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Consensus in Noncooperative Dynamic Games:

a Multi-Retailer Inventory Application

D. Bauso, L. Giare, and R. Pesenti

Abstract

We focus on Nash equilibria and Pareto optimal Nash equilibria for a finite horizon noncooperative
dynamic game with a special structure of the stage cost. We study the existence of the above solutions
by proving that the game is a potential game. For the single-stage version of the game, we characterize
the above solutions and derive a consensus protocol that makes the players converge to the unique Pareto
optimal Nash equilibrium. Such an equilibrium guarantees the interests of the players and is also social
optimal in the set of Nash equilibria. For the multi-stage version of the game, we present an algorithm
that converges to Nash equilibria, unfortunately not necessarily Pareto optimal. The algorithm returns
a sequence of joint decisions, each one obtained from the previous one by an unilateral improvement
on the part of a single player. We also specialize the game to a multi-retailer inventory system.

Keywords: Game Theory, Inventory, Consensus Protocols, Dynamic Programming.

. INTRODUCTION

We consider a finite horizon noncooperative game [2] where the stage cost 4th thiayer
associated to a decision is a monotonically nonincreasing function of the total number of players
making the same decision. The paper is organized as follows. In Section I, we introduce the
game. In Section Ill, we prove the existence of Nash equilibria and of at least one Pareto
optimal Nash equilibrium. We do this by recasting the game within the framework of potential
games [15] which always admit at least one Nash equilibrium, although, its computation is a
non trivial issue [7], [10], [17], [18]. In Section IV and V, we show that stronger results are

obtained if the horizon reduces to a single stage. We find all Nash equilibria and in particular a
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Pareto optimal one that is social optimal in the set of all Nash equilibria, as it minimizes the sum
of the players’ costs. We also define a consensus protocol [3], [12], [13], [14] that makes the
players converge to the Pareto optimal Nash equilibrium. We do this in agreement with a large
body of literature on evolutionary game theory and fictitious play (see e.g., the book [5] and
[16]) that centers around the convergence to refined Nash equilibria, that is, Nash equilibria that
meet special properties. Social and Pareto optimality are just properties characterizing the Nash
equilibria to which the dynamics induced by the consensus protocols converges. In Section VI, we
come back to the multi-stage game and we modify the above protocol to derive a so called best
response path algorithm that makes the players converge to a Nash equilibrium. This algorithm
is based on the property of potential games establishing that any best response path converges
to a Nash equilibrium [15], [16]. A best response path is a sequence of joint decisions, each one
obtained from the previous one by an unilateral improvement on the part of a single player. In

Section VII, we specialize the game to a multi-inventory application [1], [6], [8], [9], [11].

[I. NONCOOPERATIVE DYNAMIC GAME

We deal with a discrete time finite horizon noncooperative game which presents all the
ingredients typical of an inventory application. However, we deal with the game in its general
form in order to emphasize what characteristics make the results of this paper hold.

Consider a set of, playersI' = {1,...,n} and letN be the horizon length. For eache I'
and each stagé = 0,..., N, let z¥ € XF C Z be a discrete time state and € U* C N
be a decision. Here, we have denoted Xy and U* the set of feasible states and decisions at
stagek and byZ, N the set of integers and non negative integers (zero included), respectively.
Letu”, = {u }er j»i be the vector of the decisions of playerst ¢ at stagek. Also, define
uk = {ui}ier‘, u, = {u,...,ulN} andu_; = {u?,,...,u"}. Let the following finite horizon
noncooperative game be given: for each playerl’,

Ji(z? u;,u) = Zgz a¥ ulf ) a(uf)) (1)
gl = (xf,uf), k=0,...,N—1, (2)

(2

where equation (1) is the cost function, obtained as sum over the horizon of a stage cost

gi(z¥, u¥ a(u*)) and equation (2) is the state dynamics with,.) being a generic nonlinear

19 77
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function, possibly time variant and player specific, but such thaj E(xk uk) = 400,

——+o00 —\¥i 1 g

for all ¥ € Z. The stage cosy;(zF, u¥, a(u")) is of type

77 77

gilai,ui, a(u?)) = 6(u)y(a(u®)) + v (a7, uf), 3)

where: functions(u¥) is equal to one ifu¥ > 0 (we say that theth player isactive), and zero
otherwise; functioru(u*) returns thenumber of active players (at tinig, a(u*) = 37", d(u});
function v (a(u*)) is positive and strictly decreasing ai.); function ~(z¥, u¥) is coercive, non
negative and independent af.). Henceforth, for the short of notation, we writé to mean
a(u*). Also we denote byr = [uy, ..., u,] a generic solution of the game (in the following we

also use the notatiofu;, u_;] to meanu). Finally, we define/;(z?, u_;) = miny, J;(z?, u;, u_;).

I[Il. NASH AND PARETO OPTIMAL EQUILIBRIA

In this section, we prove the existence of Nash equilibria, and characterize the Pareto optimal
ones. We prove the existence of Nash equilibria by exploiting the well-known result in [15]
asserting that a noncooperative game always admits a pure Nash Equilibriumpoikeatial
function exists. A potential function is a functio®(z°, u) such that, ifa = [u;,a_;] is a
solution obtained from an unilateral deviation framon the part of a generic player(hence
u; # w;, butu_; = u_;), the difference induced to the potential functid = (20, [0;, 0_;])—
d(2°, [u;,u_,;]) is equal to, or at least proportional to, the difference in the cost for playbat
is, AJ; = J;(29, 4y, 0_;) — Ji(20, uy, u_y).

Theorem 1:Game (1)-(2) is a potential game.

Proof: We prove that®(z%,u) = S0 (Z;?(:“lk)w(j) + Zverv(xﬁ,uﬁ)) is a potential
function for game (1)-(2). To this end, let a solutigm, u_;| be given and consider a second
solution[u;, u_;] obtained from an unilateral deviation on the part of a generic play@ur aim
is to show thatA® = AJ,. Now, for allv € T, let 2}, ... Y and#!,..., &Y be the sequence

of states obtained from (2) under decisidns u_;] and [u;, a_;| respectively. Then it holds

A

AJ; = ji(xgvﬁhﬁ—i) - jz.(x[? u,u) =

= (@ (a(it) + (@, k) — 8y (aut)) - y(ak,ub)) =
I DIEOESIRCEHED SEIORDPLCART) P
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where the fourth equality (from line 2 to 3) is a direct consequendéidf) (a(a*))+~(zF, aF)—

l ) Z

S (uby(a(uh)) —y (o, uf) = 00 () + 3, ep v (85, ) — z;iﬁ“wj)—zvm( ok, ub). The

latter equality is true as, for ak = 1, ..., NV, the following conditions hold

Mootk al)— Y vk ub) =0 4)
vel, v#£i vel', v#£i

a(a®)
o(a¥)y(a(@¥)) — o (uy Z¢ =D 0 (5)

Condition (4) holds as the decisions and the states as well of any playgerare unchanged,;
formally, ¥ = @~ and 2% = #*. To prove that condition (5) holds, observe that it must hold
a(a*) = a(u®) & 1. Actually, if only playeri may change decision then the number of active
players either reduces by 1 (playiechanges from being active to being non active) or increases
by 1 (player: changes from being non active to being active). Consider, for instance, the latter
case, we havé (a¥)y(a(a¥)) — §(uf)p(a(u®)) = ¥(a(@*)). We also haveu(d*) = a(u*) + 1,
which implies thatz;l.f‘f) Y(j) — Zj(ul J4h(§) = (a(@*)). We can conclude that rhs and |hs of
(5) are equal. Symmetrical argument apply to the case where play@nges from being active
to being not active. In this situation, both sides of (5) are equattda(u®)). [ |

As a consequence, by the results in [15], we can state the following corollary.

Corollary 1: Game (1)-(2) admits at least one Nash equilibrium.
Let us now characterize a generic Nash equilibrium= [u}, u* ;| whereu; = {u%*, ... uMN*}
andu*, = {u%, ... v}, In particular, we consider théh player and study the unilateral
improvements by fixing the decisions of all other players over the horiggn We denote by
at* = {a¥* ... a™*} with of* = Do O(uf k) 4 §(uF) for k = k,...,N. The vectorat*
collects the number of active players from stage N as a function of{uf, ...,ul¥} and for

fixed {u*%, ... u"*}. By applying the dynamic programming approach to (1)-(2), we can define

JN(zN a*) =0, (6)

3 7 ?

J¥(zF a") = min keUk[gZ(a:z,uZ,a ) 4 JEHL (gL gkt (7)

Then, J;(x?,u*,) is equal toJ?(z?,a%). In solving (6)-(7), we can do as if** was independent
of uf. Actually, we can substitute™ by a* = 37" 1#2.5(14]?*) + 1, for k =0,...,N. We

can do such a substitution as it turns out thatr®, u¥, a**) = g;(«¥,u¥, a*). To see why the

79 17

latter equality holds true, observe that the stage g@st, u¥, a**) depends om** only through
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the term,5(u?)y(a**), which is different from zero only wheh(uf) = 1, that is whena** =
a* — §(uk) +1 = a*. It follows that the best response for playemust be a solution of

equation (7), i.e.,

= arg min [5(uf) () +y(f,ulb) £ I @b Ak ) =
u; U]
= arg min [§(u)y(@") +y(af,uf) + I @t At 8)
uy €Uy
where we defin@* = {a*, ... a"} for k= 0,..., N. The above equation may present multiple

solutions. However, the values assumed#)y depends on the other player decisions only in
terms of the number of active players. With this in mind, we can derive that given two equilibria
a andq, if 6(a¥) = §(ak) for all i € T and for allk = 0,..., N — 1, then the two equilibria
are equivalent, that ig;(z0, ;, ti_;) = J;(2?, @;, ;) for all i € T. In the following, in case of
multiple solutions, we choos&* as the lowest among the possible scalar values that satisfy (8).
In this way we guarantee the uniqueness of the best response and we can describe the equilibria
indifferently in term of eithem* or a° given their bijective correspondence. Needless to say that
the players can choose any other criterium that guarantees the uniqueness of the best response
in (8) without compromising the validity of the results.

Let us observe that the payoft(:c?, u;,u_;) of player: is independent ofi_; if the player
is never active, i.eq’ = 0 forall k = 1,..., N — 1. Denote such a payoff value ds(z?,0, .).
Then, in any equilibrium pointi* the following inequality holdJ;(z?, u*,) < J;(29,0,.). Also,
the finiteness of the horizon, the behaviordf,.) andZ(.,.) imply that J; (20, u;, u_;) — oo
if, for somek = 0,...,N — 1, |uf| — oc. Then, for each playei € T, there exists a finite
value B(z) > 0, function of the initial state:?, such that in any equilibrium poini* we have
luk*| < B(a?) for all stagesk = 0,...N, as otherwise we havé;(z?,u*,) > J;(22,0,.). As
for any Nash equilibrium each component is an integer value satistyidgu* < B(z?) for
all k=0,...N, then Nash equilibria are finite in number. The next theorem follows.

Theorem 2:At least a Nash equilibrium is Pareto optimal.

Proof: As the Nash equilibria are finite in number, there must necessarily exist a Nash

equilibrium that is not dominated. [ |
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V. SINGLE STAGE GAME

We now consider a finite horizon noncooperative game consisting in a single stage game with
payoffs (in all the equations of this subsection we drop the dependenkg on

A

Ji(@is uisu_i) = 0(u;)(a(u)) + y(@i, uy), 9

where all the variables and functions have the same definitions and properties of the original
game. Game (9) is trivially obtained from the original game by imposing: 0.

For eachi € I, let] : Z — N, increasing function of;, be given. Henceforth, we simply use
the notation/; to meani(z;), i.e., the value of the function for fixed;. Note that in the single
stage game and once fixed the scenariofiked), x; becomes a known parameter (the initial
inventory) and therefore we can omit dependencé(ef) on ;.

Definition 1: A threshold strategyis any functiona(.) : N x N — R such thati(a, l;)
assumes a positive valuedf> [; and is null otherwise. In this casgis saidthreshold
The above threshold strategy says that playisractive only if the number of active playetis
is greater than or equal to threshadld Let us now characterize a Nash equilibriunt, =
[ui,...,u’], for the single stage game, whergis the best response of playerAgain, denote

’ o

by a* =37, ;. 0(u;) + d(u;) the vector collecting the number of active players as a function

of u; and for fixedu*,. Condition (8) becomes

wf = arg min [§(u;)(a®) + y(xs, u;)], (10)

u; €U;
and in case of multiple solutions we choaseas the lowest among the possible scalar values
that satisfy the above equation. Note that in (10) we can replad® a = z?:m‘# 6(u;) +1
and use the same trick explained for the solution of (6)-(7).
Lemma 1:At a Nash equilibriumu* = [uf, ..., u}], the best responsé of each playet is

a threshold strategy! = u(a*, ;) with threshold

i =min{p € {1,...,n}: () < y(zi,0)}. (11)
Proof: Let us first prove that the best respongeof player: is a threshold strategy. On
this purpose, for each playérand for any number of active playefs> «, let ¢, and(sz be the
best responses far* = o anda* = [ respectively (they solve (10) with* = o anda* = J3).
We show that if¢, > 0 (it meansd((,) = 1, the ith player is active) thers > 0. To see this

October 22, 2007 DRAFT
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observe that, > 0 only if

As 1(.) is a positive function, to have; > 0 it suffices to prove that

V(B) + y(w5,Cs) < y(4,0).

Note that the rhs of the above two inequalities are equal as they do not depend on the number

of active players. Then we can show that the latter inequality holds as

Y(B) + (i, Cs) < W(B) + (@i, Ca) < ¥(@) + (@4, Ca) < (a7, 0), (12)

where the first inequality is due to the optimality ¢f and the second inequality is due to the
monotonicity ofi) on the number of active players. Then, we have proveddhat a(a*, ;).

Now, to see that the threshold is as in (11) observe that it must alsoylieldH- (z;, u}) <
v(z4,0) for all « > 1; and(«) + (s, ul) > v(x;,0) for all o < ;. But the latter conditions
hold if and only if the value of; is as in (11). [ |

As in (7), the best responsg defined in the above lemma depends on other players course
of actionu*; only througha*. In the next theorem we characterize the unique Pareto optimal
Nash equilibrium. To this aim, let us relate Nash equilibria to subsets of players as follows.
Without loss of generality, assume that the players are indexed increasingly on their thresholds,
ie.,l; <l <... <1, Definecompatible setiny set of consecutive playeés = {1,...,r}
such thatl, < r. Any player of a compatible set' benefits from being active if all the other
players inC' are active. Observe that for any Nash equilibrium= [u], ..., u}] there exists a
compatible set” such thats(u}) = 1 if and only if i € C. Indeed, leti = max{i : 6(u}) = 1},
thend(u}) = 1 for all i € T" such thati < 7 sincel; < I.. Now, consider thenaximal compatible
setC = {1,...,A} where

Xzargm}z}x{)\e{l,...,n}: I <A}

Note thatC' may be empty and that, by maximality 6f, i, > X + 1 for all playersi ¢ C.
Lemma 2: There always exists a Nash equilibrium = [u], ..., «}] such thatd(u]) = 1 if
and only ifi € C
Proof. The solutionu* describes the case where the active players are the only players in

C and therefore the number of active players.isThen, no players € C benefit by unilaterally

October 22, 2007 DRAFT
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deciding of becoming non active as< \ and also no playerg ¢ C benefit by deciding of
becoming active ag > \ + 1. u
Theorem 3:Let «* be the Nash equilibrium associated to the maximal compatibl€'see.,
1 ifieC

6(uy;) = :
0 otherwise

If () + (x5, u) # ~(x;,0) for all i € C, then

« Pareto optimality.The Nash equilibrium* is Pareto optimal;

« UniquenessThe Nash equilibrium:* is the unique Pareto optimal Nash equilibrium.

« Social optimality The Nash equilibriumz* is social optimal in the set of all Nash equilibria.

Proof: Pareto optimality We show that the Nash equilibriumt = [u], ..., u}] is Pareto
optimal since any other vector of strategies- [u,, ..., u,] induces a worse payoff for at least
one player. In the Nash equilibrium*, eachi € C gets a payoﬁji(xi,u;?,u*_i) = (N +
~y(xs,ut) < y(x;,0), eachi ¢ C gets a payoft/;(z;, 0,u*,;) = y(x:,0) < (X + 1) + y(zi, u;)
for all u; > 0. Now, consider the vector of strategiesDefine D = {i € C': §(u;) = 0} as the
set of players with; < A that are not active i and E = {i ¢ C : §(u;) = 1} as the set of
players withl; > )\ + 1 that are active in:.. Let us denote by andn the cardinality of D and
E respectively. Trivially,D U £ # () asu # u*. We deal withE # () and F = () separately.

If E+#0andD = 0, each playet € E gets a payoft/;(z;, u;, u_;) = (A + 1) +v(x;, u;)
strictly greater thanJ;(z;,0,u*;) = ~(z;,0) as C is the maximal compatible set. The latter
condition trivially holds also wherD = () since, in this case, each playee F incurs in a
higher payoff.J; (z;, u;, u_;) = v(A +n — v) +v(z;, u;).

If E =0, thenD # (), and each player € C \ D, if exists, gets a payoff/;(x;, u;, u_;) =
YN =) 4 (@, w) > Ji (@, ul,u ;) = (N + vz, ul). At the same time, each playee D
gets a payoff/;(z;, 0, u_;) = y(x;,0) > Ji(z;, uf, u*,) = () +~(z;, u?). Finally, eachi € I\C
gets a payoft/;(z;, 0, u_;) = v(x;,0) = J;(x;, 0, u*,).

Uniqueness and social optimalityVe prove the uniqueness and the social optimality of the
Pareto optimal Nash Equilibrium by showing that it dominates all the other equilibria. Consider a
generic Nash equilibrium associated to a compatible €&t say\ its cardinality, different from
C. SinceC is maximal thenC' ¢ C. Then, each e C, if exists, gets a payoff;(z;, u;, u_;) =
V) + (25, w;) > Ji(zi,u, ut ) = (N +v(x;, ub); analogously, eache C'\ C gets a payoff

7
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Jilxi, uiyu_g) = y(x;,0) > Ji(x, ul,ut,) = YN + y(z,ul); finally, each player € T'\ C,
gets a payoft/;(z;, us, u_;) = y(z;,0) = J;(x;, uf,u*,). Then, in any generic Nash equilibrium
each player has a payoff not better than the one associated to [ |
Observe that if and only if)(\) +~(x;, u) = v(x;,0) for all 4, there exist two Pareto optimal
Nash equilibria with equal payoff. They are associated respectively to the maximal compatible
set C' and to the empty set. Henceforth, we will c@areto optimal Nash equilibriunonly
the equilibriumu* associated to the maximal compatible 6etAlso, observe that there is no
other Nash equilibrium with a higher number of active players than the Pareto optimal Nash
equilibrium. Let us finally note that the minimizer of the sum of players’ costs, sapdial
optimum is in general not an equilibrium. However, if we restrict the minimization within the
set of Nash equilibria, then the social optimum is on the Pareto optimal Nash equilibrium as
it has been shown in the above theorem. Restricting the minimization within the set of Nash
equilibria makes sense as the players participate to a noncooperative game, then any solution

that is not an equilibrium is of no interest.

V. CONSENSUSPROBLEM

With focus on the single stage game (9), we now introduce a protocol that makes the players
strategies converge to the Pareto optimal Nash equilibrium characterized in Theorem 3.

For all playersi € T, let us refer tai; as their estimate af in the assumption that each player
may exchange information only with a subset of neighbor players. In this sense, thendates
an undirected connected graph= (I', £) whose edgesek includes all non oriented couples
(1,7) of players that exchange information with each other. Also, define the neighborhood of
playeri the setN; = {j : (i,j) € E} U {i}. Let z;(7) € R be a continuous time variable
describing the transmitted information for> 0 and let7" be a sufficiently large time interval.

The information flow is managed throughdastributed protocol IT = {(f;, ¢;) : for alli € T'}

ZZ(T) = fZ(ZJ(T) for a”] S NJ, 0<7r< T, (13)
a;(t) = ¢i(z(7)) (14)
U:( = ﬂ(dms, ll> (15)

where f; : R™ — R describes the dynamics of the transmitted information ofithenode as a

function of the information both available at the node itself and transmitted by the other nodes,

October 22, 2007 DRAFT
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as in (13);¢; : R — R estimates, based on current information, the aggregate info, as in (14).
The protocol receives as inpuf andz; for all j € N; and must be initialized at a pre-defined

value z;(0). The value ofz; is used in (15) to computg according to (11). The protocol uses

the estimate; ;; to return as output the best respongeas in (15), wherei; ,; represents the

steady state value assumed dyr), namely

Qi ss = lim a;(kT +7), foralliel. (16)

T—T~

In the rest of this section, we present a distributed protdtet {(f;, ¢;) : for alli € I'}
proposed by the authors in [4], such that the steady state estimate coincides with the current

number of active players and with, i.e., Qiss = a = » . ro(u;) = M. Actually, the latter

i€l
condition is sufficient for the convergence to the Pareto optimal Nash equilibrium of Theorem 3.
Assume that the transmitted informatiaf(7) is the current estimate of the percentage of
active players. For instance;(7) = 0.2 means that theth player estimates only a twenty
percent of active players. Then, given the percentage of active playejs the estimate of the

number of active players is simply

ai(7) = ¢(z(7)) = nzi(7).

The protocol starts by assuming that all the players are active. This corresponds to initialize
the transmitted states(0) = 1 or which is the same the estimat&g0) = n for all i € T".
Then, each player averages its estimate on-line on the basis of neighbors’ estimates. If we

denote byz(7) = {z;(7) }ser, the averaging process can be described by
fi(z(7)) = —Liez(7) — A(t = 1)

where L,, is theith row of the Laplacian matrix (see, e.g., [12], [16] for details), a&d — ¢;)

is an impulse signal due to which(¢;") switches to a lower value;(¢;"). Such a switch has

the meaning of a correction term acting at any tithevhere the estimat&;(¢;) crosses from

above the thresholf] and consequently thah player is no longer willing to be active. Impulses

may be activated only after the transient evolutionigfr) has expired. We assume that this
occurs aftert,; time units, wherel; is an estimate of the worst case possible settling time of
the protocol dynamics. A standard result in graph theory is that the settling time decreases as
the number of edges in the network increases. Actually, the speed of convergence depends on

the second smallest in magnitude eigenvalue of the Laplacian (known as Fiedler eigenvalue) in

October 22, 2007 DRAFT
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the sense that the higher (in magnitude) the Fiedler eigenvalue the faster the convergence [13].
In the light of the above consideratiof,is the first sampled timet,, with r =0, 1, ... where

function é(a(a;(rts),l;)) reaches zero, namely

t;, = arg min Tty a7

Note that there may exist players characterizedl;by n, for which ¢; = 0, and players
that never satisfy condition (18), for whichh = 7. Observe that, as players are indexed by
increasing thresholds, it must also hdld> ¢, > t, > ... > t, > t,.; = 0. Furthermore, note
that the evolution of the sampled valuegt) for »r = 0,1,... is monotonically decreasing
which implies that the impulse may be activated only one time for each player (once you exit
the group you are no longer allowed to rejoin it).

Theorem 4:It holds a; ., =a =Y, 1 6(u;) = A for all i € .

Proof: With in mind the valuesg; as in (17), let us set,,; = 0, t, = T and consider

el

the sequence of increasing discrete timgs,, t,,...,t;11,t;,...,t. Also denote recursively
by M(t]) = {Z c A(t]) : ll > |A(t]) }, WhereA(t]’) =T \ Un+1 M(tk), andA(th) =T.

k=j+1
Roughly speakingA(¢;) is the set of players that are willing to be active at titmevhereas

M(t;) is the set of players that are no longer willing to be active from timen. Then the

evolution ofa;(7) follows the discrete time dynamics
a;(tj—1) = a;(t;) — |M(t;)], foralliel.
The above dynamics is monotonic decreasing and converges at the firgt timhere A(¢;) is
a compatible set. To see this, note thatift;) is compatible then\/(¢;) = 0, and therefore
a;(T) = ... =a;(tj-1) = a;(t;), foralliel.

The above equation implies that , = ¢;_, = ... = T, which means that condition (18)
is never met for playeri — 1, if exists, and for all its predecessors, if any. In the extreme
case, we may havel(t;) = ... = A(t;) = 0 which meanst; < T for all j € T" and also
that condition (18) is met for all playerse I'. We have then proved that the above dynamics
converges wheunl(t;) is compatible. It is left to show that the compatible gt ;) is the maximal
one, namely,A(t;) = C. We show this, by proving that ifi(¢;) 2 C then A(t;,_,) 2 C for all
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k=j+1,...,n+ 1. By contradiction, if A(t,_,) 2 C, there must exist a playerc M (t;)

such thatl; < |C| < |A(t,)| but the latter fact is not possible from the definition/af(z,). We

+1

conclude the proof by observing th@f, M(t;) = () and consequently

=j+1

n+1 n+1 . B

ai(ty) =n— Y M) =T\ [J M) = |At)] = [C] = A
k=j+1 k=j+1

VI. A BEST RESPONSE PATH ALGORITHM

We have shown that the game (1)-(2) is a potential game as it always admits a potential
function (see Theorem 1). Potential games have the strong property that any best response path
converges to a Nash equilibrium. By best response path we intend a sequence of joint decisions
u(0) — u(l) — ... whereu(j) = {ui(j) ... u,(y)} andu,(j) is the vector of decisions (over
the horizon) of player at iterationj. Define a functionc : N — I', which returns a player
for each iteration; of the sequence, i.eg(1) = 2, 0(2) = 5 ... means that at iteration,
only player 2 updates its decision, whereas at iterafiponly player 5 updates its decision.

By updating a decision we simply mean replacing the current decision by the best response. It
may happen that the current decision is already the best response and then the updated decision
coincides with the current decision. Now, each joint decisign + 1) is obtained fromu(y)

by an unilateral improvement on the part of player o(j), i.e.,u(j + 1) = [uf,u_;(j)] and

u; = {u)*, ..., u}N*} is the solution of (8) for fixedr ;(j + 1) = u_;(j).

More precisely, at iteratior, let the current decision ba(j) = {ui(j),...,u,(j)} with
w;(j) = {ud(5),...,ulN(j)} fori =1,...,n. To solve (8) player = o(j) needs to estimate the
number of active players over the horizon. This is possible by modifying the protocol presented
in the previous section. For fixed(j), denote the vector of decisions at timkeby u*(j) =
{u¥(j) }ser, then the protocoll = {(f;, ¢;) : for alli € '}, where

fi((r)) = —Li2"(1), 2(0) =d(ui(j)) (19)
ai(1) = ¢(z(r)) = nz(r). (20)
is such thata,, = a(u*(j)). Remind thata(u*(j)) is the number of active players at stage

k given the decision vector*(j). Repeating the same argument for= 0,..., N (we can

run the protocol in parallel) théh player can estimate the number of active players over the

October 22, 2007 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH, 200X 13

horizona®(j) associated to the current decisia(y), namely,a’(j) = {a(u°(5)),...,a(u™(4))}

with a(u*(5)) = 3,cp 6(uf(5)). In the light of the above comments, we show below the pseudo
code of an algorithm that, for a given functiet.), returns a best response path and consequently
converges to a Nash equilibrium. Let(j) be the solution (decisions of playérat iterationy,

then

j=0; WHLE not converging
{i =0(j), conputea’(j) from (19)-(20) using current u(j)

update w;(j+1)=u; solution of (8) based on a“@),

The algorithm eventually converges to a Nash equilibrium which depends on the chosen func-
tion o(.). However, the choice of any generic functiefi) do not compromise the convergence

of the algorithm. The number of iterations is at m2sY. Actually, the best response for player

1 does not depend on the value of;, but only on the number of active players. Also, the
algorithm can be stopped if no players have changed their decisions in the itasations. In

the next section we use the above algorithm in a multi-inventory application.

VII. M ULTI-INVENTORY APPLICATION

Each playeri € T is a retailer, the state’ € Z is theith inventory,u} € UF = N is the

ordered quantity. Letv* € N be a deterministic demand, the inventory dynamics is

k+1
i

= af +uf —wf (21)

T i -
Let ¢ be the purchase cost per stock unitthe penalty on holdingy the penalty on shortage,
and K* the transportation cost charged to thie retailer that replenishes at stageAlso, let

us make the common assumption that p < 0. The stage cost for théh retailer is

gi(zF ul a®) = KF §(uF)+ cul + pmax(0, —zF) + hmax(0, 25)
—~~ —~ — . (22
p(ak (ub)) y(zk uk)

Here(a*(u*)) is monotone since the active retailers may share the same truck for their supplies
and so the more they are, the less each of them pays for the transportation.
Example 1:Consider three retailers and paramet&rs= 24, p = 8, h = 1, ¢ = 2. Retailers

face a deterministic demand over the horizon of ten stages (see Table I). The initial state is
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wy | 4 6|57 4|15|6

wa 0|1 80|62

w3 2103|1133
TABLE 1

2 = [0 0 0]. Let us run the algorithm of the previous section in order to obtain a best
response path. The retailers, at the first iteration, do not consider the possibility of sharing
the transportation cost. No communication occurs among the retailers and they replenish in a
fully uncoordinated fashion as displayed in Fig. 1, left column. The absence of coordination
is evident as retailer 1 replenishes on day8,5 and 8 (top-left), retailer 2 on day and 6
(middle-left), while retailer 3 on day$ and 7 (bottom-left). At a second iteration, thé&d

retailer ¢(2) = 3) estimates the number of active players over the horizon by running the
protocol (19)-(20) and finds its best response by solving (8). The same argument is repeated at
the successive iterations letting the retailers unilaterally improving their payoffs one after the
other. The algorithm converges in six iterations. The supply decisions at Nash equilibrium are
displayed in Fig. 1, right column. Here you can notice that retailers 1 and 3 replenish on day 1,

retailers 1, 2 and 3 replenish on dayand 7, and retailer 1 and 2 on ddy
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