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Some Fundamental Properties of a

Multivariate von Mises Distribution

Kanti V. Mardia and Jochen Voss

17th February 2012

Abstract

In application areas like bioinformatics multivariate distributions on angles
are encountered which show significant clustering. One approach to statistical
modelling of such situations is to use mixtures of unimodal distributions. In the
literature (Mardia et al., 2012), the multivariate von Mises distribution, also
known as the multivariate sine distribution, has been suggested for components
of such models, but work in the area has been hampered by the fact that no good
criteria for the von Mises distribution to be unimodal were available. In this
article we study the question about when a multivariate von Mises distribution is
unimodal. We give sufficient criteria for this to be the case and show examples of
distributions with multiple modes when these criteria are violated. In addition,
we propose a method to generate samples from the von Mises distribution in
the case of high concentration.

keywords: bioinformatics, directional distributions, mixture models, modes, simula-
tion, sine distribution

1 Introduction

In biochemistry it is well known that the structure of macro-molecules such as pro-
teins, DNA, and RNA can be described in terms of conformational angles. For pro-
teins, these angles could be the dihedral and bond angles describing the conformation
of the backbone together with additional angles for the configuration of the side chains
(see e.g. Branden and Tooze, 1998). Data sets consist of the angles to describe each
monomer in a macro-molecule, the number of angles required to give the confor-
mation of a monomer determines the dimensionality of the problem. In non-coding
RNA there can be 7 or 8 dihedral angles of importance per amino acid (Frellsen et al.,
2009) and, if the side chains angles are included, many angles are required for amino
acids in proteins (e.g. Harder et al., 2010). The resulting distributions on angles are
multivariate, often highly structured, featuring various modes together with regions
excluded by steric constraints (e.g. Mardia et al., 2012).

One way to approach the statistical modelling of such multimodal, multivariate
distributions is to use mixture models with unimodal components. In the Euclidean
space R

p, an obvious choice for the components is to use normal distributions with
appropriately chosen covariance matrices. For angular data, as considered in this
article, the choice of component distribution in less clear, but a simple analogue
of the multivariate normal distribution is the multivariate von Mises distribution
(Mardia et al., 2008). This distribution is suggested for mixture modelling in Mardia
et al. (2012). In order for a mixture model to be a useful description of a multimodal
distribution, it is essential that the component distribution is unimodal. In case of the
multivariate von Mises distribution, this constraint excludes some of the parameter
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range. Previous work has been complicated by the problem that no characterisation
of the parameter values corresponding to the unimodal case was available. To solve
this problem, this article provides sufficient criteria for the multivariate von Mises
distribution to be unimodal and we show examples of distributions with multiple
modes (where these criteria are violated). It should be noted that univariate circular
distributions are well established (see, for example, Mardia and Jupp, 2000) but
understanding of multicircular distributions is still evolving.

The multivariate von Mises distribution, first introduced in Mardia et al. (2008)
and also known as the multivariate sine distribution, is denoted by MVM(µ, κ,Λ). It
is a distribution on the torus T

p = [0, 2π)p and is given by the density (w.r.t. the
uniform distribution on angles)

ϕ(θ;µ, κ,Λ) =
1

Z(κ,Λ)
exp

(

κ⊤c(θ) +
1

2
s(θ)⊤Λs(θ)

)

(1)

for all θ ∈ T
p. Here Z(κ,Λ) is the normalisation constant and we use the abbreviations

ci(θ) = cos(θi − µi), si(θ) = sin(θi − µi)

for i = 1, . . . , p. The parameters of the distribution are the “mean” µ ∈ T
p, the

“concentration parameter” κ ∈ R
p with κi ≥ 0 for i = 1, . . . , p and Λ = (λij) ∈ R

p×p

with Λ⊤ = Λ and λii = 0 for i = 1, . . . , p.
From the form of the density it is obvious that whenever κ is “large” compared to

Λ, the density will have exactly one maximum (where the vector c(θ) is approximately
aligned with κ) and exactly one minimum (where c(θ) is approximately aligned with
−κ). This effect is studied in section 2 where we give a sufficient criterion for the
distribution to be unimodal. Conversely, for small κ the quadratic term s⊤(θ)Λs(θ) in
the density ϕ dominates and one expects the occurrence of multimodal distributions.
This situation is studied in section 3 where we show, by example, that a high number of
modes is possible even in low dimensions. Finally, in section 4, we give an algorithm for
generating samples of a MVM(µ, κ,Λ) distribution for the unimodal case. This will be
required as part of any algorithm to sample from a mixture model with MVM(µ, κ,Λ)
components.

2 High Concentration

In this section we derive a sufficient criterion for the MVM(µ, κ,Λ) to be unimodal.
Since the exponential function exp in the density (1) is strictly monotonically increas-
ing and since the normalisation constant Z(κ,Λ) does not depend on θ, it suffices to
consider the extrema of

f(θ) = κ⊤c(θ) +
1

2
s(θ)⊤Λs(θ) (2)

instead. These can be found by setting the partial derivatives

∂if(θ) = −κisi(θ) + ci(θ)

p
∑

k=1

λiksk(θ) (3)

equal to 0: Since T
p is a compact, closed manifold, all local extrema of f are located

at θ ∈ T
p with ∂if(θ) = 0 for i = 1, . . . , p, i.e. at critical points of f .

To characterise the critical points of f , we consider the second derivatives

∂ijf(θ) = −
(

κici(θ) + si(θ)

p
∑

k=1

λiksk(θ)
)

δij + ci(θ)λijcj(θ) (4)

where δij denotes the Kronecker delta. If the Hessian matrix Hf (θ) = (∂ijf(θ))i,j at a
critical point θ is negative definite, θ is a local maximum of f and thus of ϕ( · ;µ, κ,Λ);
if Hf (θ) is positive definite, θ is a local minimum; finally, if Hf (θ) has both positive
and negative eigenvalues, the point θ is a saddle point.
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For reference in the arguments below, we note that the biggest eigenvalue λmax of
a symmetric matrix A = (aij) ∈ R

p×p satisfies

λmax = sup
x∈Rp,|x|=1

x⊤Ax ≥ max
i=1,...,p

e⊤i Aei = max
i=1,...,p

aii

where (e1, . . . , ep) denotes the standard basis in R
p. In particular, if the Hessian

matrix at a critical point θ has a positive diagonal element, it has at least one positive
eigenvalue and thus θ cannot be a local maximum. Similarly, the smallest eigenvalue
λmin satisfies λmin ≤ mini=1,...,p aii and if Hf (θ) has a negative diagonal element, θ
cannot be a local minimum.

Proposition 2.1. Assume that the matrix

P = diag(κ1, . . . , κp)− Λ

is positive definite. Then the global maximum of ϕ = ϕ( · ;µ, κ,Λ) is attained at
θ = µ and ϕ has no other (local) maxima.

proof. For θ = µ we get ∇f(µ) = 0 and Hf (µ) = −P ; by assumption, this matrix is
negative definite and thus θ = µ is a local maximum. We now show that this is the
only local, and thus the global, maximum of f .

Since P is positive, the smallest eigenvalue λmin of P satisfies 0 < λmin ≤
mini=1,...,p Pii = mini=1,...,p κi and thus we have κi > 0 for i = 1, . . . , p. From equa-
tion (3) we see that ∂if(θ) = 0 implies ci 6= 0 and consequently

∑

λiksk = κisi/ci.
Substituting this into the expression for ∂ijf in (4) we find that the Hessian matrix
Hf at a critical point has the elements

∂ijf(θ) = −κi

(

xi +
s2i
ci

)

δij + ciλijcj = −κi

ci
δij + ciλijcj

where we write c for c(θ) and s for s(θ) to improve readability. If a critical point θ has
ci(θ) < 0 for an index i ∈ {1, . . . , p}, then Hf (θ)ii = −κi/ci > 0 and thus θ cannot
be a local maximum. Therefore we can assume ci(θ) > 0 for i = 1, . . . , p.

Using the notation

P (θ) = diag
( κ1

c1(θ)
, . . . ,

κp

cp(θ)

)

− Λ (5)

we can equivalently re-write the condition ∇f(θ) = 0 as

P (θ)s(θ) = 0. (6)

Since

P (θ) = P + diag
(

κ1(
1

c1(θ)
− 1), . . . , κp(

1

cp(θ)
− 1)

)

is the sum of two positive matrices, it is positive and in particular non-singular. Thus,
the only solution of (6) is s = 0 which implies that the maximum at θ = µ is the only
critical point with ci ≥ 0 for i = 1, . . . , p. This completes the proof.

From the proof of proposition 2.1 we see that, if θ = µ is the global and thus a
local maximum of ϕ, the matrix P must be positive semi-definite, i.e. the positivity
condition is almost equivalent to ϕ having the global maximum at µ. The following
corollary gives a sufficient (but not necessary) condition for the statement to hold;
the given condition is often easier to verify in practice. Coincidentally, this stronger
condition allows to also identify the minima of the von Mises density ϕ.

Corollary 2.2. Assume

κi >

p
∑

j=1

|λij | for all i = 1, . . . , p. (7)
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Then the global maximum of ϕ = ϕ( · ;µ, κ,Λ) is attained at θ = µ, the global
minimum is at θ = (µ1 + π, . . . , µp + π) and these two points are the only (local)
extrema of ϕ.

proof. By the Gershgorin theorem (Horn and Johnson, 1985, Theorem 6.1.1), the
eigenvalues of P are contained in the union of the closed discs B(κi, ri) ⊆ C with
radii ri =

∑

j 6=i | − λij | for i = 1, . . . , p. Since P is symmetric, its eigenvalues are

real and since we have κi >
∑

j

∣

∣λij

∣

∣ = ri, all eigenvalues of P are positive. Thus the
condition of the proposition is satisfied and θ = 0 is the global maximum of ϕ.

Similarly, the eigenvalues of the matrix P (θ) from (5) are contained in the union
of the closed discs B

(

κi/ci(θ), ri
)

⊆ R with radii ri =
∑

j 6=i | − λij | for i = 1, . . . , p.
Since we have

∣

∣

κi

ci(θ)

∣

∣ ≥ κi >
∑

j

∣

∣λij

∣

∣ = ri,

none of the discs contain 0 and the matrix P (θ) cannot have 0 as an eigenvalue. This
shows that all solutions of (6), i.e. the critical points of f , satisfy s(θ) = 0 and thus
c(θ) ∈ {−1, 1}p.

To classify the critical points, we consider the Hessian matrix Hf =
(

∂ijf(θ)
)

ij
.

Invoking the Gershgorin theorem again, the eigenvalues of Hf are contained in the
union of the closed discs with centres ∂iif(θ) and radii

∑

j 6=i |∂ijf(θ)| for i = 1, . . . , p.
Using (4) we have

∣

∣∂iif(θ)
∣

∣ =
∣

∣κici(θ)
∣

∣ =
∣

∣κi

∣

∣ >
∑

j

∣

∣λij

∣

∣ =
∑

j

∣

∣ci(θ)λijcj(θ)
∣

∣ =
∑

j 6=i

|∂ijf(θ)|,

none of these discs contain 0 and thus the circles corresponding to i with ci = 1 and
with ci = −1 respectively form two disjoint groups. We can conclude that for each i
with ci = 1 the matrix Hf has a negative eigenvalue and for each i with ci = −1 the
Hessian has a positive eigenvalue. Consequently, θ = µ is the only local maximum of
f , θ = (µ1 + π, . . . , µp + π) is the local minimum of f and all other critical points are
saddle points.

It is easy to see that the statements about the minimum in corollary 2.2 do not
necessarily hold under the weaker assumption from proposition 2.1. For example, the
matrix

Λ =





0 −2 2
−2 0 2
2 2 0





has eigenvalues −4, 2 and 2. Thus, for κ = (3, 3, 3) the matrix P is positive (the
eigenvalues are 1, 1 and 7), and the assumption of proposition 2.1 is satisfied. On
the other hand, the Hessian matrix of f at θ = (µ1 + π, µ2 + π, µ3 + π) is Hf (θ) =
diag(κ1, κ2, κ3)+Λ and, since this matrix is not positive semi-definite (the eigenvalues
are −1, 5 and 5), the minimum of the distribution cannot be at (µ1+π, µ2+π, µ3+π).

3 Low Concentration

In this section we consider the case of “small” κ. In this case the structure of the
extrema of a MVM(µ, κ,Λ) distribution is much more complicated than for the con-
centrated case. We illustrate some of the possible scenarios with the help of examples,
starting with the boundary case κ = (0, 0, . . . , 0) and then considering small but non-
zero κ.

The following lemma shows that for κ = 0 the case of a single global maximum
can never occur.

Lemma 3.1. For κ = 0, the following statements hold:

1. The density of the multivariate von Mises distribution MVM(µ, 0,Λ) takes its
maximal value on the set { 1

2
π, 3

2
π}p ⊆ T

p, i.e.

sup
θ∈Tp

ϕ(θ;µ, 0,Λ) = sup
θ∈{ 1

2
π, 3

2
π}p

ϕ(θ;µ, 0,Λ).
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2. If θ is a maximum, then so is (θ1 + π, . . . , θp + π). In particular the number of
isolated maxima of f is always even (and thus cannot be 1).

proof. Without loss of generality, we can assume µ = 0. Let θ∗ ∈ T
p be a global

maximum of ϕ( · ; 0, 0,Λ). As in proposition 2.1, this is equivalent to θ∗ being a
maximum of the function f from equation (2). Since we assume κ = 0, the formula
for f simplifies to

f(θ) =
1

2
s(θ)⊤Λs(θ) (8)

and the partial derivatives of f are given by

∂if(θ) = ci(θ)

p
∑

k=1

λiksk(θ). (9)

Let i ∈ {1, 2, . . . , p}. Since λii = 0, the value
∑p

k=1
λiksk(θ) does not depend on θi

and thus θi 7→ ∂if(θ) can only change sign at the points θi =
1

2
π, 3

2
π. Consequently,

θi 7→ f(θ) changes monotonically between the values θi =
1

2
π, 3

2
π. Defining θ+ and

θ− by θ+i = 1

2
π, θ−i = 3

2
π, and θ+j = θ−j = θ∗j for j 6= i this shows that one of the

two inequalities f(θ+) ≥ f(θ∗) ≥ f(θ−) and f(θ−) ≥ f(θ∗) ≥ f(θ+) holds. Since θ∗

is a global maximum of f , equality holds in the upper bound and thus either θ+ or
θ− is also a global maximum. By repeating this procedure for i = 1, 2, . . . , p we find
a global maximum where each coordinate is in the set { 1

2
π, 3

2
π}. This completes the

proof of the first statement.
The second statement is a direct consequence of the fact that the function f from

(8) is invariant under the map θ 7→ θ + (π, . . . , π).

Lemma 3.2. Let κ = 0 and Λ 6= 0. Then every global maximum θ of ϕ(θ;µ, 0,Λ)
satisfies ‖s(θ)‖∞ = 1.

proof. Since the trace of a matrix equals the sum of its eigenvalues and since Λ is
a non-zero matrix with zero trace, Λ must have a strictly positive eigenvalue λ. Let
x be a corresponding eigenvalue with ‖x‖∞ ≤ 1. Then we can find θ = (θ1, . . . , θp)
with sin(θi) = xi for i = 1, 2, . . . , p. This vector θ satisfies

f(θ) =
1

2
s(θ)⊤Λs(θ) =

λ

2
s(θ)⊤s(θ) > 0.

Consequently the maximal value of f is strictly positive.
Now let θ ∈ T

p with f(θ) > 0 and ‖s(θ)‖∞ < 1, i.e.
∣

∣si(θ)
∣

∣ < 1 for all i ∈
{1, . . . , p}. Let c = 1/‖s(θ)‖∞ > 1 and s̃ = cs(θ). Since ‖s̃‖∞ = 1, we can find θ̃ ∈ T

p

with sin(θ̃i) = s̃i for i = 1, 2, . . . , p. This point satisfies

f(θ̃) =
1

2
s̃⊤Λs̃ = c2

1

2
s(θ)⊤Λs(θ) > f(θ).

Therefore, θ cannot have been a maximum of f .

Example 1 (κ = 0, two isolated modes). Consider a MVM(µ, 0,Λ) distribution with

Λ =





0 1.75 0.77
1.75 0 0.06
0.77 0.06 0



 .

Since κ = 0, lemma 3.2 applies and shows that all maxima of ϕ( · ;µ, 0,Λ) correspond
to θ where s(θ) lies on the surface of the cube Q = [−1, 1]3. Thus, we can find the
local extrema of f by first finding the local extrema of g(s) = 1

2
s⊤Λs on the surface

of Q and then identifying the corresponding values θ. To aid with finding the maxima
of g, figure 1 shows a plot of g on the (unwrapped) surface of Q. In the figure, the
top-most square corresponds to s3 = +1, the centre square to s2 = −1, the right-
most square to s1 = +1 and so on. One can see that the distribution has two modes,
corresponding to s(θ) = (−1,−1,−1) and s(θ) = (+1,+1,+1).
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Figure 1: Visualisation of a von Mises density from example 1, as a function of s(θ)
restricted to the surface of the cube [0, 1]3. The plot shows that the distribution has

two modes.
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Example 2 (κ = 0, one extended mode). Consider a MVM(µ, 0,Λ) distribution with

Λ =





0 −1 1
−1 0 1
1 1 0



 .

We can find the modes of this distribution in the same way as we did in example 1,
the corresponding plot of g is shown in figure 2. The figure shows that the density
of this MVM(µ, 0,Λ) distribution has an extended maximum which forms a loop on
the surface of the cube. Figure 2 shows the density as a function of s(θ). To give an
idea of the distribution of the corresponding angles θ1, θ2, θ3 themselves, we show a
scatter plot of a sample in figure 3. While this (much more conventional) diagram
shows the distribution of the sample clearly, comparison with figure 2 makes it clear
that the structure of the mode is difficult to understand from a scatter plot alone.

The case of small, non-zero κ can be seen as a perturbation of the case κ = 0. Such
a perturbation would normally just shift the extrema of the density around, but the
following example shows that such a perturbation can also break a spatially extended
maximum into a set of isolated maxima, thus increasing the number of modes.

Example 3 (κ > 0, six isolated modes). The maximum of the von Mises distribution
illustrated in figure 2 lives on a “ring” formed as the union of six lines in T

3, aligned
with the grid { 1

2
π, 3

2
π}3. Since the ci are zero on the grid and take their maxima

between the grid points, we would expect that adding a perturbation term κ⊤c(θ) with
small κ will not only shift these lines, but will also collapse this extended maximum
into a collection of isolated maxima which live on the shifted lines, at the point where
the perturbation was maximal. The following, explicit example gives a von Mises
distribution in T

3 with six isolated maxima.
Let η > 0 and ε = sin(η). Define

κ =





ε
ε
ε



 , Λ =





0 −1 1
−1 0 1
1 1 0



 .

We will show that, for small enough η, the function f(θ) = κ⊤c(θ)+ 1

2
s(θ)⊤Λs(θ) has

local maxima at the six points θ1, . . . , θ6 ∈ T
3 given by the following table.

ℓ θℓ1 θℓ2 θℓ3 s1(θ
ℓ) s2(θ

ℓ) s3(θ
ℓ) c1(θ

ℓ) c2(θ
ℓ) c3(θ

ℓ)

1 0 3

2
π + η 3

2
π + η 0 −

√
1− ε2 −

√
1− ε2 1 ε ε

2 1

2
π − η 3

2
π + η 0

√
1− ε2 −

√
1− ε2 0 ε ε 1

3 1

2
π − η 0 1

2
π − η

√
1− ε2 0

√
1− ε2 ε 1 ε

4 0 1

2
π − η 1

2
π − η 0

√
1− ε2

√
1− ε2 1 ε ε

5 3

2
π + η 1

2
π − η 0 −

√
1− ε2

√
1− ε2 0 ε ε 1

6 3

2
π + η 0 3

2
π + η −

√
1− ε2 0 −

√
1− ε2 ε 1 ε

For the convenience of the reader, the table also gives the vectors s(θℓ) and c(θℓ) for
ℓ = 1, . . . , 6. By substituting these values into the formula for ∂if from equation (3),
it is easy to check that ∇f(θℓ) = 0 for ℓ = 1, . . . , 6 and thus all six points are critical
points of f .

Substituting the values from the table into the formulas for ∂ijf from (4), we can
compute the value of the Hessian matrix Hℓ = Hf (θ

ℓ) for ℓ = 1, . . . , 6. The results
are as follows:

H1 = H4 =





−ε −ε ε

−ε −1 ε2

ε ε2 −1



 , H2 = H5 =





−1 −ε2 ε

−ε2 −1 ε

ε ε −ε



 , H3 = H6 =





−1 −ε ε2

−ε −ε ε

ε2 ε −1



 .

It can be checked that each of these matrices has eigenvalues λ1 = −1 + O(ε2),
λ2 = −1 +O(ε2), and λ3 = −ε+O(ε2). Thus, for small enough ε > 0, all six points
are local maxima as required.
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Figure 2: Visualisation of a von Mises density from example 2. One can see that

the distribution has an extended maximum which loops around the cube in a “zig-zag

belt”.
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Figure 3: Scatter plot of 1000 samples from the distribution from example 2. To

make the structure of the maximum more visible, the matrix Λ was multiplied by 10,

i.e. the plotted sample is from a MVM(0, 0, 10Λ) distribution. The regions where

the scatter plots have higher intensity are not isolated modes of the distribution but

are artefacts caused by the projection of T3 onto T
2 where straight segments of the

extended maximum are seen “head-on”.
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4 Sampling

In this section we discuss a simple method to generate samples from a MVM(µ, κ,Λ)
distribution, using the rejection sampling algorithm (Robert and Casella, 2004, Corol-
lary 2.17). The method is restricted to small or moderate p, but works well for the
case of high concentration. We assume that the matrix

P = diag(κ1, . . . , κp)− Λ

is positive definite.
Without loss of generality we can assume µ = 0, the general case is then obtained

by a simple shift. We denote the smallest eigenvalue of P by λmin > 0. The proposed
algorithm uses independent angles θ1, θ2, . . . , θp as proposals, distributed with density

g(θ) =

p
∏

i=1

exp
(

λmin

4
cos(2θ)

)

2πI0
(

λmin

4

) .

This is the independent product of one-dimensional von Mises distributions, modified
by replacing the angle θ by 2θ. Since we can efficiently generate samples θ̃i from a
one-dimensional von Mises distribution VM(0, λmin/4) (e.g. Best and Fisher, 1979),
we can obtain samples from the density g by taking θi = θ̃/2 with probability 1/2
and θi = θ̃/2 + π else.

The target density is the density of the multivariate von Mises distribution MVM(0, κ,Λ),
i.e. it is proportional to

f(θ) = exp
(

κ⊤c(θ) +
1

2
s(θ)⊤Λs(θ)

)

.

Using the inequalities cos(θ) + sin(θ)2/2 ≤ 1 and s(θ)⊤Ps(θ) ≥ λmins(θ)
⊤s(θ), we

find

f(θ) = exp
(

κ⊤c(θ) +
1

2
s(θ)⊤Λs(θ)

)

= exp
(

p
∑

i=1

κi

(

ci(θ) +
1

2
si(θ)

2
)

− 1

2
s(θ)⊤Ps(θ)

)

≤ exp
(

p
∑

i=1

κi −
λmin

2
s(θ)⊤s(θ)

)

.

Finally, since cos(2x) = 1− 2 sin(x)2, we can rewrite this expression as

f(θ) ≤ exp
(

−pλmin

4
+

p
∑

i=1

κi

)

· exp
(λmin

4

p
∑

i=1

ci(θ)
)

= exp
(

−pλmin

4
+

p
∑

i=1

κi

)

·
(

2πI0(
λmin

4
)
)p · g(θ)

=: Cg(θ).

Thus we have found a constant C with f ≤ Cg and the rejection sampling algorithm
can be applied.

In the rejection sampling algorithm, a proposal θ is accepted with probability
f(θ)/Cg(θ), i.e. with probability

p(θ) =
exp

(

κ⊤c(θ) + 1

2
s(θ)⊤Λs(θ)

)

exp
(

∑p
i=1

κi − λmin

2
s(θ)⊤s(θ)

)

= exp
(

p
∑

i=1

κi

(

ci − 1
)

+
1

2
s⊤(Λ + λminI)s

)

where I is the p × p identity matrix. Thus, the following algorithm can be used to
generate samples of a MVM(µ, κ,Λ) distribution when P is positive:
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1. Generate random variables

θ̃1, . . . , θ̃p ∼ VM(0, λmin/4)

δ1, . . . , δn with P (δi = 0) = P (δi = π) = 1/2

U ∼ U
(

[0, 1]
)

,

all independent of each other.

2. Let si = sin(θi) and ci = cos(θi) for i = 1, 2, . . . , p.

3. If the condition

U ≤ exp
(

p
∑

i=1

κi

(

ci(θ)− 1
)

+
1

2
s(θ)⊤(Λ + λminI)s(θ)

)

is satisfied, output θ = (θ1 + µ1, θ2 + µ2, . . . , θp + µp) (i.e. the proposal is
accepted).

4. Return to step 1.

We note that the algorithm still works when the eigenvalue λmin is replaced by
a lower bound 0 < λ̂min ≤ λmin for the eigenvalues of P . This allows to apply the
algorithm in situations where the eigenvalues of P are not exactly known.

The efficiency of this algorithm is determined by its acceptance rate: If Z is the
normalisation constant which makes 1

Z f a probability density, then each proposal is
accepted with probability Z/C. From Mardia et al. (2012, equation (3)) we know
that, for high concentration, we have

Z ≈ (2π)p/2|P |−1/2 exp
(

p
∑

i=1

κi

)

where |P | is the determinant of the matrix P . From Abramowitz and Stegun (1964,
formula 9.7.1) we know √

2πκ e−κI0(κ) −→ 1

as κ → ∞. Consequently, the asymptotic acceptance probability for high concentra-
tion is

Z

C
≈ (2π)p/2|P |−1/2 exp

(
∑p

i=1
κi

)

exp
(

−pλmin/4 +
∑p

i=1
κi

)

· (2π)p/2(4/λmin)p/2 exp
(

pλmin/4
)

=
1

2p
·
√

λp
min

|P | .
(10)

The proposed algorithm will be efficient if this probability is not to small. Considering
the first factor on the right-hand side of (10), we see that the method only can be
expected to perform well for sufficiently small values of p. The factor 1/2p is expected,
since the proposal distribution has 2p modes, whereas the target distribution has
only one. Since the determinant |P | equals the product of all p eigenvalues of p (the
smallest of which is λmin), the second factor on the right-hand side of (10) is big, if
the eigenvalues of P are all of the same magnitude, i.e. if the mode of the distribution
is approximately rotationally symmetric.

Acknowledgements. The authors wish to thank John Kent for many helpful
discussions.
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