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Abstract— In this paper, we introduce a distributed consensus
protocol for coordinating orders of a network of buyers also
called agents/decision makers. Each buyer chooses a different
threshold strategy, defining its intention to place an order only if
at least other l buyers will do the same. We prove that consensus is
reached asymptotically globally and coordination is the same that
if the decision making process would be centralized, namely, any
decision maker (DM) has access to the thresholds of all other DMs
and chooses to order or not. The proposed distributed protocol
has the advantage that buyers do not have to communicate their
threshold strategy in advance, and consensus is reached without
exploring all the possible threshold values.

I. INTRODUCTION

Coordination of a team of agents/vehicles is an important
task in several applications including inventory routing [3],
formation flight of unmanned air vehicles (UAV’s) [6], attitude
alignment of underwater vehicles, and congestion/flow control
in communication networks [4].

All these types of problems can be addressed in the context
of cooperative and distributed control systems. For such prob-
lems, the lack of a centralized information processing places
emphasis on the role of a number of distributed protocols for
the information propagation.

In [1] a decentralized bang-bang continuous time control
law is proposed that track a desired state for a failure prone
network in presence of unknown but bounded disturbances.

In a particular type of cooperative and distributed problems,
known as agreement or consensus problems [7], it is requested
the eventual convergence of all the node states to a common
decision-value a-priori unknown.
A central point in consensus problems is the connection
between the graph structure, and delays or distortions in
communication links [2].

In this paper we consider a group of buyers (in the fol-
lowing also called either agents or decision makers–DMs)
aiming at coordinating their daily ordering decisions. Such a
coordination is generally motivated by the possibility of shar-
ing fixed transportation costs. We will express coordination
requirements for each buyer in terms of a minimum threshold
on the number of buyers, l, to coordinate orders with. Here,
each threshold li is assumed constant and a-priori known
only to the corresponding ith agent. In this context, we are
interested in defining a protocol for information interchange
among buyers such that the number of active buyers, i.e.
the buyers that eventually place orders, on the bases of the
available information is maximized.

We will show that it can be trivially defined a central-
ized protocol such that the number of active buyers can be
maximized. More interestingly, we will prove that the same
maximal set of active buyers can be achieved by means of
a distributed protocol. In particular, we will show that it is
sufficient that each agent communicates to a subset of other
agents its current local estimation of the possible percentage
of active buyers.

II. PROBLEM STATEMENT

In this section some notation is initially introduced and
hence the problem dealt with in this paper is formally stated.
• Consider a network G = (V, E); each buyer is a node
vi ∈ V , where i = 1, 2, ..., n, and each communication
link is an edge e = (vi, vj) ∈ E ; i, j = 1, 2, ..., n. Let
n = |V|, where |S| indicates the cardinality of the set S.

• Let the state of the ith-node be xi ∈ <m, i.e., the local
information vector; denote with x = {xi} the network
state, i.e., the collection of the states of all the nodes.

• Let the information vector transmitted by the ith-node be
yi ∈ <q; let the vector y = {yi} be the collection of the
information transmitted by all nodes.

• Consider a protocol Π = {(fi, hi, φi) : i = 1, 2, ..., n},
where, for each i,

– fi : <qn×<m → <m describes the dynamics of the
state of the ith-node as a function of the information
both available at the node itself and transmitted by
the other nodes (ẋi = fi(y, xi))

– hi : <m −→ <q generates the transmitted in-
formation vector yi given the state node xi (i.e.,
yi = hi(xi))

– φi : <m −→ < estimates the number of active buyers
given the information vector xi.

• Associate to protocol Π the set of the eventually active
buyers AΠ = {i ∈ V : φi(xi) ≥ li}, where, for each
i, xi is the final value, if it exists, of the state of the
ith-node given the protocol Π and li is the threshold
value of the ith-buyer as defined in the introduction.
We conventionally set li = ∞ if the ith-buyer is not
interested in ordering whichever the number of active
buyer is.

Definition:
In this context, we define as decentralized/distributed protocol,
a protocol in which, for each i ∈ V , fi is a function only



of the transmitted information vectors of the nodes in the
neighborhood Ji of i, where Ji = {j : (i, j) ∈ E} ∪ {i},
i.e., the set all the agents with which i is connected and i
itself. Let us make the two following assumptions:

Assumption 1: information about the total number of
agents in the network, n, is shared by all agents
Assumption 2: At the beginning, each agent assumes its
threshold strategy is chosen by all other agents.

Let us now formally state the problem under concern.
Problem 1
Given a set of buyers reviewed as dynamic agents of a network
with topology G = (V, E). Let characterize the generic ith-
node by the threshold li. Given Assumptions 1− 2, determine
a distributed protocol Π which maximizes the set of the active
buyers AΠ and minimizes the dimensions of both the node
states m and the transmitted information vector q.

In the rest of the paper it is proved that a distributed protocol
exists which is an optimal solution for the above problem,
i.e., it optimizes all the three stated objectives at the same
time. In the following subsection an upper bound for AΠ is
trivially determined. Then, in Section IV, we define an optimal
distributed protocol.

III. PRELIMINARY RESULTS

In this section an upper bound for AΠ is determined. To
this aim, let us define Pl = {i ∈ V : li ≤ l} the subset of
agents that would place an order if at least l− 1 other buyers
would do the same.

Definition:
Define S ∈ V as a compatible set iff ∀ i ∈ S it is such that
li ≤ |S|. In other words, a compatible set S of buyers is a set
of buyers that would order if they were sure that all the other
agents in S would do the same.

Let A = max{S : S is compatible} the maximal set of
possible active buyers.

Theorem 1
It holds A = Pl̃ where l̃ is defined by the following condition

l̃ = max{l ∈ 1, . . . , n : |Pl| = l}. (1)

Proof: We prove first that A = P|A|

1) A ⊇ P|A| Maximality and compatibility of A leads to
A ⊇ {i : li ≤ |A|} = P|A|. The second equality comes
from the definition itself of P|A|.

2) A ⊆ P|A| Let {l̄} = max{li : i ∈ A}. Then it holds,
l̄ ≤ |A|. Hence, A ⊆ {li ≤ l̄} ⊆ {i : li ≤ |A|} = P|A|

Let us observe that |P|A|| = |A|. Because of (1) and observing
Pl ⊆ Pl+1 for the definition itself of Pl, it holds |A| ≤ l̃ that
yields P|A| ⊆ Pl̃. Since Pl̃ = {i ∈ V : li ≤ l̃} = {i ∈
V : li ≤ |Pl̃|} then Pl̃ is compatible and therefore for the
maximality of A, |A| ≥ |Pl̃| = l̃. Then, l̃ ≤ |A| ≤ l̃ from
which A = Pl̃.

Given Theorem 1 it can be verified that exists at least a
centralized protocol Π̂ that yields AΠ̂ = A.

On the purpose, define Π̂ as follows: for each i ∈ V ,
hi(xi) = const = li
fi(y, xi) = δ(t) max{l ∈ {1, . . . , n} :∑

i∈V 1(yi ≤ l) = l}
φ(xi) = xi.

To finally show that AΠ̂ = A observe that given the above
defined protocol each node i transmits the information yi =
li, and assumes the state xi = max{l ∈ {1, . . . , n} :∑

i∈V 1(yi ≤ l) = l}, where
∑

i∈V 1(yi ≤ l) simply counts
the nodes whose threshold is less than or equal to l, and hence,∑

i∈V 1(yi ≤ l) = |Pl| which in turns implies, due to (1),
xi = l̃ = φi(xi). Then AΠ̂ = {i ∈ V : l̃ ≥ li} which, by
definition, is equal to Pl̃ = A.

In the following section we will show that it exists also
a decentralized protocol on information that solve Problem 1
and leads to the same result that in the centralized case.

IV. DECENTRALIZED PROTOCOLS

In order to obtain a distributed protocol Π such that AΠ = A
it would be sufficient that the ith-node could estimate l̃ and
consequently to make the decision of ordering if li ≤ l̃. A way
to realize this is connected to the possibility of evaluating in
a decentralized setting |Pl| for each l and hence l̃ from 1.

A. Linear Consensus Protocol

We indicate with Li• the ith-row of the Laplacian Matrix
of the graph.
Theorem 2
For fixed l, the distributed protocol Γ defined by hi(xi) = xi

fi(y, xi) = −Li•x
φ(xi) = nxi.

where the ith-agent initializes its state component

xi(0) =

{
1 if i ∈ Pl (“everyone orders”)
0 if otherwise (“no one orders”) (2)

is such that all the local estimation of the cardinality of the set
of active buyers converges asymptotically to the exact value,
i.e. for the ith-agent it holds

lim
t→∞

φi(xi) = |Pl| (3)

Proof: Γ is an average consensus protocol. Thus, the ith

information vector is guaranteed to converge to the average
computed on the initial values [7], namely,

x̄i := lim
t→∞

xi = Ave(x(0)) (4)

We limit ourselves to note that

|Pl| =
n∑

i=1

x̂i(0) = n ·Ave(x̂(0)). (5)

Now, from definition (2) and (4-5) we prove (10).



At each time instant the information vector can be inter-
preted as the local current estimation based on the available
information up to the current instant time, of the percentage
of nodes belonging to the set Pl. Initially, since information
has not been exchanged yet, each agent estimates simply that
all agents behaves in the same way as he does.

Converging properties of Protocol Γ entail the consideration
of a new protocol for the solution of Problem 1, defined as hi(xi) = xi

fi(y, xi) = {−Li•x
′
l•}n l = 1, 2, ..., n

φ(xi) = max(l : nxli = l).

where the ith-agent initializes the lth-component of its initial
state xi(0) = {0, 1}n according to

xli(0) =

{
1 if i ∈ Pl (“everyone orders”)
0 if otherwise (“no one orders”) (6)

which is proved to verify AΠ = A.
This protocol allows to solve in parallel n average consensus

problems, one for each possible value of the threshold, l.
Hence, it holds m = n and this represent the main drawback
of the protocol. Let us observe that other distributed protocols
Π with AΠ = A and m = n can be defined. However, we have
introduced the previous one because its structure will turn to
be useful for the sequel.

It is possible to reduce m = n = 1 by running consensus
protocols in sequence for successive threshold values. All this
protocol are optimal with respect to Problem 1.

A possible consensus protocol is generated by the following
algorithm:
Algorithm 1

for {l = n, l > 0; l = l − 1}
{ estimate |Pl| in tf sec
if |Pl| = l

then l̃ = l exit
}

This protocol may converge in a fewer number of steps as
it is evident from the following remark

Remark -
If at the lth-iteration it holds |Pl| = r with r < l, all sets |Ps|
with r < s < l have cardinality |Ps| ≤ r < s which means
l̃ < s and therefore Ps are not optimal.

Example
If |P9| = 5 then is certainly |P8| ≤ 5, |P7| ≤ 5, |P6| ≤ 5, and
it must be checked the solution |P5| = 5.

Then an equivalent algorithm is the following, that requires
fewer step.

Algorithm 2

g = 1
for (l = n; l > 0; l = l − g)
{ estimate |Pl|
if |Pl| = l then l̃ = l exit
g = l − |Pl|
}

In Example at the 1st-iteration one estimates |PV | = 5; at the
2nd-iteration one must estimate |P5|.

In the following subsection a possible implementation of
the above described algorithm is introduced.

B. Nonlinear Consensus Protocol
In the proposed protocol we set l = n. The ith-buyer com-

municates its initial estimation about the percentage of active
buyers, xi to the neighbors. Then he updates it on-line on the
basis of new estimates data received from neighbors. At any
time, ti, whenever the number of active buyers, φi(xi), goes
below its threshold, li, it leaves the group and communicate
its decision to “give up” ordering by activating an exogenous
impulse signal, δi(t− ti). This exogenous impulse is activated
every tf , where tf is an estimate of the worst case possible
settling time, corresponding to the worst possible topology
of the network, i.e., a chain graph. The settling time is then
related to the algebraic connectivity: 1/λ2(G), i.e., the second
smallest eigenvalue of the Laplacian corresponding to a chain
of V nodes. Theorem 3
Set l = n, the distributed protocol Π defined by

hi(xi) = xi
fi(y, xi) = −Li•x− δi(t− ti) · 1[(nxi(ti) < li)

AND (xi(0) 6= 0)
AND (ti = ktf , k ∈ N )]

φ(xi) = nxi.

where 1[γ] a boolean function which returns the value 1 when
condition γ is true, 0 otherwise, and where each ith-agent
initializes its state component

xi(0) =

{
1 if i ∈ Pn (“everyone orders”)
0 if otherwise (“no one orders”) (7)

is such that all local estimations of the cardinality of the set
of active buyers converge asymptotically to the exact value,
i.e., for each ith-agent it holds

lim
t→∞

φi(xi) = |A| (8)

Proof: The presence of an exogenous negative impulse
signal does not influence the dynamics of the system, but it
acts as if the system evolves from a new initial state value
anytime it occurs. Thus, when an impulse occurs at the jth

node, at instant ti, it yields to a new initial condition where:
xj(t

+
i ) = xj(t

−
i ) − 1. (Clearly, the evolution starting at time

ti has Laplace Transform (sI + L)X(s) = x(t−i ) − 1 and
the new initial state value is x(t+i )). The system dynamics
is the Laplacian −L with n − 1 real stable eigenvalues and
one zero eigenvalue, and the zero-input response of the system
converges to the Ave(x(0)) = Ave(x) that is invariant if no



impulse occurs, as shown in [7]. Because of the exogenous
negative impulse signal, Ave(x) is no longer an invariant
quantity. It is evident that the final convergence value depends
on how many impulse signals occur. If at time ti = tf ,
only one impulse occurs, we get Ave(x(t)) = Ave(x(t+i )) =
Ave(x(t−i ))− 1/n = Ave(x(0))− 1/n.

In particular, the starting value xj(0) for each j node is
0 or 1, see (7). An impulse corresponds to a buyer which
decides not to order anymore, then it occurs only for buyers
whose initial value was 1. The average value after successive
impulses is monotonic decreasing and lower bounded by zero.

Ave(x)′ > Ave(x)′′ > ... ≥ 0 (9)

Only when all the buyers were active (all ones in x(0)) at the
beginning and they all decide not to order anymore, we reach
the lower bound: Ave(x(∞)) = 0.

Clearly, every time that a buyer drops off his order the
average final value is decreased by one, then the final value is
Ave(x) = Ave(x(0)) − M

n where M is the total number of
buyers having decided to drop off the order and so:

lim
t→∞

φi(xi) = nAve(x(0))−M (10)

Consider now, a possible implementation of Algorithm 2,
where at time instant 0 the ith-agent initializes its state
component as in (7), and, to start estimating the cardinality
of Pl at the generic (kth − 1)-iteration, let the agents reset
their state xi(kt+f ) = 1 if their threshold li ≤ l, 0 otherwise.
Hence, it holds xi(kt+f ) 6= xi((k−1)t+f ) for the agents i with
li ≥ l, xi(kt+f ) = xi((k − 1)t+f ) otherwise. Let us observe
that at instant kt−f it holds

Ave(x(kt−f )) = Ave(x((k − 1)t+f ))

=

∑
i
xi((k−1)t+

f
)

n =

∑
i
xi(kt

−
f

)

n

(11)

whereas, after the agents reset their state it holds

Ave(x(kt+f )) =

∑
i xi(kt

+
f )

n
=

∑
i xi(kt

−
f )

n
−
Mtf

n
(12)

where Mtf is the number of agents i such that xi(kt+f ) 6=
xi((k − 1)t+f ) with threshold less than l. Note now that the
same value of the left-hand term in (12) could be obtained if
at time instant kt+f , the agents i with threshold li ≤ l keep
their state xi(kt+f ) = xi(kt

−
f ) whereas agents with threshold

li ≥ l are required to activate the impulse so that xi(kt+f ) =

xi(kt
−
f )−1. On the bases of what have been said, it is apparent

that protocol Π performs like Algorithm 2.
The above theorem has shown that |AΠ| = |A|. In addition,
observe that in this case m = n = 1. Note that this protocol is
more suitable for application because at each instant ktf the
only agents which are required to activate a control are those
that are no longer interested in coordinating orders. Hence,
even this protocol is optimal for Problem 1.

V2 V6

V1 V3 V5 V7

V4 V8

Fig. 1. Decentralized Information Structure

V. SIMULATION SET-UP

We considered a network of 8 agents and the associated
information structure as in Fig. 1.

The components of the initial state vector x(0) are randomly
extracted from a uniform distribution in zero and one. The
vector of thresholds is randomly extracted between one and
eight. Thresholds associated to non active buyers are set equal
to infinity. In particular the realization of both vector are shown
in the table below

agents 1 2 3 4 5 6 7 8
xi(0) 1 0 0 0 1 1 1 1
li 6 ∞ ∞ ∞ 3 2 5 2

The information flow among agents is governed by the
Laplacian that in this case takes on the form

L =



2 −1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0

0 0 −1 1 0 0 0 0
0 0 −1 0 3 −1 0 −1
0 0 0 0 −1 3 −1 −1
0 0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 −1 3



Simulation of the protocol in Fig.2 shows that at the
beginning there is agent 1− 5− 6− 7− 8 that intend to order.
After tf = 20 sec all local estimations φ(xi) of the number
of active buyers are supposed to converge to 5. Now, agent 1
give up because the estimation is lower than his corresponding
threshold. Then at tf = 40 sec the new converging value is
φ(xi) = 4 and agent 7 gives up ordering. Finally the estimated
number of active buyers is φ(xi) = 3.

VI. CONCLUSION

In this paper we propose a distributed consensus protocol
for a network of buyers aiming at coordinating their ordering
strategies.
In a centralized setting any buyer communicates to everyone
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Fig. 2. Consensus for a group of 8 retailers

its desired threshold on the minimum number of active buyers
to coordinate orders with. A centralized protocol processes all
exchanged data and coordinates orders.
Alternatively, coordination can be achieved in a decentralized
setting without the necessity that each buyer communicates the
threshold. The method is based on a local estimation of the
percentage of active buyers. The problem is formalized as an
average-consensus problem. Thus, at the beginning of the day
each buyer exchanges information with its neighbors regarding
its initial local estimate (this initial information embeds its
initial intention to order or not). Information propagates in
a decentralized setting and converges to a common decision-
value on the estimate within a pre-specified time interval. Once
convergence is reached the current active buyers synchronize
their new decision to give up ordering if the decision-value is
lower than their threshold. We show that consensus on the final
number of active buyers is reached globally asymptotically and
coordination is the best achievable for the assigned thresholds.
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