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Abstract:

We apply a latent class tobit framework to the analysis of panel dathasitable donations at the
household level where the latent class aspect of the model splits househotd® igtoups, which we
subsequently interpret as “low” donators and “high” donators. The tobit part of the model explores the
determinants of the amount donated by each household conditional grirb#iat class. We extend the
standard latent class tobit panel approach to simultaneously include rasfthots, to allow for
heteroskedasticity and to incorporate the inverse hyperbiole (IHS) transformation of the dependent
variable Our findings, which are based on U.S. panel data drawn fremwawes of the Panel Study of
Income Dynamics, suggest two distinct classes of donaldmre is a clear disparity between the
probabilities of zero donations acrossdbelasses, with one class dominated by the observed zers giver
and associated with relatively low levels of predicted givikge find clear evidence of both
heteroskedasticity and random effects. In additiinlHS parameters were significantly different from
zero and different across classes. In combination, these findings endoriseptrtance of our three
modelling extensions and suggest that treating the population as a simgigemeous group of donors,
asis common in the existing literature, may lead to biased parameter estimatesrargbus policy
inference. Although we use this model to explain charitable donations,otee timat it has wide
applicability.
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l. Introduction and Background

Recent figures from Giving USA 2011 estimate total charitable contributions in the U.S.
in 2011 at $290.89 billion, which relates to total charitable contributions from U.S.
individuals, corporations and foundations and includes both cash and in-kind donations.
Given the economic significance of such donations, it is not surprising that an extensive
empirical and theoretical literature exists exploring why individuals make contributions
to charity, with much of the existing research focusing on charitable donations at the
individual and household level in the U.S. (see, for example, Andreoni, 2006).

The statistical methodology used to analyse charitable donations has increased
in sophistication since the early studies, which typically adopted a simple log-linear
approach to analyse the amount of donations. Reece (1979) made an early
methodological contribution by applying the tobit model to the analysis of cross-section
data on the amount of household donations accounting for the fact that donations are
censored at zero, i.e. a significant proportion of individuals and households do not make
charitable donationsThe tobit approach has been adopted by a number of empirical
studies of charitable donations including Kingma (1989), Auten and Joulfaian (1996)
and, more recently, Brown et al. (2022){lowever, a fundamental problem with the
tobit approach, relating to the treatment of the censored observations, lies in the

possibility that the decision to donate and the decision regarding how much to donate,

1 1t should be acknowledged that the implications of charitable behavioualsvbeen analysed at the
country level. For example, Elgin et al. (2013) analyse how religiaiivates individuals to engage in
charitable giving and this leads them to prefer making their contributibreggdy and voluntarily rather
than through the state, with religiosity resulting in lower levels gésaand hence lower levels of
spending on both public goods and redistribution.

2 The tobit approach has been used in a very wide range of applications clszadbgr truncated
observations: for recent examples, see Addessi et al. (2014) in the contembwdtion activity,Al -
Malkawi et al. (2014) in the context of dividend smoothing anérCét al. (2014), who analyse the
intellectual capital and productivity of insurers.

% In contrast to the current paper, the focus of Brown at al. (2012) kemlgsing cross-section data from
the 2005 US Panel Study of Income Dynamics to explore the relationship betlweations to the
victims of the 2004 Indian Ocean tsunami disaster and other charitaldéiotisn i.e. to further our
understanding of the relationship between donations made to differspscau
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may be characterised by different influences. As a consequence, the double-hurdle
model has also found favoum the existing literature (see, for example, Yen et al.
1997); this approach allows covariates to have different effects on the probability of
making a donation and the level of donation. Thus, one interpretation of the double-
hurdle approach is that it is based on the premise that a significant proportion of
householdsthe “non-participants”, will never donate, which we argue here may not
necessarily be the cade.a cross-section case, this is true by definition: the identified
“non-participants” cannot donate; in a panel setting, such as ours however, it is possible
to allow the participation decision to vary over time.

For example, a stark feature of our data reveals that once we consider
households, as opposed to simply observations, the proportion that never donate drops
dramatically with the number of times they are observed. Even over the relatively short
period of time we observe households for (nine years in total, for which we have data
for five), of those households observed over the full length of the panel, only 15% never
donate, compared to 44% of households regardless of length of time in the panel.
Clearly if we could observe all these households over a longer period of time, the
logical conjecture is that this percentage would fall even further and start to approach
zero. For example, even for habitual zero-observed donators, it is possible that a
significant shock (such as a closely related traumatic event) will increase their
propensity to donate.

Hence, it appears that a double hurdle approach may be inappropriate in this
context. The latent class approach is an alternative modelling strategy which is arguably

well-suited to the analysis of charitable donations, given the potential for very diverse



donating behaviour within a populatidrithe latent class approach (probabilistically)
splits the population into a set of homogeneous groups. Within each class, or group, an
appropriate statistical model applies (in our case, this is based upon a tobit specification
to take into account the censored nature of the data).

Such an approach is advantageous, as it simultaneously introduces heterogeneity
into the empirical framework and ex post allows for splitting of the population into
various sub-groups of donating behaviour. Moreover, this approach, in splitting the
population into different types of givers, explicitly allows the probability of zero
donating to differ in each class, thereby leading to a richer layered characterisation of
the “zero-donation” processlIn essence, our suggested latent class approach will “push”
some groups towards zero donations whilst “pulling” others away from it. In all
situations, there remains a non-zero probabilitg éro donation, which is likely to be
higher in the groups pulled towards zero.

Building on the heterogeneity afforded by the latent class approach, we take
advantage of the panel data available to us to account for unobserved heterogeneity that
will undoubtedly drive household donating behaviour. That is, we explicitly allow for
unobserved effects. Finally, as is well documented in the statistics literature (see
Wooldridge, 2010, for example), estimation issues have arisen with respect to the tobit
model including inconsistency in the face of both heteroskedasticity and non-normality.
Therefore, we accommodate both non-normality, by employing the inverse hyperbolic
sine (IHS) transformation, and heteroskedasticity, with an explicit parameterization of
the disturbance variance(s).

In the existing literature, all of these extensions have been explored in isolation

to each other. Our contribution is that we allow for all of these extensions within an

* This approach has been applied in a wide variety of areas rangingdrmsumer behaviour (see, for
example, Reboussin et al., 2008, and Chung et al., 2011), to beaftbmics (see, for example, Deb and
Trivedi, 1997, and Bago d’Uva, 2005) to transport mode choice (see, for example, Shen, 2009).
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integrated statistical framework. Indeed, the joint consideration of each of latent classes,
unobserved (random) effects, non-normality and heteroskedasticity, is extremely
important, as if any of these are present and not accounted for, as is well-known in the
literature, biased and inconsistent estimates would result (see, Wooldridge, 2010, for
example). Our extended statistical framework thus augments the existing latent class
model in a number of ways which are fundamentally important for its application to the
analysis of panel data with a censored dependent variable.
. Statistical Framework: A Panel Latent Class Tobit Model
Our basic hypothesis is that there are inherently more than one type of charity donators
in the populationshigh” giversand “low” givers is a natural partition. However, clearly
these inherently different types of households will not be directly observed. Thus, the
broadapproach we follow here is that of “latent class” or “finite mixture” models (for a
comprehensive survey of latent class models see McLachlan and Peel, 2000).
Essentially such an approach assumes that the observed data are drawn from a mixture
of underlying populations. In undertaking such an approach, care needs to be taken of
the specific nature of our dependent variable: household charitable donations. As is
common in the existing literature on charity (see Andreoni, 2006 for a comprehensive
survey of this area), we treat this as a corner solution model, such that we need to
employ censored regression (tobit) model techniques to take into account the quite
significant amount of censoring at zero (Maddala, 1983). In our case the censoring
amounts to some 40% of observations.

Thus, the general framework we adopt is a latent class tobit model. This

approach amounts to first (probabilistically) splitting the sample into two, or more,

® We note that one relevant existing study is Islam (2007), wheiders a very restricted version of a
latent class tobit model, but only allows intercepts to vary by classd@ition classes do not vary by
observed characteristics; neither heteroskedasticity nor non-normality are alfoweénd any
unobserved effects in the tobit part of the model are ignored).
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samples(which, prior to estimation we envisage to correspond to “high” and “low”
donators) and then, for each of these subpopulations, separate tobit models apply. In this
way, the same explanatory variables in the t@hit‘amount of giving”) equation can

have differing effects across the different classes.

The probabilistic splitting of the sample is usually based on a logit specification
(Greene, 2012), which can be either a constant across households, or allowed to be a
function of observed household and head of household charactegsticss possible
to allow for a theoretically large number of such latent classes. However, we restrict
ourselves here to two, as any greater number of classes yields an overly parameterised
model that is difficult to interprétin practice the optimal number of classes is usually
determined on the basis offormation criteria (see, for example, Deb and Trivedi,
2002).

As Greene (2012) points out, the availability of panel data significantly aids in

the identification of latent class models. Essentially this arises as, being time-invariant,
we now have several observatiofi§) on each household upon which to base class

membership, as opposed to the single one in a cross-section. Following the existing
literature, for example, Clark et al. (200Bggo d’Uva and Jones (2009) and Greene
(2012), we parameterise our model such that time-invariant head of household
characteristicsz; affect the probability of being in each class (with associated
coefficientsn) and the remaining head of household and household characteristics,
along with any further economic variables (such as price), determine the amount of
giving by the household within the class. In effect, specifying time invariant head of
household characteristics in this way amounts to parameterising the hotseéfiodd

effect” of being in each class.

® Indeed, convergence problems were encountered in the case ofethelttss model, suggesting that
this was the case: one, or more, of the three probabilistic pointpdrsiwas degenerate.
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Let xi; be the vector of explanatory variables determining the level of donations
by household i in period t, and let there pel,...,J latent classes (in our case, J = 2).

There will be J parameter vecto,,c;) associated wittx; in the different classes

(whereg; is the standard deviation of the error term within each class). Post-estimation,
based on the estimated parameter vectors, it is possible to estimate (average) expected
values of giving across the classes, and in this way to determine whiobseesshe

“high” and “low” donators.

Conditional on class membership, which is constant over time by definition, the

y, oObservations on charity donations for househbl({i =1... ,N) in period t
(t =1... ,Ti)are independent we reconsider this assumption below. For a group of

observations, the joint density of the sequencg,ois

Ti

f(vilclass= j,X;.B;,0,)=]] f(¥|class- ix B .5 ) (1)

t-1
where for household i in periddthe density f (yit ‘class: 1%5B; »o; ) is given by the
tobit formulation (Maddala, 1983) ang;,(X;) denotes theTperiods of observed data
on household i.

The density for thet’th observation for the tobit model is derived from the

latent regression,

Y, l(class= )=PBix, +&; .4, ~N(0,57), with @
y, =V, if yp >0 andy, = 0 otherwis:

The implied density for the observediy therefore

f(y, Iclass= jx; B, ,o; ):{q)(iﬂ {id{mﬂ o
of S S



where 0} equals 1 if y is greater than zero, and O otherwise, @rahd® represent the
standard normal p.d.f. and c.d.f., respectively.

The log-likelihood for a panel of data on charitable donations will accordingly

be
lOgL[(Bj’Gj’nj)!j =1,...J ]:Z|O Zpu' (le ’zi)l_i[f(Yt ‘CIaSSZ I% Bj Y )}
i=1 =1 t=1 (4)

wherep, (1,z ) are the logit probabilities of being in class j:

exp(zn,) ,j=1,..J;m,=0

Z ?:1 eXp( Z;ni )

pi(nz)=
5)

and n, =0 for identification. Note that all parameters of the model, that is, those in the
logit model determining class membership and those in the multiple tobit equations, are
jointly estimated (see, for example, Deb and Trivedi, 2002, for maximum likelihood
estimation of latent class models). The latent class specification groups the population
into two types (classes) of donators. Prior to estimation, we know nothing about which
households will be in each class; and nothing about the donating behaviour within each
class.

Within each class, donating behaviour follows a corner solution model, whereby
each household, in each time period, chooses an optimal level of donation. For some
households, in some time-periods, this choice will be zero. Moreover, this decision
process will (primarily) be driven by observed changes inhtheehold’s economic
and social environment, i.ex;. Thus, this optimisation process combined with a
changing observed (economic and social) environmeantmeans that the statistical
model explicitly allows for households to move from zero to positive consumption from

yearto-year; or from positive to zero; or from large donasitmsmall; and so on.



Post-estimation, two estimates of the probability of being in each class are

available. Prior probabilities can be obtained by simply evaluating the above expression
for p,(n.z ). However, for prediction purposes it is more useful to look at the

posterior, or conditional on the observed data, probabilities (Greene, 2012). Using

Bayes Theorem, we obtain

f (observation j class )i P clas$ ]

P(class= | observation i

Zj:lf (observationfclass= ) K class)j

T

[1f(vel%oB 0 )R (z.m)

t=1

Z?—llj f (yit 1%i>B; 0, )pj (4 M ) (6)

The specification thus far can be considesé@tandard” application of a latent class

model where panel data are available (see Greene, 2012, for example), and the model
can be estimated using standard software, such as Nogl#p. We suggest three
important extensions to this basic set-up that significantly increase the flexibility and
robustness of this latent class approach, whilst fully taking advantage of the panel
nature of the data.

Heteroskedasticity

As is well-known in the literature (see, Maddala, 1983, for example) if, as is likely with
unit-level data, there is heteroskedasticity present in the data and this is ignored in
estimation of nonlinear models (by maximum likelihood techniques), biased and
inconsistent parameter estimators will result (effectively as a result of maxinaising
incorrect likelihood function). The conventional assumption in the (latent class) tobit

model, is that

E(aif“ |Xn):<7'2- (7)

]



That is, that the error term in the model in (2) is orthogonal to the covariates and
homoskedastic within each clagéscommon approach to allow for heteroskedasticity is
Harvey’s (1976) model, in which the variance varies by observed charactenstveish

unknown weight$
2
o =c’ [exp(w'ﬁj )J (8)
The exponential transformation ensures that the variance(s) under the assumption of

heteroskedasticityd(# 0), is (are) both identified and positive. It is also convenient in

that a test oii-j =0, =1,2,.. provides a test of the heteroskedasticity model versus the

homoskedastic one. Following the bulk of the censored regression literature (see, for
example, Yen and Jones, 1997), the variables chosen to enter améothe household
scale variables available to us (income and wealth). With this extenrsjoin, (8)
replacess; in the tobit model in (2).

Unobserved Heterogeneity

Although the standard panel data latent class model (described above) allows one to
identify the classes more strongly (as opposed to simple cross-sectional data), it is
possible to exploit the panel nature of the data even further by using the within
household variation throughout the window of the panel. Accordingywié also
include unobserved time invariant common, or random, effects into the tobit parts of our
model specification (the case of fixed effects in censored regression models is
considered by Honoré, 1992). As is common in the panel data literature (see, for
example, Baltagi, 2005), we add4pinto equation (2), a household (and class) varying

error y; such that the latent regression becomes

yi:|j :Xi;Bj & T4, . 9
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Again, as is common in the literature, these unobserved household specific effects are

(initially) assumed to be orthogonal to the covariates in the model, and follow a normal
distribution with mean zero and varianéé. However, it is also straightforward to

allow these unobserved effects to be arbitrarily correlated with covariates in the model
following the usual Mundlak (1978) approach (which essentially entails entering group
means of time-varying covariates by individual into the model). Note that as the two
unobserved effects implicitly relate to two distinct different groups of the population,
they are assumed to be independent. However, due to the presence of the cgmmon u
observations on the particular household are no longer independent across periods.
The density for the observegjyis now formed by first conditioning on the
unobserved heterogeneity. It is useful to write=tBv; where 6 = Var[u] and v ~

N[O,1]. Then,

f(y, [class= jx, ., B, o 9 ):{@[MH {iq{)ﬁ -B% -9y ﬂ
: v (10

The density for the observeg;ys now formed by integrating the unobservgdout of

the conditional density. We return to this point below where we obtain the log
likelihood for the sample.

Allowing for Non-Normality

If the assumption of normality that is central in the tobit models considered thus far is
invalid, the (pseudo-) maximum likelihood estimator of the parameters will be biased
and inconsistent. It lsabeen commonplace in models of charitable donations (and
indeed, in related areas, such as trade flows where there is a preponderance of zero
observations; see, for example, Harris et al., 2012); to model the natural logarithm of
(one plus) the actual level of donations (see, for example, Yen, 2002). Although often

not explicitly stated, this is presumably so that the resulting distribution of charitable
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donations is more nearly normally distributed. However, it is not clear that a zero in the
logarithmic scale is equivalent to the same in the untransformed scale; and moreover,
the addition of one is simply an arbitrarily chosen number to ensure that the log
transformation is defined for all households.

A recently used parametric approach to deal with this issue of non-normality
that originates with Burbidge et al. (1988), is to use the inverse hyperbolic sine (IHS)
transformation of the dependent variable. The IHS transformatiop), ,|0f, a variable

y, takes the form
1. . 1 05
1(y,y) =;smh 1(yy)=; Iog{yy+(y2y2+ ]) } (11)

where y is a scalar parameter to be estimated, and where the transformation is
symmetric around zero (so typically only nonnegative valuesy ofalues are
considered). The transformation is linearyaapproaches zero. For a wide range of
values ofy, the transformation behaves logarithmically, as it does for large values of y
A major advantage of the IHS transformation is that it renders estimation on the
transformed variable robust to non-normality of the original error terms. The IHS
transformation has been used before in more simple models of charitable donations by,
for example, Yen et al. (1997).

We note here that here that the use of the IHS transformation is not just to deal
with nonnormality, but also extreme values (as will be present in models related to
wealth). Moreover, it has a short, but illustrious, history in the study of wealth and
related issues (see, for example, Friedline et al.,, 2015), where there is not only
nonnormality, but also the presence of extreme values (see also, Burbidge et al., 1988,

and Pence, 2006). The IHS transformation has the virtue that it is smooth and

" We note that the issue of non-normality (and heteroskedasticityfjinvihe context of modelling
charitable giving at the cross-sectional level has also been considered byl/206B).
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continuous, exists for the entire real support, not just nonnegative values, and does not
make an abrupt transition at zero (the way that the Box-Cox transformation does, for
example)’

With this modification, the density of y becomes

1-D,
ol = i =0V 9
Oj

f(y, [class= j'Xit’li'I|j 7Bj 10j 161 i )= D,
J(y.t,vj)d{ (%1,)-B% — 0, ﬂ (12)

O.

J O;

J

where J(y,y;) is the Jacobian of the transformation from,i{y to y,

IO =L+ Oy T2 (13)

We allow y; to vary across classes, as it is possible that different transformations are
appropriate for the different sub-groups of the population. If the IHS parameters do vary
across classes, this would suggest that using a single transformation for all households
(using logs, for example) would be inappropriate.

The suggested extensions (heteroskedasticity, random effects and non-
normality) are new to the literature of panel data latent class models. Importantly if any
of these innovations are found to be statistically significant (which they all were in our
application, as discussed below), ignoring them in estimation will lead to biased and
inconsistent parameter estimates (Wooldridge, 2010). Allowing for unobserved
heterogeneity significantly increases the complexity of the estimation. The random

effects need to be integrated out of the likelihood function. The approach we take here

8 Following the existing literature (beginning with Burbidge et al.,128®l including MacKinnon and
McGee, 1990, Jensen and Yen, 1995, Yen and Jones, 1997, Yen et/@lNé@®nan et al., 2003, Pence,
2006, Yen, 2007, and most recently Friedline et al., 2015), we apply thetr&hSformation to the
dependent variable. This approach ties in with the long line of literatutkeoBox-Cox transformation,
as reviewed in Sakia (1992). An alternative approach relates to applyingi$héransformation to
deviations from the conditional mean function, which we highliglat pstential area for future research,
given our aim to position our analysis within the existing literature. aké grateful to an anonymous
reviewer for bringing this to our attention.
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to evaluate these integrals is to use simulation techniques, using 500 Halton draws
(Train, 2003). In estimation, we note that the results based on 500 random draws were
essentially identical to those using 100 Halton draws, suggesting that 500 Halton
replicates were sufficient. The simulated log likelihood with all extensions in place is

given by

Logle= " og 137 o 12 ) =X ([T FOk li% 2% B 4 8 9 4
i R

(14)
where the simulation is over the R draws agn Vhe simulated log likelihood is
maximized using the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) algorithm in
NLOGIT 5.0.

Predictions and partial effects are complicated in this model by the presence of
the IHS transformation. To assemble this, we note in general, the potentially interesting

margin

. Bx, +0,V
Prob(y, > Oflass= jx, z M F®| ——

j (15)
We will evaluate this probability at the expected value;df.@., zero). The expected

donation given that the donation is positive is

ELY | v >01=], % F(% |% >Oxy

:Hﬁ_xﬂ Ky{d(yﬂyj)d{l(x 1) -B% dew
O [o O
ij ij (] (16)

the unconditional expected donation is

Elyi] = Prob(y = 0)x0 + Prob(y > O)E[y; > 0]

o 1 IO 10k ) - B
_ y{ (% ”4{ (%.7,) Mj]dyn_
c G,

o Jit
ij ij

(17)
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There are no closed forms for these integrals, so they must be approximated. We used
the Newton-Cotes method (rectangles with end-point correction). Partial effects of these
conditional means also require integration. The derivatives of the integrals are simpler
than it might appear at first, as in order to differentiate with respect &mdz, it is

only necessary to differentiate with respect {=B[I(y i,y;) - Bj'Xi]/ o} and oj. Partial

effects are then multiples of these primitive derivatives. Standard errors for the partial
effects are obtained by the delta metfiod.

[11.  Application: Data

We use data from the U.S. Panel Study of Income Dynamics (PSID), which is a panel of
individuals ongoing since 1968 conducted at the Institute for Social Research,
University of Michigan. In the PSID waves 2001, 2003, 2005, 2007 and 2009, there are
a series of detailed questions related to giving to ch2riouseholds are asked about
total donations to charity over the respective calendar years. The mean (median) total
value of donations in each of the calendar years are as follows: 2001, $1,181.2 ($160);
2003, $1,170.7 ($114.2); 2005, $1,467.9 ($248.2); 2007, $1,743.9 ($251.8), and 2009
$1,589.6 ($242.2)* The potential for recall error here, should be acknowledged given
that households are asked to recollect their donating behaviour over the past year.
However, Wilhelm (2006) explores the quality of the PSID data on charitable donations
in terms of two dimensions: missing data and the amounts reported. He compares the
PSID charitable donations data with data on charitable deductions from the Internal

Revenue Service and finds that the reported amounts generally compare well across the

® This model is available in Version 6.0 of NLOGIT (2015, Econometric SoéwPlainview, New
York.) and version 10.0 of LIMDEP (same publisher). In theesylix, we also provide syntax as to how
to estimate this model.

19 The definition of a charitable organization in the PSiEludes ‘religious or non-profit organizations
that help those in need or that serve and support the public interest’. It is clearly stated that the definition
used does not include political contributions.

! Note that for estimation purposes, donations were entered as thousaritigsf do
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data sources except above thd' @@rcentile. He thus confirms that the PSID data on
charitable donations are ‘high quality’.

We analyse an unbalanced panel of data, where, on average, households are in
the panel for 3 waves and the minimum (maximum) number of waves is 1 (5).
Following the existing literature (such as Auten et al., 2002), to avoid changes in
income and in charitable donations being related to changes in household composition,
households are only included in the sample if their marital status is unchanged over the
period. Our findings are robust to including all households regardless of changes in
marital status.

In our statistical framework, we include numerous explanatory variables, which
have previously been employed (see, for example, Andreoni, 2006, and Auten and
Joulfaian, 1996). In terms of those in the latent class component of the modelzj.e. in
following Clark et al. (2005)Bago d’Uva and Jones (2009) and Greene (2012), for
example, we include time invariant head of household characteristics: years of
completed schooling; gender; the ethnicity of the head of household (where groups
other than white form the reference category); religious denomination, that is, Catholic,
Protestant or other religion (with no religious denomination as the omitted category)
the natural logarithm of permanent income, which is defined as the average household
income prior to the commencement of the estimation sample; and the following year of
birth categories, born before 1949, 1950-59, 1960-69 and 1970-1979 (born after 1980 is
our reference category).

The tobit part of the model, i.g;, is in line with much of the existing literature.

Here we include the number of adults in the household, the number of children in the
household, the age of the head of household, the employment status of the head of

household and their spouse (with unemployed or not currently in the labour msirket
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the reference category), the marital status of the head of household (with all states other
than married or cohabiting as the base), the natural logarithm of the income of the head
of household and their spouse, and the natural logarithm of household t¥ealth.

Finally, we also include the price of donating in the tobit model. Taxpayers in
the U.S. can choose to report itemized deductions such as donations to charity in their
federal income tax returns as eligible expenses to reduce the level of income subject to
tax. The majority of taxpayers in the U.S. choose between itemized deductions and the
standard deduction depending on which is the largest. For households who itemize
charitable donations in their tax return, the price of the donation is defined as one minus
the household’s marginal tax rate on the contribution made, whereas for households
who do not itemize charitable donations, the price of the donation is one; donating one
dollar means that there is one dollar less for consumption. One key advantage of the
PSID is that households are asked to indicate whether they made an itemized deduction
for charitable contributions. Households which itemize are assigned the relevant tax rate
using the National Bureau of Economic Research (NBER) TAXSIM programme
(http://www.nber.org/~taxsim/), which calculates federal state tax liabilities for survey

data based on a range of factors such as earnings, marital status and tfldren.

12 As is standard practice, we focus on head of household characteristicav&ehacked however, that
our results are robust to using average characteristics of the headisaghbld and their spouse for
variables such as age and education. The results are unchanged, whichugprising given that, for
example, the mean age of the head of household is 45.48cgeapsred to 44.62 for the average of the
head and spouse, similarly with respect to years of schoolirtfy §8ars compared to 12.90 years.

3 The TAXSIM programme includes both state and federal law, which isrteng given for example
changes in federal taxes in 2001, 2003 and 2004 during this p@eedBackus, 2010, for recent
discussion of the effects of these changes).

4 One additional issyewhich has arisen in the existing literature, is that the decision to itemise i
arguably not fully exogenous: the decision to itemise may be irfitkby the level of donations. To
account for this, as is common in the existing literature (seee@tf1980, and Auten et al., 2002), we
exclude ‘endogenous itemisers’ who are defined as those who have itemised but would not have done so

in the absence of their actual charitable donations. Due to an additional ebpassible endogeneity
relating to the price of a charitable donation being a function of bottotiegtidn and income, see Auten
et al. (2002), we calculate the price variable firstly by assuming thatadhardonations equal zero (i.e.
the first dollar price) and then after including a predicted amougivirig set at 1 per cent of average
income. We then take an average of the two price variables. As stated byeAatgn002), p.376, ‘this
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Summary statistics for our estimation sample (after omitting outliers and
observations with missing values) are presented in Table 1, where, on average, the head
of household has 13 years of schooling; 70 per cent are male; 49 per cent of household
heads are born between 1950 and 1969; and 53 per cent are married or cohabiting. All
monetary variables in the analysis are deflated to 2001 prices.

IV. Application: Results

In this section, we discuss the results from estimating the panel latent class tobit model
detailed above. Table 2 presents the results relating to the determinants of class
membership (with Table 3 presenting the remaining results). Out of the 9,755
observations, 2,274 are predicted to be in class 1 and 7,481 in class 2, the sample
proportions in each class being 0.23 and 0.77, respectively. Note that these class
separations are determined by the estimated posterior probabilities (based upon the
maximum probability rule). In Table 2, we also present the probability of reporting zero
donations within each class (evaluated at sample means).

From Table 2, there is a clear disparity between the probabilities of zero
donations across the classes, with class 1 (at 0.61) being significantly lower than class 2
(at 0.76). We can use these findings, in part, to help us identify the two classes: so class
2 is dominated by the predicted zero givers. To paint a clearer picture of our findings,
consider the results presented in Table 3. This table presents the results relating to the
analysis of the determinants of the amount of donations. We will return to the estimated
coefficients shortly, but for now will focus on the expected values, E(V), of donations.
As before, we split the sample into class 1 or 2, based upon their predicted posterior
probabilities. Within each class, we then consides expected values of charitable

donations: the simple, unconditional, sample average of observed donations for these

procedure yields a tax price consistent with the actual costsiofjgilwt not endogenous to individual
donation decision’.
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households; and the averaged predicted expected value of donations (that is, based upon
observed personal and household characteristics).

From the unconditional expected values, it seems clear that class 1 contains
“high” and class 2 contains “low” givers to charity. Average actual donations for classes
1 and 2, respectively, are $3,309 and $313. This ties in with the findings presented in
Table 2. Households predicted to be in class 1 have a relatively low probability of
making zero donations and are predicted to donate, on average, much more than those
predicted to be in class 2. This finding is reinforced when we evaluate the predicted
expected value of the level of donations for each class. Due to the IHS transformation,
these predicted expenditure levels are computed following the approach of Yen and
Jones (1997) as described above. We now find that the average predicted level of
donations amongst those in class 1 is $2,063, which is again significantly higher than
that of class 2, at $1,487. After summarising the results in general, we now turn our
attention to the specific drivers of both class membership and donation levels.
Class Membership
As the coefficients in Table 2 correspond to class 1 membership (relative to class 2),
these coefficients can be interpreted as follows: positive ones being associated with
higher probabilities of being in class 1 (relative to class 2); and negative ones being
associated with a higher probability of being in class 2. The results suggest that
households with a male head are significantly more likely to be in class 2, the low
donating group characterised by a relatively high probability of making zero donations,
than households with a female head (at the 5% level), which tieghrthe existing

literature. Life cycle effects are also evident with the likelihood of being in class 1
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(relative to class 2) found to be positively associated with the birth cohort controls born
before 1949, born 1950-59, and born 1960%69.

The education and ethnicity of the head of household are also significant
predictors of class membership, with the years of schooling of the head of household
and having a white head of household being positively associated with being in class 1
(the high donators group). Interestingly, hayvia household head in a Protestant
religious denomination is positively associated with being in class 1, whilst being in a
Catholic religious denomination is positively associated with being in class 2, albeit at a
lower level of statistical significance. Such findings highlight the importance of
distinguishing between different religious denominations in modelling donations to
charity.

Total Donations to Charity

The results from modelling the level of total household donations are presented in Table
3, where the coefficients are reported by class. With regard to individual (and joint)
parameter significance, it is apparent that, in general, the model is well-specified, with
many covariates attaining statistical significance. Moreover, given the above
specification tests, the overall model also appears to be well-specified. There are some
interesting differences between the effects of some covariates across the two classes
thereby revealing the flexibility, and appropriateness, of the latent class approach. For
example, statistically significant effects from whether the head of household or his/her
spouse are employed are apparent for class 1 but not for class 2. In contrast, being
married or cohabiting is positively associated with the amount of donations in both
classes. The price variable, on the other hand, is statistically insignificant in both

classes.

!> These cohort results could be capturing generational effects.
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In terms of our ancillary parameters (Table 3), importantly we find evidence of
heteroskedasticity in class 2, with the variance decreasing in both wealth and income in
class 2, both effects being statistically significant at the 1% level (and jointly so, using a
likelihood ratio test). This evidence of heteroskedasticity in one of the classes highlights
the importance of extending the modelling framework to deal with this issue. Random
effects are also significantly present in both classes, being much larger for class 1
therefore strongly indicating the presence of unobserved heterogeneity and endorsing
this novel extension to the modelling framework. Both IHS parameters are significantly
different from zero which would appear to suggest that a linear approach is ostensibly
inappropriate and that the standard untransformed tobit model, for example, would be
mis-specified (on the assumption that the model is well-specified, as is suggested by the
above specification tests). Interestingly, these parameters vary dramatically across
classes suggesting single transformation for all households (as, for example, in a
simple logtransformed model) would also be mis-specified. Individually, therefore,
each of the above tests provides, in essence, a specification test for mis-specification in
the case of the simpler (appropriately nested) model. However, the individual ones do,
indeed, provide strong evidence in support of our approach. Unfortunately, there does
not appear to be an appropriate specification test that can simultaneously address all
three areas of possible mis-specification.

We focus our discussion of the remaining results, on two key covariates which
have attracted interest in the existing literature, namely: wealth and income. It is
apparent that wealth exerts a statistically significant effect in the case of bo#gclass
where wealth is positively associated with the amount of donations. Similarly, income

exerts a positive influence on the amount of donations for both classes.
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Table 4 presents partial effects, computed separately for each class, fwoour t
covariates of particular interest (wealth and income). For each class we present partial
effects relating to the probability of making a positive donation, the overall expected
value of donations and the expected value of donations conditional on donatisg. The
effects all relate ta 10% increase in both income and wealth.

Thus in class 1 (Panel A), we see that a 10% rise in wealth results in an increase
in the probability of observing a positive donation, albeit of a relatively small
magnitude. On the other hand, a rise in income in this class has a statistically
insignificant effect. For class 2 (Panel B), a 10% increase in wealth has a larger effect
than in class 1, on the probability of observing a positive donation. We also find a
positive income effect for class ®hich is relatively large. Although these effects are
rather small in absolute value, the difference between the classes is dramatic: for class 2
the wealth effect is almost double that of class 1; whereas that for income is nearly
tenfold.

Turning now to the estimated partial effects across bothed@anel A and B
we find statistically significant positive effects for income and wealth for both the
overall expected value of donations and the expected value of donations conditional on
donating. For class 1 these effects are rather similar in magnitude (&¢sdsand
E[y|y > 0]). Across classes, the effects of income are noticeably greater than that of
wealth. However, these effects are considerably larger in class 2. For example, whereas
a 10% increase in income for class 1 results in an increaB¢yiy > 0] of 0.007
($000’s 2001), the equivalentin class 2 is 0.08 ($000’s 2001). Such differences serve to
highlight the flexibility of our latent class approach in terms of unveiling how the
influences on donating behaviour vary across sub-groups of the population.

Model Comparison and Evaluation
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In this sub-section we compare our results to a selection of alternative models that
conceivably could also have been considered. Specifically, we estimate: a standard tobit
model,a fixed effects tobit model® a standard panel latent class model; and a double-
hurdle model. We note that as these models are not all nested in the usual parametric
sense, it is not straightforward, or indeed obvious, as to how one may statistically test
for a “preferred” model. However, in such a case it is common to use model selection
techniques based on Akaike Information Criteria, AIC (Cameron and Trivedi).2005

To this extent, our model dominates all of the otlsersonsidered. This suggests that

our latent class approach is by far the preferred one here (see Table 5).

In Table 5, we also present estimated coefficients and, for purposes of
comparison across the models, partial effects for wealth and income. It is apparent that
across the five models the estimated coefficients for wealth and income are all positive
and statistically significant confirming that income and wealth are important drivers of
donating behaviour. This is also the case for the estimated partial effects, although there
are some distinct differences in terms of the magnitude of the effects across the five
models. With respect to wealth, the fixed effects tobit model reveals the smallest partial
effect (0.00319) and the standard tobit model the largest (0.00849). Intdyedtnaeg
difference in magnitude is similar across the partial effects estimated in our proposed
latent class framework across the two classes at 0.00474 (class 1) versus 0.00822 (class
2). One interpretation of this finding is that in estimating a single effect, the fixed

effects and standard tobit results, are yielding lower and upper bounds for this effect.

8 We have also estimated a random effects tobit model. These results are rietireee as due to a
very low scaling factor, partial effects could not be recovered. The coeffidenincome and wealth
estimated for this model tie in with the findings summarised in Table 5.

7 Although we only present AIC measures, as these appear to besnumonly used in these types of
models, the findings are robust to choice of particular information crifguizh as the Corrected AIC and
the Bayesian Information Criteria).

23



In terms of income effects, our new latent class model reveals both the smallest
partial effect (at 0.00705 for class 1) and the largest partial effect (at 0.05517 for class
2), encompassing the income effects for all other models. In this instance it appears that
the other models are essentially estimating an average effect between the two classes.
Thus, our flexible framework appropriately identifies the extent of the difference in the
income effects across the two classes, which would be overlooked by the other
estimation approaches.

V. Conclusion

We have extended the standard latent class tobit panel approach to simultaneously
include random effects, heteroskedasticity and the IHS transformation of the dependent
variable. We have applied this extended latent class framework to the modelling of
donations to charity, an interesting application because of the potential for distinct
groups of households in the population to have quite divergent behaviour with respect to
their donating behaviouPur findings, which are based on U.S. panel data drawn from
five waves of the Panel Study of Income Dynamics, indicate that there are, indeed, two
clearly defined groups of charitable donors: one which gives much more, and has an
associated lower probability of zero-donation; and the other, which donates much less
and has a higher probability of not donating. This suggests that treating the population
as a single homogeneous group of donors, could well lead to biased parameter estimates
and erroneous policy inference, as indicated by the comparison of the findings from our
extended modelling framework with those from other approaches commonly used in the
related literature. It is apparent that our modelling framework can potentially be applied
to analysis of other areas of household behaviour typically modelled in the existing

literature via a tobit approach, where different groups potentially exist in the population.
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TABLE 1. Summary Statistics

MEAN STANDARD DEVIATION

Total Donations (2001 prices) $1,011 $1,826
Head of Household Characteristics

Years of Schooling 13.12 2.38
Male [0/1] 0.70 0.46
White [0/1] 0.63 0.48
Catholic [0/1] 0.17 0.38
Protestant [0/1] 0.51 0.50
Other Religion [0/1] 0.04 0.18
Born <=1949 [0/1] 0.15 0.36
Born 1950-59 [0/1] 0.24 0.43
Born 1960-69 [0/1] 0.25 0.43
Born 1970-79 [0/1] 0.23 0.42
Age 45.47 20.09
Employee or Self Employed [0/1] 0.75 0.44
Spouse Employee or Self Employed [0/1] 0.34 0.47
Married or Cohabiting [0/1] 0.53 0.50
Household Characteristics

Number of Adults [1+] 1.86 0.78
Number of Children [0+] 0.92 1.16
Log Income of Head and Spouse (2001 prict 10.42 1.07
Log Permanent Income (2001 prices) 9.13 1.14
Log Wealth (2001 prices) 1.65 3.05
Price 0.77 0.08

OBSERVATIONS 9,755




TABLE 2: Estimates of the Determinants of Class One Membership

COEF S.E.
Intercept -6.9551 0.5024™
Years of Schooling 0.3250 0.0207"
Male 0.2532 0.1172
White 0.1688 0.0999
Catholic -0.4045 0.1626
Protestant 0.4185 0.0985"
Other Religion 0.1877 0.2383
Log Permanent Income 0.0261 0.0386
Born =< 1949 1.4752 0.1646"
Born 1950-59 1.3693 0.1491"
Born 1960-69 0.6479 0.1553"
Born 1970-79 -0.0784 0.1676
Proportion predicted in Class i} 0.23
Proportion predicted in Class 2,] 0.77
Probability of Class  Zero donations 0.61
Probability of Class 2 Zero donations 0.76
TOTAL OBSERVATIONS 9,755

Notes: (i) significant at the 1% level: significant at the 5% level; andignificant at
the 10% level (ii) COEF denotes estimated coefficient and S.E. denotes standard error.



TABLE 3: Random Effects Latent Class Tobit Model

CLASS 1 CLASS 2

COEF S.E. COEF S.E.
Intercept -0.0083 0.3511 -1.5047 0.0950"
Married or Cohabiting 0.5034 0.0677" 1.1714 0.0128"
Number of Adults -0.0344 0.0741 0.0138 0.0205
Number of Children 0.0724 0.0565 0.0091 0.0141
Employed 0.2805 0.0538" 0.0213 0.0133
Spouse Employed -0.1185 0.0427" -0.0007 0.0098
Log Wealth 0.0343 0.0060" 0.0219 0.0017"
Log Income 0.1007 0.0197” 0.1450 0.0070"
Price 0.5085 0.3750 0.0982 0.1001
Age 0.0097 0.0511" 0.0105 0.0110
Age Squared /100 -0.0199 0.0507 -0.0108 0.0108
o 0.6883 0.1140" 0.8995 0.1359"
Log Wealth (Heteroskedasticity -0.0066 0.0060 -0.0125 0.0043"
Log Income (Heteroskedasticity) 0.0222 0.0144 -0.0906 0.0141"
v (IHS) 0.4240 0.0501" 3.0672 0.1652"
0 (RE) 0.2259 0.0292" 0.0322 0.0078"
EV Class j(unconditional) $3,309 $313
EV Clasg (conditional) $2,063 $1,487
Log Likelihood -11,603
OBSERVATIONS 9,755

Notes: (i) significant at the 1% level: significant at the 5% level; andignificant at thel0% level.(ii) COEF denotes estimated coefficient and

S.E. denotes standard error.



TABLE 4: Random Effects Latent Class Tobit ModdPartial Effects- Wealth and Income

PANEL A: CLASS 1

Prob(y > O|class 1) Ely] Ely|ly > 0]
P.E. S.E. P.E. S.E. P.E. S.E.
Log Wealth 0.00027| 0.00009" 0.00474| 0.00132"" 0.00438| 0.00117"
Log Income 0.00033| 0.00023 0.00705| 0.00372 0.00703| 0.00333"
OBERVATIONS 2,274
PANEL B: CLASS 2
Prob(y > 0|class 2) Ely] Elyly > 0]
P.E. S.E. P.E. S.E. P.E. S.E.
Log Wealth 0.00045| 0.00004" 0.00822| 0.00060" 0.01186/ 0.00101"
Log Income 0.00297| 0.00014" 0.05517| 0.00294" 0.08020| 0.00477"
OBERVATIONS 7,481

Notes (i)~ significant at the 1% level; significant at the 5% level; andignificant at thel0% level. (i) P.E. denotes partial effect; and
S.E. denotes standard error.



TABLE 5: Model Comparison and Evaluation

PANEL A: Latent Class Panel IHS Heteroskedastic Tobit Model

Class 1 COEF S.E. P.E. S.E.
Log (Wealth) 0.0343 | 0.0060" 0.00474 0.00132""
Log (Income) 0.1007 | 0.0192” 0.00705 0.00372
Class 2 COEF S.E. P.E. S.E.
Log (Wealth) 0.0219 | 0.0017" 0.00822 0.00060~
Log (Income) 0.1450 | 0.0070" 0.05517 0.00294"
AIC Information Criteria 23,311
PANEL B: Tobit Model

COEF S.E. P.E. S.E.
Log (Wealth) 0.1618 | 0.0085" 0.00849 0.00045"
Log (Income) 0.5677 | 0.0284" 0.02977 0.00148"
AIC Information Criteria 31,296
PANEL C: Fixed Effects Tobit Model

COEF S.E. P.E. S.E.
Log (Wealth) 0.0340 | 0.0074" 0.00319 0.00072”
Log (Income) 0.3235 | 0.0311" 0.03033 0.00441"
AIC Information Criteria 24,201
PANEL D: Latent Class Tobit Model
Class 1 COEF S.E. P.E. S.E.
Log (Wealth) 0.1050 | 0.0134" 0.00440 0.00065"
Log (Income) 0.3776 | 0.0439" 0.01905 0.00270~
Class 2 COEF S.E.
Log (Wealth) 0.0484 | 0.0029
Log (Income) 0.2381 | 0.0096"
AIC Information Criteria 26,628
PANEL E: Double Hurdle Model

COEF S.E. P.E. S.E.
Log (Wealth) 0.1527 | 0.0080" 0.00786 0.00041"
Log (Income) 0.5332 | 0.0238" 0.02745 0.00122~
AIC Information Criteria 31,156

Notes: (i)™ significant at the 1% level: significant at the 5% level; andignificant at thel0% level. (ii)

P.E. denotes partial effect; and S.E. denotes standard error. (iii) The partialpgtsetsted in this table all
relate to a 10% rise in the covariate Bfd]. (iv) In Panel D the partial effects are a weighted average
across the two classes.



Appendix: LIMDEP/NLOGIT Syntax
Below is the syntax to estimate this model:

TOBIT ; Lhs = < dependent variable >
; Rhs = < list of independent variables >
; Model = IHS
; Marginal Effects $
Extension to add heteroscedasticity in the disturbance is
; Heteroscedasticity ; Hf1 = < list of variables >
Extensions to accommodate latent heterogeneity
I. Random Effects
; Pds = <panel data specification - this is optional >
; Draws = < number of draws for simulation > ; Halton
; RPM ; Fcn = one(n)
Il. Latent class specification
; LCM o r; LCM = <variables that enter the prior class probs.>
; Pts = < the number of classes >
; Pds = < panel data specification - this is optional >
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