator defined above (2.4), but extended to act on sections of ψ−1

R
3.

But Jψ is not self-adjoint (with respect to L2) as an operator on ψ−1R3, and self-adjointness
of (the analogue of) Jψ is a crucial ingredient in Stuart’s method. In fact

JψZ = −∆Z − (|ψx|2 + |ψy|2)Z + AψZ (3.6)
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where the non-self-adjoint piece and its adjoint are

AψZ = −2(ψx · Zx + ψy · Zy)ψ
A†
ψZ = −2 {(ψ · Z)∆ψ + (ψ · Z)xψx + (ψ · Z)yψy} . (3.7)

and we have adopted the analysts’ convention for the Laplacian, that is, ∆Z = Zxx +Zyy. To
remedy this deficiency, we make the following definition:

Definition 3.1. Given a harmonic map ψ : Σ → S2, we define its improved Jacobi operator
to be

Lψ : Γ(ψ−1
R

3) → Γ(ψ−1
R

3), Lψ = Jψ + A†
ψ.

Note that Lψ coincides with Jψ on Γ(ψ−1TS2), and hence Lψ maps tangent sections to tangent
sections. Its principal part is the Laplacian, so it is elliptic, and it is manifestly self adjoint.

Remark 3.2. Any section can be decomposed into tangent and normal components. As just
observed, Lψ maps a tangent section Z to the tangent section JψZ, so an alternative way of
characterizing Lψ is by specifying how it acts on normal sections, αψ where α : Σ → R. A
short calculation, using harmonicity of ψ, yields

Lψ(αψ) = −(∆α)ψ − 4(αxψx + αyψy). (3.8)

It follows immediately that kerLψ = ker Jψ ⊕ 〈ψ〉. Note that, in general, Lψ does not map
normal sections to normal sections.

Now, for any Y satisfying the pointwise constraint,

A†
ψY = ε2{|Y |2∆ψ + 2(Y · Yx)ψx + 2(Y · Yy)ψy} =: ĵ (3.9)

and so, for any curve ψ(t), if φ is a wave map then Y satisfies the PDE

Ytt + LψY = k + εj′ (3.10)

where j′ = j + ĵ. Note that j′ has the same qualitative analytic properties as j (specifically,
no higher than first derivatives of Y appear).

We have yet to specify the curve ψ(t) in Mn. We do this by demanding that the error
section Y should at all times be L2 orthogonal to TψMn. In this case (Σ = T 2, n ≥ 2),
TψMn = ker Jψ so, in terms of the local coordinate system q on Mn provided by Proposition
2.1, this amounts to requiring

〈Y, ψµ〉 = 0, µ = 1, 2, . . . , 4n. (3.11)

We convert this into an evolution equation for q by differentiating the orthogonality constraint
(3.11) twice with respect to time and using (3.10),

〈−LψY + k + εj′, ψµ〉 + 2εYt, ψµν q̇
ν + ε2〈Y, ψµνλ〉q̇ν q̇λ + ε2〈Y, ψµν〉q̈ν = 0, (3.12)
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where an overdot denotes differentiation with respect to τ . Now Lψ is self adjoint and ψµ ∈
ker Jψ ⊂ kerLψ, so this equation simplifies to 〈k, ψµ〉 = O(ε), or, more explicitly,

q̈µ +Gµ
νλ(q)q̇

ν q̇λ = εhµ(ε, q, q̇, Y, Yt) + ε2γµν〈Y, ψνλ〉q̈λ (3.13)

where γ and G are the L2 metric and its Christoffel symbol in the coordinate system q, (2.7),
(2.8), and the function h is

hµ = γµν
{
〈Yt, ψνλ〉q̇λ + ε〈Y, ψνλρ〉q̇λq̇ρ + ε〈(ψλ · ψρ)Y, ψν〉q̇λq̇ρ

−2ε〈(ψx · Yx + ψy · Yy)Y, ψν〉 + 2ε2〈(ψλ · Yt)Y, ψν〉q̇λ

+ε3〈(|Yt|2 − |Yx|2 − |Yy|2)Y, ψν〉
}
. (3.14)

Taking the formal limit ε → 0, (3.13) reduces to the geodesic equation on (Mn, γ), as one
would hope.

To summarize, if φ is a wave map, and q(t) is a curve in Mn such that Y = ε−2(φ− ψ(q))
satisfies the orthogonality constraint (3.11) at all times, then (Y, q) satisfies the coupled system

Ytt + LY = k + εj′, q̈µ +Gµ
νλq̇

ν q̇λ = εhµ + ε2γµν〈Y, ψνλ〉q̈λ (3.15)

and the pointwise constraint (3.3). Conversely, if (Y, q) satisfies the constraints (3.3) and
(3.11) and the coupled system (3.15), then φ = ψ(q) + ε2Y is a wave map. Our goal is to
prove that (3.15) with fixed initial data q(0) = q0, q̇(0) = q1, Y (0) = 0, Yt(0) = 0 has solutions
with ‖Y ‖C1 bounded uniformly in ε for times of order ε−1. It follows immediately that, in the
limit ε→ 0, φ(τ/ε) converges uniformly to a curve ψ(τ) in Mn. In the course of the proof, we
will simultaneously show that ψ(τ) is the geodesic with initial data q0, q1.

4 Analytic prelimaries

In this section we set up the function spaces we will use, and collect some standard functional
analytic results which we will appeal to repeatedly. More details can be found in [2], and
references therein. Let H

k denote the set of real-valued functions on Σ whose partial derivatives
up to order k are square integrable. This is a Hilbert space with respect to the inner product

〈f, g〉k =
∑

|α|≤k

∫

Σ

DαfDαg (4.1)

where α is a multi-index taking values from {x, y}, |α| is its length and Dα = ∂α1
∂α2

· · ·∂α|α|
,

so D(x,x,y) = ∂2
x∂y, for example. We denote the corresponding norm by ‖ · ‖k,

‖f‖2
k = 〈f, f〉k. (4.2)

Let Hk = H
k ⊕ H

k ⊕ H
k, the space of R3-valued functions on Σ whose components are in H

k.
This is a Hilbert space with respect to the inner product

〈Y, Z〉k = 〈Y1, Z1〉k + 〈Y2, Z2〉k + 〈Y3, Z3〉k (4.3)
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whose norm will again be denoted ‖ · ‖k. We adopt the convention that ‖ · ‖ = ‖ · ‖0 and
〈·, ·〉 = 〈·, ·〉0, that is, undecorated norms and inner products refer to L2. We will frequently,
and without further comment, use the Cauchy-Schwarz inequality

〈Y, Z〉k ≤ ‖Y ‖k‖Z‖k (4.4)

and the trivial bound ‖Y ‖k ≥ ‖Y ‖k′ if k ≥ k′.
In the sequel, we will prove existence of a solution of the coupled system (3.15) with

Y ∈ Hk, Yt ∈ Hk−1, for k = 3. This choice of k is motivated by the following fundamental
fact about H

k on a compact 2-manifold.

Proposition 4.1 (Algebra property of H
k, k ≥ 2). The Banach space (Hk, ‖ · ‖k) is a Banach

algebra for all k ≥ 2. That is, if f ∈ H
k and g ∈ H

k then fg ∈ H
k, and there exists a constant

αk > 0, depending only on Σ and k, such that ‖fg‖k ≤ αk‖f‖k‖g‖k.
It follows directly from this that, if (Y, Yt) ∈ H3 ⊕ H2, then the nonlinear term j′ in the

coupled system is in H2, and ‖j′‖2 can be bounded by a polynomial in ‖Y ‖3, ‖Yt‖2 (the point
being that j′ contains no derivatives of Y higher than first, and Yx, Yy, Yt are all in H2). This
is crucial, not only for proving the local existence result for (3.15), but also in later sections
where we prove that ‖Y ‖3 is controlled by 〈LY, LLY 〉, and make energy estimates for the
solution. So the fact that we choose k = 3 is not just motivated by a desire to get strong
bounds on the error section Y ; the method will not work for any lower k. Indeed, to uniformly
bound Y on Σ, it would suffice to control ‖Y ‖2, as we have the following Sobolev inequality.

Proposition 4.2 (Sobolev inequalities). Let Ck denote the Banach space of continuous maps
Σ → R3 with the usual norm ‖Y ‖Ck = sup{|DαY (p)| : |α| ≤ k, p ∈ Σ}. Then H2 ⊂ C0,
H3 ⊂ C1, and there is a constant α > 0, depending only on Σ, such that ‖Y ‖Ck ≤ α‖Y ‖k+2

for all Y ∈ H2, k = 0, 1. (More briefly, the inclusions ι : H2 → C0 and ι : H3 → C1 are
continuous.)

In later sections we will need to bound ‖LψY ‖k in terms of ‖Y ‖k+2. Of course, since Lψ is
a linear second order operator we have trivially, for all q ∈ K, the upper bound

‖LψY ‖k ≤ C‖Y ‖k+2 (4.5)

where C is a constant depending only on Σ and K. For a lower bound, we use the fact that
Lψ is elliptic.

Proposition 4.3 (Standard elliptic estimate). Let D be an elliptic linear differential operator
of order r acting on sections of a vector bundle V over Σ. Then there exist constants αk, βk
depending only on Σ and k, such that

‖DY ‖k + αk‖Y ‖0 ≥ βk‖Y ‖k+r.
If we consider only sections which are L2 orthogonal to kerD, the same inequality holds with
αk = 0.

The reason for quoting this result in the context of a general vector bundle V over Σ is
that we will want to apply it to both the ordinary Laplacian on V = R3, and the classical
Jacobi operator Jψ on V = ψ−1TS2 ⊂ R3, where the Hk norm is defined by inclusion.
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5 Local existence theorem

Theorem 5.1 (Local existence for the coupled system). Consider the coupled system (3.15)
with initial data q(0) = q0 ∈ K, qt(0) = εq1 ∈ R4n, Y (0) = Y0 ∈ H3, Yt(0) = Y1 ∈ H2 such
that

dist (q0, ∂K) > d, |q1|, ‖Y0‖3, ‖Y1‖2 < Γ

where Γ, d are positive constants. Then there exist constants C(K) > 0 and T (K,Γ, d) > 0
such that for all ε ∈ (0, C(K)/

√
Γ), this initial value problem has a unique solution on [0, T ]

with

q ∈ C3([0, T ], K)

Y ∈ C0([0, T ], H3) ∩ C1([0, T ], H2) ∩ C2([0, T ], H1).

If the initial data are tangent to the L2 orthogonality constraint (3.11) and the pointwise
constraint (3.3) then the solution preserves these constraints.

We will prove this using Picard’s method: we iteratively define a sequence (qi, Y i) ∈
C0([0, T ], K×H3) which converges to a solution of the initial value problem. To establish that
the iteration scheme is well-defined and convergent, the following standard energy estimate
for the driven wave equation is key:

Theorem 5.2 (Existence and energy estimate for the wave equation). The driven wave equa-
tion on [0, T ] × Σ

Ytt − ∆Y = Ξ

with Ξ : [0, T ] × Σ → R3 smooth and smooth initial data Y0 = Y (0) and Y1 = Yt(0) has a
unique global solution. The solution is smooth, and there exists an absolute constant c(Σ) ≥ 1,
depending only on the choice of torus Σ, such that

max{‖Yt(t)‖2, ‖Y (t)‖3} ≤ c(Σ)et

{
‖Y1‖2 + ‖Y0‖3 +

(∫ t

0

‖Ξ(s)‖2
2ds

) 1

2

}
.

Proof. Existence, uniqueness and smoothness follow from [7]. Let E(t) = ‖Yt(t)‖2
0 + ‖Y (t)‖2

1.
Then

E ′(t) = 2〈Yt,∆Y + Ξ〉0 + 2〈Y, Yt〉1 = 2〈Yt,Ξ〉0 + 2〈Yt, Y 〉0
≤ 2‖Yt‖2

0 + ‖Y ‖2
0 + ‖Ξ‖2

0 ≤ 2E(t) + ‖Ξ(t)‖2
0 (5.1)

⇒ d

dt
(e−2tE(t)) ≤ e−2t‖Ξ(t)‖2

0 ≤ ‖Ξ(t)‖2
0

⇒ E(t) ≤ e2t
[
E(0) +

∫ t

0

‖Ξ‖2
0

]
. (5.2)

Now consider Z = ∆Y . This is also smooth and satisfies the wave equation with source ∆Ξ.
Applying the above estimate to Z yields

‖∆Yt‖2
0 + ‖∆Y ‖2

1 ≤ e2t
[
‖∆Y1‖2

0 + ‖∆Y0‖2
1 +

∫ t

0

‖∆Ξ‖2
0

]
≤ 2e2t

[
‖Y1‖2

2 + ‖Y0‖2
3 +

∫ t

0

‖Ξ‖2
2

]
.
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Since ∆ is an elliptic operator, there exist positive constants αk, βk depending only on k and
Σ such that

‖∆Y ‖2
k + αk‖Y ‖2

0 ≥ βk‖Y ‖2
k+2,

by the standard elliptic estimate, Proposition 4.3. The result immediately follows.

To prove Theorem 5.1 we must first write the coupled system (3.15) as an explicit evolution
system (note that both equations have q̈ on the right hand side). Let X = R4n×R4n×H3×H2

given the norm ‖(q, p, Y, Z)‖X = max{|q|, ε−1|p|, ‖Y ‖3, ‖Z‖2}. The ε dependence of the norm
is chosen so that ‖(0, qt, 0, 0)‖X = q̇. Given any Γ > 0 let XΓ = {(q, p, Y, Z) ∈ X : q ∈
K, ‖(0, p, Y, Z)‖ ≤ 8c(Σ)Γ} where c(Σ) ≥ 1 is the absolute constant obtained from Theorem
5.2. Note that XΓ is a closed subset of a Banach space, and hence is a complete metric
space with respect to the metric induced by ‖ · ‖X . Consider the matrix valued function
M : R ×XΓ → End(R4n),

M(ε, q, Y )µν = δµν − ε2γµλ〈Y, ψλν〉. (5.3)

Since the matrix (γµλ) is postive definite, K is compact, all q-dependence is smooth, and
‖Y ‖0 ≤ 8c(Σ)Γ there exists a constant c(K) > 0 such that M : [0, c(K)/

√
Γ] × XΓ →

GL(4n,R) and M−1 : [0, c(K)/
√

Γ] × XΓ → GL(4n,R) is C1 and bounded. Hence, for all
ε ∈ [0, ε∗(K,Γ)], where ε∗ = c(K)/

√
Γ the coupled system can be rewritten

qtt = ε2f(ε, q, qt, Y, Yt) (5.4)

Ytt − ∆Y = g(ε, q, qt, Y, Yt) (5.5)

where

f(ε, q, qt, Y, Yt) = M−1(ε, q, Y )(−G(q, qt, qt) + εh(ε, q, ε−1qt, Y, Yt))

G(q, u, v)µ = Gµ
νλ(q)u

νvλ (5.6)

g(ε, q, qt, Y, Yt) = −BψY − ψµf
µ − ψµν

qµt
ε

qνt
ε

+ εj′(ε, q, ε−1qt, Y, Yt), (5.7)

Bψ denotes the first and zeroth order piece of Lψ, so Lψ = −∆ +Bψ, explicitly

BψY = −(|ψx|2 + |ψy|2)Y − 2(ψx · Yx + ψy · Yy)ψ − 2(ψ · Y )∆ψ

−2(ψ · Y )xψx − 2(ψ · Y )yψy, (5.8)

and h and j′ = j + ĵ are as defined in (3.14), (3.5), (3.9).
It is convenient henceforth to consider ε as a fixed parameter in [0, ε∗(K,Γ)] and supress

the dependence of f, g on ε. The proof of existence will use Picard’s method, which requires
that f, g be bounded and Lipschitz on XΓ. This follows quickly from the following proposition,
whose proof is straightforward but lengthy, and so is deferred to the appendix:

Proposition 5.3. The functions f, g are continuously differentiable maps f : XΓ → R
4n and

g : XΓ → H2. Their differentials df : XΓ → L(X,R4n), dg : XΓ → L(X,H2) are bounded,
uniformly in ε. That is, there exist constants Λf(K,Γ),Λg(K,Γ) > 0 such that

|dfxω| ≤ Λf‖ω‖X , ‖dfxω‖2 ≤ Λg‖ω‖X
for all x ∈ XΓ, ω ∈ X.
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Note that, for Banach spaces B,C, L(B,C) denotes the space of bounded linear maps B →
C, which is itself a Banach space with respect to the norm ‖S‖L(B,C) = sup{‖S(x)‖C/‖x‖B :
x ∈ B, x 6= 0}.
Corollary 5.4. The functions f : XΓ → R4n and g : XΓ → H2 are Lipschitz and bounded,
uniformly in ε. That is, there exist constants Λf ,Λg, Cf , Cg, depending only on K and Γ, such
that for all x, x′ ∈ XΓ,

|f(x)−f(x′)| ≤ Λf‖x−x′‖X , ‖g(x)−g(x′)‖2 ≤ Λg‖x−x′‖X , |f(x)| ≤ Cf , ‖g(x)‖2 ≤ Cg

Proof. Let x1, x2 ∈ XΓ. Since XΓ is convex, the curve x(t) = x1 + t(x2 − x1), 0 ≤ t ≤ 1
remains in XΓ. Hence

|f(x1) − f(x2)| =

∣∣∣∣
∫ 1

0

dfx(t)(x2 − x1) dt

∣∣∣∣ ≤
∫ 1

0

Λf‖x2 − x1‖X dt = Λf‖x1 − x2‖X .(5.9)

From the definition of f one sees that f(q, 0, 0, 0) = 0 for all q ∈ K. Hence, for all x =
(q, p, Y, Z) ∈ XΓ

|f(x)| = |f(q, p, Y, Z)− f(q, 0, 0, 0)| ≤ Λf‖(0, p, Y, Z)‖X ≤ 8c(Σ)ΓΛf . (5.10)

The proof for g follows mutatis mutandis.

To establish uniqueness of the solution, and to show that q is three times continuously
differentiable, we will need the following extension property of df and dg, whose proof is also
deferred to the appendix:

Proposition 5.5. The differentials df : XΓ → L(X,R4n) and dg : XΓ → L(X,H2) of f and
g extend continuously to maps df ext : XΓ → L(R4n × R4n ×H1 × L2,R4n) and dgext : XΓ →
L(R4n × R4n ×H1 × L2, L2), bounded by Λf and Λg respectively.

The rest of this section is devoted to the proof of Theorem 5.1. Let T > 0 be chosen such
that

T ≤ log 2, T ≤ 1

ε
, T ≤ d

ε(2Γ + Cf(K,Γ))
, T ≤ Γ

εCf(K,Γ)
,

√
T ≤ Γ

Cg(K,Γ)
, T ≤ 1

4εΛf(K,Γ)
,

√
T ≤ 1

8c(Σ)Λg

. (5.11)

Given a complete subset B of a Banach space with norm ‖ · ‖B, denote by CTB the space of
continuous maps [0, T ] → B equipped with the sup norm |‖b‖| = sup{‖b(t)‖B : t ∈ [0, T ]}.
(CTB, |‖ · ‖|) is itself a complete subset of a Banach space.

5.1 Definition of the iteration scheme

We will produce a sequence ωi ∈ CTXΓ converging to a solution of the initial value problem
for the coupled system. Choose and fix δ ∈ (0,Γ/4), and let Y i

0 , Y
i
1 ∈ C∞(Σ,R3) be sequences

such that

‖Y i
0 − Y0‖3 <

δ

2i
, ‖Y i

1 − Y1‖2 <
δ

2i
. (5.12)
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Such sequences exist since C∞ is dense in Hk for all k ≥ 0. Let ω0 = (q0, εq1, Y
0
0 , Y

0
1 ), which

is constant in t and smooth on Σ, and trivially lies in CTXΓ. Given ωi, we define the next
iterate to be the solution of the initial value problem qi+1(0) = q0, q

i+1
t (0) = εq1, Y

i+1(0) =
Y i+1

0 , Y i+1
t (0) = Y i+1

1 for

qi+1
tt = ε2f(ωi) (5.13)

Y i+1
tt − ∆Y i+1 = g(ωi). (5.14)

We must first check that the sequence ωi is well defined. So, assume that ωi is smooth and
lies in CTXΓ. Then

qi+1(t) = q0 + εtq1 + ε2

∫ t

0

(∫ s

0

f(ωi(r))dr

)
ds, (5.15)

which exists since f ◦ ωi is continuous. Now

|qi+1(t) − q0| ≤ εT |q1| +
1

2
ε2T 2Cf(K,Γ) ≤ εT

(
Γ +

Cf(K,Γ)

2

)
≤ d

2
(5.16)

by our choice of T , so qi+1(t) remains in K. Further,

ε−1|qi+1
t (t)| ≤ |q1| + ε

∫ t

0

|f(ωi(s))|ds ≤ Γ + TεCf(K,Γ) ≤ 2Γ < 8c(Σ)Γ (5.17)

by our choice of T . Turning to Y i+1, we see by inspection that if Y i, qi are smooth, then g(ωi)
is smooth, so the solution Y i+1(t) exists, is unique and smooth, by Theorem 5.2, which also
yields the energy estimate

max{‖Y i+1
t (t)‖2, ‖Y i+1(t)‖3} ≤ C(Σ)et{‖Y i+1

0 ‖3 + ‖Y i+1
1 ‖2 +

√
tCg(K,Γ)}

≤ 2C(Σ){2(Γ + δ) +
√
TCg(K,Γ)} < 8C(Σ)Γ (5.18)

by our choice of T and δ. Hence, if ωi is smooth and in CTXΓ, so is ωi+1. We have already
observed that ω0 is smooth and in CTXΓ, so, by induction, the sequence ωi ∈ CTXΓ is well-
defined.

5.2 Convergence of the iteration scheme

We will now show that ωi is Cauchy, and hence converges in CTXΓ. From (5.15) one has

|qi+1(t) − qi(t)| = ε2

∣∣∣∣
∫ t

0

∫ s

0

(f(ωi(r)) − f(ωi−1(r)))dr ds

∣∣∣∣

≤ ε2

2
T 2Λf(K,Γ)|‖ωi − ωi−1‖| ≤ 1

8
|‖ωi − ωi−1‖| (5.19)

by our choice of T . Similarly

ε−1|qi+1
t (t) − qit(t)| = ε

∣∣∣∣
∫ t

0

(f(ωi(r)) − f(ωi−1(r)))dr

∣∣∣∣

≤ εTΛf(K,Γ)|‖ωi − ωi−1‖| ≤ 1

4
|‖ωi − ωi−1‖|. (5.20)
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Now Z = Y i+1 − Y i satisfies the wave equation with source g(ωi)− g(ωi−1) and small smooth
initial data ‖Z(0)‖3, ‖Zt(0)‖2 ≤ δ/2i−1. Hence, by Theorem 5.2, for each t ∈ [0, T ],

max{‖Z(t)‖3, ‖Zt(t)‖2} ≤ c(Σ)et

{
δ

2i−2
+

(∫ t

0

‖g(ωi(s)) − g(ωi−1(s))‖2
2ds

) 1

2

}

≤ 2c(Σ)

{
δ

2i−2
+
√
TΛg(K,Γ)|‖ωi − ωi−1‖|

}

≤ c(Σ)δ

2i−3
+

1

4
|‖ωi − ωi−1‖|. (5.21)

Assembling these inequalities, one sees that

|‖ωi+1 − ωi‖| ≤ 1

4
|‖ωi − ωi−1‖| + α

2i
(5.22)

where α = c(Σ)δ/8. It follows that

|‖ωi+1 − ωi‖| ≤ 1

4i
|‖ω1 − ω0‖| + α

2i−1
, (5.23)

and hence, for all k ≥ 1,

|‖ωi+k − ωi‖| ≤
k∑

j=1

|‖ωi+j − ωi+j−1‖| ≤ 1

4i
|‖ω1 − ω0‖|

∞∑

j=1

1

4j
+
α

2i

∞∑

j=0

1

2j
. (5.24)

Hence ωi is Cauchy with respect to |‖ · ‖|, so ωi → ω = (q, p, Y, Z) ∈ CTXΓ.

5.3 The limit solves the initial value problem

We have established that

qi → q in CTK, (5.25)

qit → p in CTR
4n, (5.26)

Y i → Y in CTH3, (5.27)

Y i
t → Z in CTH

2. (5.28)

Now, for all i,

‖ω(0) − (q0, εq1, Y0, Y1)‖X ≤ ‖ω(0) − ωi(0)‖X + ‖ωi(0) − (q0, εq1, Y0, Y1)‖X
≤ |‖ω − ωi‖| + δ

2i
→ 0 (5.29)

as i→ ∞. Hence ω(0) = (q0, εq1, Y0, Y1), that is, the limit has the correct initial data.
We will now show that the limit solves the coupled system and has the differentiability

properties claimed. Let Ỹ (t) = Y0 +
∫ t

0
Z(s)ds. Note that Ỹ is manifestly in C1([0, T ], H2),
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with derivative Ỹt = Z. Now

|‖Y i − Ỹ ‖|CTH2 = |‖Y i(0) − Y0 +

∫ t

0

(Y i
t (s) − Z(s))ds‖|CTH2

≤ δ

2i
+ T |‖Y i

t − Z‖|CTH2 → 0 (5.30)

as i → ∞. Hence, Y i → Ỹ in CTH
2. But Y i → Y in CTH

3, hence also in CTH
2, so Y = Ỹ .

Hence, Y ∈ C1([0, T ], H2) and Yt = Z.
Consider Y i+k

tt −Y i
tt. This is smooth, and satisfies the wave equation with source g(ωi+k−1)−

g(ωi−1). Hence

‖Y i+k
tt − Y i

tt‖1 = ‖∆(Y i+k − Y i) + g(ωi+k−1) − g(ωi−1)‖1

≤ 2‖Y i+k − Y i‖3 + ‖g(ωi+k−1) − g(ωi−1)‖2

≤ 2‖Y i+k − Y i‖3 + Λg(K,Γ)‖ωi+k−1 − ωi−1)‖X
⇒ |‖Y i+k

tt − Y i
tt‖|CTH1 ≤ [2 + Λg(K,Γ)]|‖ωi+k−1 − ωi−1‖|CTXΓ

. (5.31)

Since ωi is Cauchy in CTXΓ, it follows that Y i
tt is Cauchy in CTH

1. Hence Y i
tt → W in CTH

1.

Let Z̃(t) = Y1 +
∫ t

0
W . Note that Z̃ is manifestly in C1([0, T ], H1) and Z̃t = W . Now

|‖Y i
t − Z̃‖|CTH1 ≤ |‖Y i

1 − Y1‖|CTH1 + |‖
∫ t

0

(Y i
tt −W )‖|CTH1

≤ δ

2i
+ T |‖Y i

tt −W‖|CTH1 → 0 (5.32)

as i → ∞. Hence Y i
t → Z̃ in CTH

1. But Y i
t → Z in CTH

2, hence also in CTH
1, so Z = Z̃.

But Yt = Z. Hence, Y ∈ C2([0, T ], H1) and Ytt = W .
By similar reasoning, qitt → m in CTR4n and q ∈ C2([0, T ],R4n) with qt = p and qtt = m.
We can now show that ω solves the coupled system:

|‖Ytt − ∆Y − g(ω)‖|CTH1 ≤ |‖Ytt − Y i
tt‖|CTH1 + |‖∆(Y − Y i)‖|CTH1 + |‖g(ω)− g(ωi−1)‖|CTH1

≤ |‖Ytt − Y i
tt‖|CTH1 + 2|‖Y − Y i‖|CTH3 + |‖g(ω)− g(ωi−1)‖|CTH2 .

(5.33)

Now Y i
tt → Ytt in CTH

1, Y i → Y in CTH
3, g : XΓ → H2 is continuous, and ωi → ω in CTXΓ,

so g(ωi) → g(ω) in CTH
2. Hence

|‖Ytt − ∆Y − g(ω)‖|CTH1 = 0. (5.34)

Similarly ‖qtt − ε2f(ω)‖CT R4n = 0, that is, qtt = ε2f(ω).
It remains to establish the higher differentiability of q. Differentiating the equation for

qi+1
tt gives

qi+1
ttt = ε2df extωi ωit. (5.35)
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Now ωi → ω in CTXΓ, ωit → ωt in CT (R4n × R4n × H2 × H1), and df ext is continuous, so
qi+1
ttt → ℓ, say, in CTR4n. Let m̃(t) = ε2f(q0, εq1, Y0, Y1) +

∫ t

0
ℓ = qtt(0) +

∫ t

0
ℓ. Note that

m̃ ∈ C1([0, T ],R4n) and m̃t = ℓ. Then

‖qitt − m̃‖CT R4n = ‖
∫ t

0

(qittt − ℓ)‖CT R4n ≤ T‖qittt − ℓ‖CT R4n → 0 (5.36)

so qitt → m̃ in CTR
4n. But qitt → qtt in CTR

4n, so qtt = m̃. Hence, qtt ∈ C1([0, T ],R4n), as
claimed.

5.4 Uniqueness of the solution

Assume that (q̃, Ỹ ) is another solution of (5.4), (5.5) with the same initial data and regularity

as (q, Y ), and let (p, Z) = (q − q̃, Y − Ỹ ). Then (p, Z) satisfies the system

Ztt − ∆Z = Ξ(t), ptt = ε2Υ(t) (5.37)

with initial data Z(0) = Zt(0) = 0, p(0) = pt(0) = 0, where

Ξ(t) = g(ω) − g(ω̃), Υ(t) = f(ω) − f(ω̃) (5.38)

and ω = (q, qt, Y, Yt), ω̃ = (q̃, q̃t, Ỹ , Ỹt). Define

E(t) = ‖Z(t)‖2
1 + ‖Zt(t)‖2

0 + |p|2 +
1

ε2
|pt|2, (5.39)

which, by the regularity properties of (p, Z), is continuously differentiable, and has E(0) = 0.
Reprising the argument in (5.1), which requires only that Z ∈ H2 and Zt ∈ H1, one sees that

E ′(t) ≤ 2E(t) + ‖Ξ(t)‖2
0 + |Υ(t)|2. (5.40)

Now, arguing as in the proof of Corollary 5.4, with ω(s) = ω + s(ω̃ − ω),

‖Ξ(t)‖0 = ‖g(ω)− g(ω̃)|0 =

∥∥∥∥
∫ 1

0

dgω(s)(ω̃ − ω) ds

∥∥∥∥
0

≤ Λg max{|p|, ε−1|pt|, ‖Z‖1, ‖Zt‖0}
(5.41)

by Proposition 5.5. Similarly |Υ(t)| ≤ Λf max{|p|, ε−1|pt|, ‖Z‖1, ‖Zt‖0}. Hence

E ′(t) ≤ κE(t) (5.42)

where κ = 2 + Λf + Λg, whence it follows that

d

dt
e−κtE(t) ≤ 0. (5.43)

So e−κtE(t) is a nonincreasing, non-negative function which is zero at t = 0. Hence E(t) = 0

for all t, and we conclude that (p, Z) = (0, 0) for all t, that is, (q, Y ) = (q̃, Ỹ ).
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5.5 Preservation of constraints

Given the solution (q, Y ) produced above, define for each µ ∈ {1, 2, . . . , 4n}

aµ(t) = 〈Y, ∂ψ
∂qµ

〉. (5.44)

The L2 orthogonality constraint is that aµ(t) = 0 for all µ, t. By construction, the coupled
system implies that äµ = 0. If the initial data are tangent to the constraint then aµ(0) = ȧµ(0),
and hence aµ(t) = 0 for all t ∈ [0, T ].

Similarly, given the solution (q, Y ) produced above, define χ : [0, T ] × Σ → R by

χ = Y · ψ(q) +
1

2
ε2|Y |2. (5.45)

The pointwise constraint is that χ = 0 everywhere on Σ. Note that χ(t) ∈ H
3 for all t ∈ [0, T ]

so χ(t) : Σ → R is continuous. Assume that χ(0) = 0 and χt(0) = 0, that is the initial data are
tangent to the constraint. A straightforward, if lengthy, calculation using the coupled system
and the harmonic map equation for ψ shows that χ satsifies the linear PDE

χtt − ∆χ = 2ε2

{
[2ψx · Yx + 2ψy · Yy − |ψτ |2 + Y · ∆ψ − 2εψτ · Yt

−ε4(|Yt|2 − |Yx|2 − |Yy|2)]χ+ (Y · ψx)χx + (Y · ψy)χy
}

=: aχ+ b1χx + b2χy (5.46)

where a(t) ∈ H2, b1(t), b2(t) ∈ H3 for all t. Let E(t) = ‖χ(t)‖2
1 + ‖χt(t)‖2

0. Then

E ′(t) = 2〈χt,∆χ+ aχ + b1χx + b2χy〉0 + 2〈χt, χ〉1 = 2〈χt, χ+ aχ + b1χx + b2χy〉0
≤ ‖χt‖2

0 + ‖χ+ aχ+ b1χx + b2χy‖2
0 ≤ ‖χt‖2

0 + κ‖χ‖2
1 ≤ κE(t) (5.47)

where
κ = max

0≤t≤T
8(1 + ‖a(t)‖2

2 + ‖b1(t)‖2
2 + ‖b2(t)‖2

2). (5.48)

Hence e−κtE(t) is a nonincreasing, non-negative function which is zero at t = 0, so E(t) = 0,
whence ‖χ(t)‖1 = 0 for all t. Since we already know that χ(t) : Σ → R is continuous, it follows
that χ = 0 everywhere. This completes the proof of Theorem 5.1.

6 Near coercivity of the improved Hessian

By repeatedly applying the local existence theorem, we can extend the solution of the coupled
system whilever q remains in K and ε−1qt, ‖Y ‖3 and ‖Yt‖2 remain bounded. So to prove long
time existence, we must, among other things, bound the growth of ‖Y ‖3. The first step is
to show that ‖Y ‖3 is controlled by the quadratic form 〈LY, LLY 〉 or, more precisely, by the
quadratic form Q2 : H3 → R defined next.
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Definition 6.1. For a fixed harmonic map ψ(q) we denote by Q1, Q2 the quadratic forms

Q1 : H1 → R, Q1(Y ) =

∫

Σ

{
|Yx|2 + |Yy|2 − (|ψx|2 + |ψy|2)|Y |2 − 4(ψx · Yx + ψy · Yy)ψ · Y

}

Q2 : H3 → R, Q2(Y ) = Q1(LY ).

Note that both Q1 and Q2 are continuous, and that Q1(Y ) = 〈Y, LY 〉 for all Y ∈ H2. It is
also convenient to define the projection map P : Hk → Hk

P (Y ) = Y − (ψ · Y )ψ

which pointwise orthogonally projects Y (p) to Tψ(p)S
2.

Lemma 6.2. For all Y ∈ H2, Q1(Y ) ≥ Q1(P (Y )).

Proof. Y = P (Y ) + fψ, where f = −ψ · Y ∈ H
2. Now

Q1(Y ) = 〈Y, LY 〉 = 〈P (Y ), LP (Y )〉 + 2〈fψ, LP (Y )〉 + 〈fψ, L(fψ)〉
= 〈P (Y ), LP (Y )〉 + 〈fψ, L(fψ)〉 (6.1)

since L is self-adjoint and maps tangent sections to tangent sections. But, as we saw in Remark
3.2,

L(fψ) = −(∆f)ψ − 4(fxψx + fyψy), (6.2)

so 〈fψ, L(fψ)〉 = −〈f,∆f〉 ≥ 0.

If our error section Y were a tangent section, the results of [5] would immediately imply
that Q1 is coercive, that is, Q1(Y ) ≥ c(q)‖Y ‖2

1, orthogonal to ker J :

Theorem 6.3 (Haskins-Speight, [5]). There exists a constant c(q) > 0, depending continuously
on q, such that

Q1(Y ) ≥ c(q)‖Y ‖2
1

for all Y ∈ H1 satisfying ψ · Y = 0, L2 orthogonal to ker Jψ(q).

Unfortunately, ψ · Y 6= 0 in our set-up, but is small (of order ε2). This means we can only
establish the following “near coercivity” property for Q1. This will suffice for our purposes,
however.

Theorem 6.4 (Near coercivity of Q1). There exist constants c(q), c̃(q) > 0, depending con-
tinuously on q, such that

Q1(Y ) ≥ c(q)‖Y ‖2
1 − ε2c̃(q)‖Y ‖1‖Y ‖2

2

for all Y ∈ H2 satisfying the pointwise constraint (3.3), L2 orthogonal to ker Jψ(q).
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Proof. By Lemma 6.2, Q1(Y ) ≥ 〈P (Y ), LP (Y )〉 = 〈P (Y ), JP (Y )〉 since L ≡ J on tangent
sections. Given any Z ∈ ker J , 〈Z, P (Y )〉 = 〈Z, Y + fψ〉 = 〈Z, Y 〉 = 0, since Z is pointwise
orthogonal to ψ and Y is L2 orthogonal to ker J . Hence P (Y ) is L2 orthogonal to ker J , and
so, by Theorem 6.3, there exists a constant c̃(q) > 0 such that

Q1(Y ) ≥ c̃(q)‖P (Y )‖2
1. (6.3)

Now, since Y satisfies (3.3),

‖P (Y )‖2
1 = ‖Y +

1

2
ε2|Y |2ψ‖2

1 ≥ ‖Y ‖2
1 − ε2〈Y, |Y |2ψ〉1 (6.4)

and, by the algebra property of H
2 (Proposition 4.1),

〈Y, |Y |2ψ〉1 ≤ ‖Y ‖1‖|Y |2ψ‖2 ≤ C‖Y ‖1‖Y ‖2
2‖ψ‖2 (6.5)

where C > 0 is a constant depending only on Σ. Combining (6.3), (6.4) and (6.5), and noting
that ‖ψ‖2 depends continuously (in fact smoothly) on q, the result immediately follows.

Theorem 6.5 (Near coercivity of Q2). There exist constants c(q), c̃(q) > 0, depending con-
tinuously on q, such that

Q2(Y ) ≥ c(q)‖Y ‖2
3 − ε2c̃(q)(‖Y ‖3

3 + ε2‖Y ‖4
3)

for all Y ∈ H3 satisfying the pointwise constraint (3.3), L2 orthogonal to ker Jψ(q).

Proof. Recall that the pointwise constraint (3.3) is equivalent to |ψ + ε2Y | ≡ 1. The set of
smooth maps Σ → S2 is dense in the Banach manifold of H3 maps Σ → S2, ψ and ker J
are smooth, and Q2 : H3 → R is continuous, so it suffices to prove the inequality in the case
that Y is smooth. So, let Y be smooth, L2 orthogonal to ker J and satisfy the pointwise
constraint (3.3). Define the smooth section Z = LY and the smooth real functions α = |Y |2
and β = Z · Y . Since Y satisfies (3.3), and ψ is harmonic, it follows that

β = ε2
{
Y · ∆Y + |Yx|2 + |Yy|2 + 2(|ψx|2 + |ψy|2)|Y |2

}
. (6.6)

In the following, c1(q), c2(q), . . . denote positive functions depending continuously on q. We
have the following elementary estimate,

‖βψ‖2
1 ≤ c1(q)‖β‖2

1 ≤ ε4c2(q)
{
‖Y ‖2

C1‖Y ‖2
2 + ‖Y ‖2

C0‖Y ‖2
3

}
. (6.7)

Applying the Sobolev inequalities (Proposition 4.2) gives

‖βψ‖1 ≤ ε2c3(q)‖Y ‖2
3. (6.8)

We will also need to estimate ‖α‖3. Again, we have an elementary estimate

‖α‖2
3 ≤ c

{
‖Y ‖2

C1‖Y ‖2
2 + ‖Y ‖2

C0‖Y ‖2
3

}
(6.9)
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which, on appealing to Proposition 4.2 yields

‖α‖3 ≤ c‖Y ‖2
3. (6.10)

By Lemma 6.2,

Q2(Y ) = Q1(Z) ≤ Q1(P (Z)) = 〈P (Z), JP (Z)〉. (6.11)

It is in the last step that we have used the smoothness of Y (assuming only Y ∈ H3 gives
P (Z) ∈ H1, which is not sufficiently regular to make sense of JP (Z)). Since L is self-adjoint
and ker J ⊂ kerL, Z = LY is automatically L2 orthogonal to ker J , as is P (Z) = Z+βψ (since
ψ is pointwise orthogonal to anything in ker J). Hence, by Theorem 6.3 and the estimate (6.8)

Q2(Y ) ≥ c4(q)‖P (Z)‖2
1 = c4(q)‖Z − βψ‖2

1 ≥ c4(q)
{
‖Z‖2

1 − ‖Z‖1‖βψ‖1

}

≥ c4(q)
{
‖Z‖2

1 − ε2c3(q)‖Y ‖2
3‖Z‖1

}
. (6.12)

We next estimate ‖Z‖1 = ‖LY ‖1 in terms of ‖Y ‖3. Note that Y is not L2 orthogonal to
kerL, since it has a component in the direction of ψ, so we cannot apply the standard elliptic
estimate for L directly. We must decompose

Y = P (Y ) + (ψ · Y )ψ = P (Y ) − 1

2
ε2αψ, (6.13)

using (3.3), and handle the two terms separately. Then, by Proposition 4.3 (for the lower
bound on ‖JP (Y )‖1), and an elementary estimate (for the upper bound on ‖JP (Y )‖1),

‖JP (Y )‖1 −
1

2
ε2‖L(αψ)‖1 ≤ ‖Z‖1 ≤ ‖JP (Y )‖1 +

1

2
ε2‖L(αψ)‖1

c5(q)‖P (Y )‖3 − ε2c6(q)‖α‖3 ≤ ‖Z‖1 ≤ c7(q)‖P (Y )‖3 + ε2c6(q)‖α‖3

c5(q)‖Y ‖3 − ε2c8(q)‖α‖3 ≤ ‖Z‖1 ≤ c7(q)‖Y ‖3 + ε2c8(q)‖α‖3

c5(q)‖Y ‖3 − ε2c9(q)‖Y ‖2
3 ≤ ‖Z‖1 ≤ c7(q)‖Y ‖3 + ε2c9(q)‖Y ‖2

3 (6.14)

where we have used (6.10) in the last line. Combining (6.12) and (6.14), the result immediately
follows.

Remark 6.6. Since K is compact, we can replace c(q), c̃(q) in Theorems 6.4, 6.5 by global

constants C, C̃ > 0, under the extra assumption that q ∈ K.

7 Energy estimates for the coupled system

Having shown that Q2(Y ) controls ‖Y ‖2
3, for small ε, we must now bound the growth of Q2(Y )

for a solution (q, Y ) of the coupled system. We do this by establishing quasi-conservation of
energies E1, E2, related to Q1, Q2:

Definition 7.1. Let (q, Y ) : [0, T ] → K ×H3 with the regularity of Theorem 5.1. Associated
to (q, Y ) we define the energies E1, E2 : [0, T ] → R,

E1(t) =
1

2
‖Yt‖2

0 +
1

2
Q1(Y ), E2(t) =

1

2
‖(LY )t‖2

0 +
1

2
Q2(Y ).

Note that E1 is C1 and E2 is continuous.
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Throughout this section we will use the following

Convention 7.2. C will denote a positive constant depending (at most) on the choice of Σ
and K. c(a1, a2, . . . , ap) will denote a smooth positive bounding function of p non-negative
real arguments, which may also depend (implicitly) on Σ, K, and which is increasing in each of
its arguments. C0, c0 will denote that the constant or bounding function depends, in addition,
on the initial data q0, q1, Y0, Y1. The value of C,C0, c, c0 may vary from line to line.

Theorem 7.3 (Quasi-conservation of E1). Let (q, Y ) : [0, T ] → K × H3 be a solution of the
coupled system with the initial data and regularity of Theorem 5.1. Then

E1(t) ≤ C0 + C(|q̈| + |q̇|2)‖Y (t)‖0 + ε

∫ t

0

c(|q̇|, |q̈|, |...q |, ‖Y ‖3, ‖Yt‖2).

Proof. The solution satisfies (3.15) and has Y ∈ H3, Yt ∈ H2, Ytt ∈ H1, so

dE1

dt
= 〈Yt, Ytt〉 + 〈Yt, LY 〉 +

1

2
ε〈Y, LτY 〉 = 〈Yt, k + εj′〉 +

1

2
ε〈Y, LτY 〉

=
d

dt
〈Y, k〉 − ε〈Y, kτ −

1

2
LτY 〉 + ε〈Yt, j′〉

⇒ E1(t) = E1(0) − 〈Y (0), k(0)〉 + 〈Y (t), k(t)〉 + ε

∫ t

0

{
〈Y, 1

2
LτY − kτ 〉 + 〈Yt, j′〉

}

≤ C0 + ‖k(t)‖0‖Y (t)‖0 + 2ε

∫ t

0

{
‖Y ‖2

0 + ‖LτY ‖2
0 + ‖kτ‖2

0 + ‖Yt‖2
0 + ‖j′‖2

0

}
.

(7.1)

Now, only the first and zeroth order parts of L depend on time, so it is clear that

‖LτY ‖0 ≤ C|q̇|‖Y ‖1. (7.2)

Recall that k = −ψττ , so

‖k(t)‖0 ≤ C‖k(t)‖C0 ≤ C(|q̈| + |q̇|2), (7.3)

and
‖kτ (t)‖0 ≤ C‖kτ(t)‖C0 ≤ C(|...q | + |q̈|2 + |q̇|3 + |q̇|2). (7.4)

Finally, it follows immediately from the algebra property of H
2 (Proposition 4.1) that ‖j′‖0 ≤

‖j′‖2 ≤ c(|q̇|, ‖Y ‖3, ‖Yt‖2), and the result directly follows.

We will need a similar result bounding the growth of E2(t). Formally, this is obtained by
applying the argument above with Y replaced by LY (which formally solves a PDE of the
form (LY )tt + L(LY ) = Lk + O(ε)). Unfortunately, this argument is not rigorous since Y is
insufficiently regular to make sense of expressions like LYtt (recall Ytt is only H1).

Theorem 7.4 (Quasi-conservation of E2). Let (q, Y ) : [0, T ] → K × H3 be a solution of the
coupled system with the initial data and regularity of Theorem 5.1. Then

E2(t) ≤ C0 + C(|q̈| + |q̇|2)‖Y (t)‖2 + ε

∫ t

0

c(|q̇|, |q̈|, |...q |, ‖Y ‖3, ‖Yt‖2).
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Proof. By uniqueness, (q, Y ) must arise as the limit of an iteratively defined sequence of
smooth functions (qi, Y i), as constructed in the proof of Theorem 5.1. Recall that the sections
Y i satisfy the PDEs

Y i+1
tt − ∆Y i+1 +BiY i = ki + ε(j′)i (7.5)

where B denotes the first and zeroth order piece of L (so L = −∆ + B) and the superscript
i on Bi, ki, (j′)i denotes that the quantity is evaluated on the iterate (qi, Y i). Recall also
(Y i, Y i

t , Y
i
tt) → (Y, Yt, Ytt) in C0(H3 ⊕H2 ⊕H1). Now, for each i define

Z i = −∆Y i+1 +BiY i

Ei(t) =
1

2
‖Z i

t‖2 +
1

2
〈Z i,−∆Z i +BiZ i〉. (7.6)

Each Ei : [0, T ] → R is smooth, Ei → E2 uniformly on [0, T ], Z i → Z = LY in H1 and
Z i
t → (LY )t in L2. Note that Z i satisfies the PDE

Z i
tt − ∆Z i +BiZ i = Bi(Z i − Z i−1) + k̂i + εĵi (7.7)

where k̂i = −∆ki +Biki−1 and ĵi = −∆(j′)i +Bi(j′)i−1. Since Bi is self-adjoint, one has

dEi

dt
= 〈Z i

t , Z
i
tt − ∆Z i +BiZ i〉 +

ε

2
〈Z i, Bi

τZ
i〉

= 〈Z i
t , B

i(Z i − Z i−1) + k̂i〉 + ε

{
〈Z i

t , ĵ
i〉 +

1

2
〈Z i, Bi

τZ
i〉

}

=
d

dt
〈Z i, Bi(Z i − Z i−1) + k̂i〉 − 〈BiZ i, Z i

t − Z i−1
t 〉

+ε{〈Z i, Bi
τ (

1

2
Z i − Z i−1) + k̂iτ 〉 + 〈Z i

t , ĵ
i〉}. (7.8)

Integrating this from 0 to t and taking the limit i→ ∞ yields

E2(t) − E2(0) ≤ C0 + ‖Z(t)‖0‖k̂(t)‖0 + Cε

∫ t

0

{‖Z‖0(‖k̂τ‖0 + |q̇|‖Z‖1) + ‖Zt‖0‖ĵ‖0}

(7.9)

where we have used the facts that Z i
t −Z i−1

t → 0 in L2, Z i−Z i−1 → 0 in H1, k̂i → k̂ = Lk in
H3, k̂iτ → k̂τ in H3 and ĵi → ĵ = Lj′ in L2 (since L : H2 → L2 and j : K×R4n×H3×H2 → H2

are continuous). Now, we have the elementary estimates

‖Z‖k = ‖LY ‖k ≤ C‖Y ‖k+2, k = 1, 2,

‖Zt‖0 = ‖LYt + εBτY ‖0 ≤ C(‖Yt‖2 + ε|q̇|‖Y ‖1),

‖k̂‖0 ≤ C(|q̈| + |q̇|2),
‖k̂τ‖0 ≤ C(|...q | + |q̈|2 + |q̇|2 + |q̇|3)
‖ĵ‖0 ≤ C‖j′‖2 ≤ c(|q̇|, ‖Y ‖3, ‖Yt‖2).

Combining these with (7.9), the result follows.
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8 Long time existence and proof of the main theorem

Throughout this section we choose and fix q0 ∈ K and q1 ∈ R4n, and denote by (q, Y ) the
solution of the coupled system (3.15) with initial data q(0) = q0, q̇(0) = q1, Y (0) = Yt(0) = 0.
By Theorem 5.1, provided ε < C(K)/

√
|q1|, this solution exists at least for time t ∈ [0, T0],

where T0 depends on the initial data, but is independent of ε. Moreover, the solution is unique,
has the advertised regularity, satisfies the pointwise and L2 orthogonality constraints (3.3),
(3.11), and obeys the energy estimates of section 7. Denote by q∗(τ) the geodesic in (Mn, γ)
with the same initial data, q∗(0) = q0, q̇∗(0) = q1. Note that q∗, considered as a function
of rescaled time τ , is independent of ε. Since geodesic flow conserves speed γ(q̇∗, q̇∗), which
uniformly bounds |q̇∗|2 on K, there exist τ0 > 0, α0 > 0, depending only on the initial data,
such that q∗ exists and has

|q̇∗| ≤ α0, |q̈∗| ≤ α0, dist (q(τ), ∂K)) < d/2, (8.1)

for all τ ∈ [0, τ0], where d = dist (q0, ∂K). Hence, the geodesic q∗ exists for time t ∈ [0, ε−1τ0]
which, for ε small, exceeds T0. Whilever q, q∗ both exist, we define ε2q̃(t) to be the error
between them, that is

q = q∗ + ε2q̃, (8.2)

and
M(s) = max

0≤t≤s

{
ε2|q̃(t)|2 + |q̃′(t)|2 + |q̃′′(t)|2 + ‖Y (t)‖2

3 + ‖Yt(t)‖2
2

}
, (8.3)

where primes denote differentiation with respect to t. This function, which measures the
total error in replacing the wave map φ = ψ(q) + ε2Y with the geodesic ψ(q∗), is continuous,
manifestly increasing, and has initial value M(0) = 0. Our next task is to bound its growth.
Before doing so, we define another absolute constant (depending only on K and Σ), which
will appear frequently in this section:

αa = sup{‖γµνψνλ‖ : q ∈ K, 0 ≤ µ, λ ≤ 4n}. (8.4)

We will again use Convention 7.2 regarding bounding constants and functions.

Theorem 8.1 (A priori bound). Whilever (q, Y ) exists, and t < τ0/ε, and M(t) < ε−4α−2
a ,

M(t) ≤ C0 + C0M(t)
1

2 + (ε2 + εt+ ε2t2 + ε4t4)
c0(M(t))

1 − ε2αaM(t)
1

2

.

Proof. We first derive the ODE satisfied by q̃. The curve q(τ) satisfies the ODE

q̈ +G(q, q̇, q̇) = εh(ε, q, q̇, Y, Yt) + ε2a(q, q̈, Y ) (8.5)

where G, h are defined in (3.14), (5.7), and

a : K × R
4n × L2 → R

4n, a(q, v, Y )µ = γµν〈ψνλ, Y 〉vλ, (8.6)

which is smooth with respect to q and linear with respect to v and Y . The geodesic satisfies
the ODE

q̈∗ +G(q∗, q̇∗, q̇∗) = 0 (8.7)
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with the same initial data. Substituting q = q∗ + ε2q̃ into (8.5), and using (8.7), we see that
q̃ satisfies

q̃′′ = [G(q∗, q̇∗, q̇∗) −G(q∗ + ε2q̃, q̇∗, q̇∗)] + [G(q, q̇∗, q̇∗ −G(q, q̇∗ + εq̃′, q̇∗ + εq′)]

+εh(ε, q, q̇, Y, Yt) + ε2a(q, Y, q̈∗ + q̃′′). (8.8)

Now, q, by assumption, remains in K, and for all t ∈ [0, τ0/ε], q∗ remains in K and |q̇∗| ≤ α0,
so, since G(q, u, v) is Lipshitz with respect to q (on K) and bilinear in (u, v), we have

|q̃′′| ≤ Cα2
0ε

2|q̃| + C[ε2|q̃′|2 + εα0|q̃′| + ε|q̃′|]ε|h| + ε2|a|
≤ C0εM

1

2 + Cε2M + ε|h| + ε2|a|. (8.9)

To estimate the h term, we note that it is smooth in q and polynomial in q̇ and Y and its
(first) derivatives, so in light of Proposition 4.1 we have (for ε ≤ 1) the crude bound

|h(ε, q, q̇, Y, Yt)| ≤ c(|q̇|, ‖Y ‖3, ‖Yt‖2). (8.10)

Now, by the definition of M ,

|q̇| ≤ |q̇∗| + ε|q̃′| ≤ α0 + εM
1

2 , (8.11)

so |h| ≤ c0(M). Turning to |a|, we have by linearity,

|a(q, Y, q̈∗ + q̃′′)| ≤ αa‖Y ‖(|q̈∗| + |q̃′′|) ≤ αaM
1

2 (α0 +M
1

2 ) ≤ c0(M). (8.12)

Hence,
|q̃′′(t)| ≤ εc0(M(t)). (8.13)

Now q̃′(t) = q̃′(0) +
∫ t

0
q̃′′ =

∫ t

0
q̃′′, so

|q̃′(t)| ≤ ε

∫ t

0

c0(M(s)) ds ≤ εtc0(M(t)) (8.14)

since c0 and M are, by definition, increasing. Similarly

ε|q̃(t)| ≤ ε

∫ t

0

|q̃′| ≤ ε2t2c0(M(t)). (8.15)

We have now bounded the growth of all the q̃ terms in M . To bound the growth of ‖Y ‖3

and ‖Yt‖2, we will use the energy estimates of section 7 and the near coercivity property of
Q2 (Theorem 6.5). But to do this, we need to control |q̈| and |...q |, which appear in the energy
estimates for E1(t) and E2(t), so we have not yet finished with the ODE for q. For q̈ we have
from (8.13) the obvious bounds

|q̈| ≤ |q̈∗| + |q̃′′| ≤ α0 + εc0(M(t)). (8.16)

For
...
q we must work harder. So, for fixed ε, let hi, i = 1, 2, 3, 4, denote the partial derivatives

of h : K × R4n × H3 × H2 → R4n with respect to each of its four entries. Similarly, let G1,
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a1 denote the derivatives of G, a with respect to their first entries. Differentiating (8.5) with
respect to τ one finds

...
q +G1(q, q̇, q̇)q̇ + 2G(q, q̇, q̇)q̈ = εh1q̇ + h2q̈ + h3Yt + h4Ytt

+ε2(a1(q, q̈, Y )q̇ + a(q,
...
q , Y )) + εa(q, q̈, Yt) (8.17)

where we have used the bilinearity properties of G and a. Inspecting the formula for h (3.14),
we obtain, using (8.16) and (8.11) a crude bound

|...q | ≤ c0(M) + c0(M)‖Ytt‖ + ε2αa|
...
q |‖Y ‖

≤ c0(M) + c0(M)(‖LY ‖ + ‖k‖ + ε‖j′‖) + ε2αaM
1

2 |...q |
≤ c0(M) + c0(M)(‖Y ‖2 + |q̈| + |q̇|2 + c(|q̇|, ‖Y ‖3, ‖Yt‖2)) + ε2αaM

1

2 |...q |
≤ c0(M) + ε2αaM

1

2 |...q |. (8.18)

Hence

|...q | ≤ c0(M)

1 − ε2αaM
1

2

(8.19)

whilever M(t) < ε−4α−2
a . We can now turn to bounding Y .

Since Q2 is nearly coercive (Theorem 6.5),

‖Y ‖2
3 ≤ C{Q2(Y ) + ε2c(‖Y ‖3)}, (8.20)

and, by the standard elliptic estimate for L (Proposition 4.3)

‖Yt‖2
2 ≤ C{‖LYt‖2 + ‖Yt‖2} ≤ C{‖(LY )t‖2 + ε2‖LτY ‖2 + ‖Yt‖2}

≤ C{‖(LY )t‖2 + ε2|q̇|2‖Y ‖2
1 + ‖Yt‖2} (8.21)

since the principal part of L does not depend on time. Adding (8.20) and (8.21), one sees that

‖Y ‖2
3 + ‖Yt‖2

2 ≤ C{E1(t) + E2(t) + ε2c(‖Y ‖3) + ε2|q̇|2‖Y ‖2
1} ≤ C{E1(t) + E2(t) + ε2c0(M)},

(8.22)
where E1, E2 are as in Definition 7.1. Then, by Theorem 7.3 and 7.4, and the estimates (8.11),
(8.16), (8.19),

‖Y ‖2
3 + ‖Yt‖2

2 ≤ C0 + (C0 + εc0(M))M
1

2 + ε

∫ t

0

(
1 +

c0(M)

1 − ε2αaM
1

2

)
c0(M) + ε2c0(M)

≤ C0 + C0M
1

2 + εc0(M) +
εtc0(M)

1 − ε2αaM
1

2

, (8.23)

provided ε ≤ 1 and M(t) < ε−4α−2
a . Combining (8.23), (8.15), (8.14) and (8.13) gives the a

priori bound claimed.

Theorem 8.2 (Long time existence). There exist ε∗ > 0 and τ∗ > 0, depending only on the
initial data, such that for all ε ∈ (0, ε∗) the solution (q, Y ) persists for all t ∈ [0, τ∗/ε] and has
M(t) bounded, independent of ε.
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Proof. Choose and fix a constant M∗ > 4α2
0 so large that M∗ > C0 + C0M

1

2

∗ , where C0 is the
specific constant, depending only on initial data, appearing in the a priori bound. Assume
ε > 0 is so small that

ε2 <
1

αaM
1

2

∗

, ε <
d

4M
1

2

∗

, ε ≤ 1

2
, ε <

C(K)

M
1

4

∗

(8.24)

where, as before, d = dist (q0, ∂K) and C(K) > 0 is the constant quoted in Theorem 5.1.

Then, whilever M(t) ≤M∗, ‖Y ‖3 < M
1

2

∗ , ‖Yt‖2 ≤M
1

2

∗ ,

|q̇| ≤ α0 + εM
1

2

∗ < M
1

2

∗ , (8.25)

and

ε2‖q̃‖ ≤ εM
1

2 < εM
1

2

∗ <
d

4
. (8.26)

Hence, whilever M(t) ≤ M∗, the value of the solution (q, qt, Y, Yt)(t) satisfies the conditions

of the initial data for the local existence theorem 5.1, with Γ = M
1

2

∗ and dist (q(t), ∂K) < d
4
.

Given the last condition on ε, (8.24), it follows that we may apply Theorem 5.1 and extend
the solution for a time δT > 0 depending only on M∗ and d, independent of ε. It follows
that the solution persists for as long as M(t) ≤ M∗. Furthermore, by the first condition on ε,
(8.24), whilever M(t) ≤M∗ the solution obeys the a priori bound, Theorem 8.1.

For each ε > 0 let tε = sup{t : M(t) ≤ M∗}. We claim that there exists ε∗ > 0 such that
εtε is bounded away from zero on [0, ε∗]. Note that this immediately implies the statement
in the theorem since then there exists τ∗ > 0 such that tε ≥ τ∗/ε for all ε ∈ (0, ε∗), and the
solutions exists, with M(t) ≤ M∗ on [0, τ∗/ε]. Assume, towards a contradiction, that no such
ε∗ exists. Then there is a positive sequence εi → 0 such that εitεi

→ 0. But then the a priori
bound at time tεi

gives (recall M is continuous, so M(tεi
) = M∗), in the limit i→ ∞,

M∗ < C0 + C0M
1

2

∗ , (8.27)

a contradiction, by our choice of M∗.

Proof of Main Theorem. By Theorem 8.2, for all ε ∈ (0, ε∗] the solution exists for t ∈ [0, τ∗/ε],
and coincides with ψ(q∗(τ)+ε2q̃(t))+ε2Y (t), with ε|q̃(t)|, ‖Y (t)‖3, and hence (by Proposition
4.2) ‖Y (t)‖C0 uniformly bounded in t and ε. The rescaled solution is

φε : [0, τ∗]×Σ → S2 ⊂ R
3, φε(τ, x, y) = ψ(q∗(τ) + ε2q̃(τ/ε), x, y) + ε2Y (τ/ε, x, y), (8.28)

and the geodesic with the same initial data is

ψ∗ : [0, τ∗] × Σ, ψ∗(τ, x, y) = ψ(q∗(τ), x, y). (8.29)

Now ψ : K×Σ → S2 is smooth, hence uniformly continuous (since K×Σ is compact). Hence,
as ε→ 0, φε converges uniformly on [0, τ∗] × Σ to ψ∗. Furthermore,

φεx(τ, x, y) = ψx(q∗(τ) + ε2q̃(τ/ε), x, y) + ε2Yx

φεy(τ, x, y) = ψy(q∗(τ) + ε2q̃(τ/ε), x, y) + ε2Yy

φετ (τ, x, y) = (q̇µ∗ + εq̃′(τ/ε))ψµ(q∗(τ) + ε2q̃(τ/ε), x, y) + εYt (8.30)
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and |q̃′(t)|, ‖Yx(t)‖C0 , ‖Yy(t)‖C0 , ‖Yt(t)‖C0 are bounded uniformly in t and ε (again using
Proposition 4.2), so φεx, φ

ε
y, φ

ε
τ converge uniformly on [0, τ∗] × Σ to ψ∗x, ψ∗y, ψ∗τ . Hence, φε

converges to ψ∗ in C1.

Appendix: Analytic properties of the nonlinear terms

The proof of the local existence theorem 5.1 makes fundamental use of certain basic analytic
properties (Propositions 5.3 and 5.5) of the right hand sides f, g of the evolution system
(5.4),(5.5). These properties are established by a long chain of elementary arguments which
we sketch in this appendix. We regard ε as a fixed parameter in (0, 1) and choose a local
parametrization ψ : U × Σ → S2 of Mn as given by Proposition 2.1 and a compact convex
neighbourhood K ⊂ U . We begin by showing that the associated maps Ψk : U → Hk,
q 7→ ψ(q, ·) are smooth for all k ∈ N.

Lemma A.1. Let k ∈ N and f : U ×Σ → R be smooth. Then F : U → H
k, F (q) = f(q, ·), is

smooth.

Proof. As usual, we will denote partial derivatives with respect to qµ by a subscript µ. It
suffices to show that F is everywhere differentiable, since all partial derivatives fµ1µ2···µr

are,
like f , smooth maps U × Σ → R. By the mean value theorem there exist t1, . . . , tr ∈ [0, 1]
such that

‖F (q + p) − F (q) − fµ(q, ·)pµ‖2
k ≤ |p|2

4n∑

µ=1

∫

Σ

{
(fµ(q + t1p) − fµ(q))

2

+(fµx(q + t2p) − fµx(q))
2 + · · ·

· · · + (fµy···y(q + trp) − fµy···y(q))
2
}

(A.1)

since f and all its partial derivatives are C1 functions of q. But fµ, . . . , fµy···y are uniformly
continuous on Bδ(q) × Σ, for δ > 0 sufficiently small, so

lim
p→0

1

|p|‖F (q + p) − F (q) − ∂f

∂qµ

∣∣∣∣
q

pµ‖k = 0 (A.2)

as was to be proved.

Now, by the definition of Hk, ψ : U → Hk is differentiable if and only if ψi : U → H
k is

differentiable for i = 1, 2, 3, so we immediately obtain:

Corollary A.2. Ψk : U → Hk, q 7→ ψ(q, ·), is smooth for all k ∈ N.

The error terms are j′(q, q̇, Y, Yt) and h(q, q̇, Y, Yt) where

j′(q, p, Y, Z) = 2pµ(ψµ · Z)ψ + ε(|Z|2 − |Yx|2 − |Yy|2)ψ + εpµpν(ψµ · ψν)Y
−2ε(ψx · Yx + ψy · Yy)Y + ε2{|Y |2∆ψ + 2(Y · Yx)ψx + 2(Y · Yy)ψy}
+2ε2pµ(ψµ · Z)Y + ε3(|Z|2 − |Yx|2 − |Yy|2)Y

h(q, p, Y, Z)µ = γµν{〈Z, ψνλ〉pλ + ε〈Y, ψλνρ〉pλpρ + ε〈ψλ · ψρY, ψν〉pλpρ
−2ε〈(ψx · Yx + ψy · Yy)Y, ψν〉 + 2ε2〈(ψλ · Z)Y, ψν〉pλ
+ε3〈(|Z|2 − |Yx|2 − |Yy|2)Y, ψν〉}. (A.3)
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We will also need to consider the quantities

Mµ
ν(q, Y ) = δµν − ε2γµλ(q)〈Y, ψλν〉 (A.4)

A(q, Y ) = −(|ψx|2 + |ψy|2)Y − 2(ψx · Yx + ψy · Yy)ψ − 2(ψ · Y )∆ψ

−2(ψ · Y )xψx − 2(ψ · Y )yψy. (A.5)

Let B denote the Banach space R4n × R4n ×H3 ×H2 with norm

‖(q, p, Y, Z)‖B = max{|q|, |p|, ‖Y ‖3, ‖Z‖2}, (A.6)

BU ⊂ B denote the open set on which q ∈ U and for each Γ ≥ 0, BΓ ⊂ BU denote the closed
convex subset on which q ∈ K and ‖(0, p, Y, Z)‖B ≤ Γ.

Proposition A.3. The quantities defined above are smooth maps j′ : BU → H2, h : BU →
R

4n, Mµ
ν : BU → R, A : BU → H2

Proof. That j′, h define maps BU → H2 and BU → R4n follows immediately from the algebra
property of H

2 (Proposition 4.1). Now j′ is a linear combination of terms formed by composing
the maps

Ψk : U → Hk, q 7→ ψ(q, ·)
dΨk : U × R

4n → Hk, (q, p) 7→ pµψµ(q, ·)
(A.7)

which are smooth by Corollary A.2, and the manifestly smooth maps

Hk → H
k, Y 7→ Yi

H
k → Hk, f 7→ fei

Hk → Hk−1, Y 7→ Y, Y 7→ Yx, Y 7→ Yy

H
2 × H

2 → H
2, (f, g) → fg, (A.8)

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Hence j′ is smooth.
The map h is handled similarly, after noting that the inverse metric coefficients γµν are

smooth U → R, the higher derivatives

d2Ψk : U × R
4n × R

4n → Hk, (q, p1, p2) 7→ pµ1p
ν
2ψµν(q, ·)

d3Ψk : U × R
4n × R

4n × R
4n → Hk, (q, p1, p2, p3) 7→ pµ1p

ν
2p
λ
3ψµνλ(q, ·) (A.9)

are smooth by Lemma A.2 and, in addition to the maps in (A.8) above, the map

H0 ×H0 → R, (Y, Z) 7→ 〈Y, Z〉 (A.10)

is manifestly smooth.
That Mµ

ν and A define smooth maps on BU is clear, since their q-dependence is smooth,
and they depend linearly on Y (and are independent of p and Z).
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We can now assemble these pieces to show that f and g are smooth functions on XΓ, the
space defined in section 5. To do so, we note that f = f̂ ◦ι and g = ĝ◦ι where ι : XΓ → B8c(Σ)Γ

is the linear isometry
ι : (q, p, Y, Z) → (q, ε−1p, Y, Z)

and f̂ : BΓ′ → R4n,ĝ : BΓ′ → H2 are

f̂(q, p, Y, Z) = M−1(q, Y )(−ε2G(q, p, p) + εh(q, p, Y, Z)) (A.11)

ĝ(q, p, Y, Z) = −A(q, Y ) − ψµf̂
µ(q, p, Y, Z) − ψµνp

µpν + εj′(q, p, Y, Z), (A.12)

and G is defined in (5.6). The point is that f, g are defined as functions of qt (and q, Y, Yt)
on a space (XΓ) with ε-dependent norm, but it is more covenient here to think of them as
functions of q̇ = ε−1qt, on a space (BΓ′ , Γ′ = 8c(Σ)Γ) with fixed norm. Since ι is a linear

isometry, f, g are smooth, bounded, Lipschitz, etc. if and only if f̂ , ĝ are.

Proposition A.4. There exists ε∗ = O(1/
√

Γ) such that for all ε ∈ (0, ε∗), f̂ : BΓ → R4n and
ĝ : BΓ → H2 are smooth.

Proof. Since γµλ(q), ψλν(q) are smooth and K is compact, there exists ε∗ > 0 such that the
matrix M(q, Y ) is uniformly invertible on BΓ for all ε ∈ (0, ε∗). The components of M−1

are rational in Mµ
ν with denominator detM , which is bounded away from 0 on BΓ. Hence,

M−1 is smooth on BΓ, and the proposition follows immediately from the Leibniz rule and
Proposition A.3.

Since f̂ and ĝ are smooth, they are certainly continuously differentiable. To complete the
proof of Proposition 5.3, it remains to show that their differentials are bounded.

Proposition A.5. For all ε ∈ (0, ε∗), the derivatives dĝ : BΓ → L(B,H2) and df̂ : BΓ →
L(B,R4n) are bounded, independent of ε.

Proof. This is established by estimating the operator norm of the derivatives termwise. For
example, the first term of j′,

J(q, p, Y, Z) = 2pµ(ψµ · Z)ψ (A.13)

has derivative

dJ(q,p,Y,Z) : (q̂, p̂, Ŷ , Ẑ) 7→ 2q̂νpµ[(ψνµ ·Z)ψ+(ψµ ·Z)ψν ]+2p̂µ(ψµ ·Z)ψ+2pµ(ψµ · Ẑ)ψ, (A.14)

and so, by the algebra property of H
2, for all (q, p, Y, Z) ∈ BΓ,

‖dJ(q,p,Y,Z)(q̂, p̂, Ŷ , Ẑ)‖2 ≤ C(K){|q̂||p|‖Z‖2 + |p̂|‖Z‖2 + ‖Z‖2|p|}
≤ C(K){2Γ + Γ2}‖(q̂, p̂, Ŷ , Ẑ)‖B (A.15)

where C(K) > 0 is a constant depending only on K. Hence, for all (q, p, Y, Z) ∈ BΓ,

‖dJ(p,q,Y,Z)‖L(B,H2) ≤ C(K){2Γ + Γ2}. (A.16)

The other terms of j′, h and A are handled similarly. To bound dM−1 we bound dM and appeal
to the Leibniz rule and uniform invertibility ofM . Boundedness of the differentials of functions
depending only on q and p is immediate by compactness and finiteness of dimension.
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Finally, we turn to Proposition 5.5, which is equivalent to:

Proposition A.6. The differentials of the maps f̂ : BΓ → R4n ĝ : BΓ → H2 extend to maps
df̂ ext : BΓ → L(R4n × R4n × H1 × L2,R4n) and dĝextg : BΓ → L(R4n × R4n × H1 × L2, L2)
bounded by Λf , Λg respectively.

Proof. This follows from explicit termwise computation. For example, the last term of h is

mµ(q, Y, Z) = 〈(|Z|2 − |Yx|2 − |Yy|2)Y, ψµ〉

whose differential at (q, Y, Z) is the linear map R4n ×H3 ×H2 → R

dmµ : (q̂, Ŷ , Ẑ) 7→ 〈(|Z|2 − |Yx|2 − |Yy|2)Y, ψµν〉q̂ν + 〈(|Z|2 − |Yx|2 − |Yy|2)ψµ, Ŷ 〉
−2〈(Y · ψµ)Yx, Ŷx〉 − 2〈(Y · ψµ)Yy, Ŷy〉 + 2〈(Y · ψµ)Z, Ẑ〉

which clearly extends to a bounded linear map R4n ×H1 × L2 → R.
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