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Consensus in Noncooperative Dynamic Games:

a Multi-Retailer Inventory Application

D. Bauso, L. Giarŕe, and R. Pesenti

Abstract

We focus on Nash equilibria and Pareto optimal Nash equilibria for a finite horizon noncooperative

dynamic game with a special structure of the stage cost. We study the existence of the above solutions

by proving that the game is a potential game. For the single-stage version of the game, we characterize

the above solutions and derive a consensus protocol that makes the players converge to the unique Pareto

optimal Nash equilibrium. Such an equilibrium guarantees the interests of the players and is also social

optimal in the set of Nash equilibria. For the multi-stage version of the game, we present an algorithm

that converges to Nash equilibria, unfortunately not necessarily Pareto optimal. The algorithm returns

a sequence of joint decisions, each one obtained from the previous one by an unilateral improvement

on the part of a single player. We also specialize the game to a multi-retailer inventory system.

Keywords: Game Theory, Inventory, Consensus Protocols, Dynamic Programming.

I. I NTRODUCTION

We consider a finite horizon noncooperative game [2] where the stage cost of theith player

associated to a decision is a monotonically nonincreasing function of the total number of players

making the same decision. The paper is organized as follows. In Section II, we introduce the

game. In Section III, we prove the existence of Nash equilibria and of at least one Pareto

optimal Nash equilibrium. We do this by recasting the game within the framework of potential

games [15] which always admit at least one Nash equilibrium, although, its computation is a

non trivial issue [7], [10], [17], [18]. In Section IV and V, we show that stronger results are

obtained if the horizon reduces to a single stage. We find all Nash equilibria and in particular a
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Pareto optimal one that is social optimal in the set of all Nash equilibria, as it minimizes the sum

of the players’ costs. We also define a consensus protocol [3], [12], [13], [14] that makes the

players converge to the Pareto optimal Nash equilibrium. We do this in agreement with a large

body of literature on evolutionary game theory and fictitious play (see e.g., the book [5] and

[16]) that centers around the convergence to refined Nash equilibria, that is, Nash equilibria that

meet special properties. Social and Pareto optimality are just properties characterizing the Nash

equilibria to which the dynamics induced by the consensus protocols converges. In Section VI, we

come back to the multi-stage game and we modify the above protocol to derive a so called best

response path algorithm that makes the players converge to a Nash equilibrium. This algorithm

is based on the property of potential games establishing that any best response path converges

to a Nash equilibrium [15], [16]. A best response path is a sequence of joint decisions, each one

obtained from the previous one by an unilateral improvement on the part of a single player. In

Section VII, we specialize the game to a multi-inventory application [1], [6], [8], [9], [11].

II. N ONCOOPERATIVE DYNAMIC GAME

We deal with a discrete time finite horizon noncooperative game which presents all the

ingredients typical of an inventory application. However, we deal with the game in its general

form in order to emphasize what characteristics make the results of this paper hold.

Consider a set ofn playersΓ = {1, . . . , n} and letN be the horizon length. For eachi ∈ Γ

and each stagek = 0, . . . , N , let xk
i ∈ Xk

i ⊆ Z be a discrete time state anduk
i ∈ Uk

i ⊆ N

be a decision. Here, we have denoted byXk
i andUk

i the set of feasible states and decisions at

stagek and byZ, N the set of integers and non negative integers (zero included), respectively.

Let uk
−i = {uk

j}j∈Γ,j 6=i be the vector of the decisions of playersj 6= i at stagek. Also, define

uk = {uk
i }i∈Γ, ui = {u0

i , . . . , u
N
i } and u−i = {u0

−i, . . . , u
N
−i}. Let the following finite horizon

noncooperative game be given: for each playeri ∈ Γ,

Ĵi(x
0
i ,ui,u−i) =

N∑

k=0

gi(x
k
i , u

k
i , a(uk)) (1)

xk+1
i = Ξ(xk

i , u
k
i ), k = 0, . . . , N − 1, (2)

where equation (1) is the cost function, obtained as sum over the horizon of a stage cost

gi(x
k
i , u

k
i , a(uk)) and equation (2) is the state dynamics withΞ(., .) being a generic nonlinear
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function, possibly time variant and player specific, but such thatlimuk

i
→+∞ Ξ(xk

i , u
k
i ) = +∞,

for all xk
i ∈ Z. The stage costgi(x

k
i , u

k
i , a(uk)) is of type

gi(x
k
i , u

k
i , a(uk)) = δ(uk

i )ψ(a(uk)) + γ(xk
i , u

k
i ), (3)

where: functionδ(uk
i ) is equal to one ifuk

i > 0 (we say that theith player isactive), and zero

otherwise; functiona(uk) returns thenumber of active players (at timek), a(uk) =
∑n

j=1 δ(uk
j );

functionψ(a(uk)) is positive and strictly decreasing ona(.); function γ(xk
i , u

k
i ) is coercive, non

negative and independent ofa(.). Henceforth, for the short of notation, we writeak to mean

a(uk). Also we denote byu = [u1, . . . ,un] a generic solution of the game (in the following we

also use the notation[ui,u−i] to meanu). Finally, we defineJi(x
0
i ,u−i) = minui

Ĵi(x
0
i ,ui,u−i).

III. N ASH AND PARETO OPTIMAL EQUILIBRIA

In this section, we prove the existence of Nash equilibria, and characterize the Pareto optimal

ones. We prove the existence of Nash equilibria by exploiting the well-known result in [15]

asserting that a noncooperative game always admits a pure Nash Equilibrium if apotential

function exists. A potential function is a functionΦ(x0,u) such that, if û = [ûi, û−i] is a

solution obtained from an unilateral deviation fromu on the part of a generic playeri (hence

ui 6= ûi, butu−i = û−i), the difference induced to the potential function∆Φ = Φ(x0, [ûi, û−i])−

Φ(x0, [ui,u−i]) is equal to, or at least proportional to, the difference in the cost for playeri, that

is, ∆Ĵi = Ĵi(x
0
i , ûi, û−i) − Ĵi(x

0
i ,ui,u−i).

Theorem 1:Game (1)-(2) is a potential game.

Proof: We prove thatΦ(x0,u) =
∑N

k=1

(
∑a(uk)

j=1 ψ(j) +
∑

v∈Γ γ(xk
v , u

k
v)

)

is a potential

function for game (1)-(2). To this end, let a solution[ui,u−i] be given and consider a second

solution[ûi, û−i] obtained from an unilateral deviation on the part of a generic playeri. Our aim

is to show that∆Φ = ∆Ĵi. Now, for all v ∈ Γ, let x1
v, . . . , x

N
v and x̂1

v, . . . , x̂
N
v be the sequence

of states obtained from (2) under decisions[ui,u−i] and [ûi, û−i] respectively. Then it holds

∆Ĵi = Ĵi(x
0
i , ûi, û−i) − Ĵi(x

0
i ,ui,u−i) =

=
N∑

k=1

(δ(ûk
i )ψ(a(ûk)) + γ(x̂k

i , û
k
i ) − δ(uk

i )ψ(a(uk)) − γ(xk
i , u

k
i )) =

=
N∑

k=1





a(ûk)
∑

j=1

ψ(j) +
∑

v∈Γ

γ(x̂k
v , û

k
v) −

a(uk)
∑

j=1

ψ(j) −
∑

v∈Γ

γ(xk
v , u

k
v)



 = ∆Φ,
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where the fourth equality (from line 2 to 3) is a direct consequence ofδ(ûk
i )ψ(a(ûk))+γ(x̂k

i , û
k
i )−

δ(uk
i )ψ(a(uk))−γ(xk

i , u
k
i ) =

∑a(ûk)
j=1 ψ(j)+

∑

v∈Γ γ(x̂k
v , û

k
v)−

∑a(uk)
j=1 ψ(j)−

∑

v∈Γ γ(xk
v , u

k
v). The

latter equality is true as, for allk = 1, . . . , N , the following conditions hold
∑

v∈Γ, v 6=i

γ(x̂k
v , û

k
v) −

∑

v∈Γ, v 6=i

γ(xk
v , u

k
v) = 0 (4)

δ(ûk
i )ψ(a(ûk)) − δ(uk

i )ψ(a(uk)) =

a(ûk)
∑

j=1

ψ(j) −

a(uk)
∑

j=1

ψ(j). (5)

Condition (4) holds as the decisions and the states as well of any playerv 6= i are unchanged;

formally, uk
v = ûk

v and xk
v = x̂k

v . To prove that condition (5) holds, observe that it must hold

a(ûk) = a(uk) ± 1. Actually, if only player i may change decision then the number of active

players either reduces by 1 (playeri changes from being active to being non active) or increases

by 1 (playeri changes from being non active to being active). Consider, for instance, the latter

case, we haveδ(ûk
i )ψ(a(ûk)) − δ(uk

i )ψ(a(uk)) = ψ(a(ûk)). We also havea(ûk) = a(uk) + 1,

which implies that
∑a(ûk)

j=1 ψ(j)−
∑a(uk)

j=1 ψ(j) = ψ(a(ûk)). We can conclude that rhs and lhs of

(5) are equal. Symmetrical argument apply to the case where playeri changes from being active

to being not active. In this situation, both sides of (5) are equal to−ψ(a(uk)).

As a consequence, by the results in [15], we can state the following corollary.

Corollary 1: Game (1)-(2) admits at least one Nash equilibrium.

Let us now characterize a generic Nash equilibriumu
∗ = [u∗

i ,u
∗
−i] whereu

∗
i = {u0∗

i , . . . , uN∗
i }

and u
∗
−i = {u0∗

−i, . . . , u
N∗
−i }. In particular, we consider theith player and study the unilateral

improvements by fixing the decisions of all other players over the horizonu
∗
−i. We denote by

a
k∗ = {ak∗, . . . , aN∗} with ak̂∗ =

∑n

j=1,j 6=i δ(u
k̂∗
j ) + δ(uk̂

i ) for k̂ = k, . . . , N . The vectorak∗

collects the number of active players from stagek to N as a function of{uk
i , . . . , u

N
i } and for

fixed {uk∗
−i, . . . , u

N∗
−i }. By applying the dynamic programming approach to (1)-(2), we can define

JN
i (xN

i , aN∗) = 0, (6)

Jk
i (xk

i , a
k∗) = minuk

i
∈Uk

i

[gi(x
k
i , u

k
i , a

k∗) + Jk+1
i (xk+1

i , ak+1∗)] . (7)

Then,Ji(x
0
i ,u

∗
−i) is equal toJ0

i (x0
i , a

0∗). In solving (6)-(7), we can do as ifak∗ was independent

of uk
i . Actually, we can substituteak∗ by ãk =

∑n

j=1,j 6=i δ(u
k∗
j ) + 1, for k = 0, . . . , N . We

can do such a substitution as it turns out thatgi(x
k
i , u

k
i , a

k∗) = gi(x
k
i , u

k
i , ã

k). To see why the

latter equality holds true, observe that the stage costgi(x
k
i , u

k
i , a

k∗) depends onak∗ only through

October 22, 2007 DRAFT
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the term,δ(uk
i )ψ(ak∗), which is different from zero only whenδ(uk

i ) = 1, that is whenak∗ =

ak∗ − δ(uk
i ) + 1 = ãk. It follows that the best response for playeri must be a solution of

equation (7), i.e.,

uk∗
i = arg min

uk

i
∈Uk

i

[δ(uk
i )ψ(ak∗) + γ(xk

i , u
k
i ) + Jk+1

i (xk+1
i , ak+1∗)] =

= arg min
uk

i
∈Uk

i

[δ(uk
i )ψ(ãk) + γ(xk

i , u
k
i ) + Jk+1

i (xk+1
i , ãk+1)], (8)

where we definẽak = {ãk, . . . , ãN} for k = 0, . . . , N . The above equation may present multiple

solutions. However, the values assumed byuk∗
i depends on the other player decisions only in

terms of the number of active players. With this in mind, we can derive that given two equilibria

û and ũ, if δ(ûk
i ) = δ(ũk

i ) for all i ∈ Γ and for all k = 0, . . . , N − 1, then the two equilibria

are equivalent, that iŝJi(x
0
i , ûi, û−i) = Ĵi(x

0
i , ũi, ũ−i) for all i ∈ Γ. In the following, in case of

multiple solutions, we chooseuk∗
i as the lowest among the possible scalar values that satisfy (8).

In this way we guarantee the uniqueness of the best response and we can describe the equilibria

indifferently in term of eitheru∗ or a
0 given their bijective correspondence. Needless to say that

the players can choose any other criterium that guarantees the uniqueness of the best response

in (8) without compromising the validity of the results.

Let us observe that the payoff̂Ji(x
0
i ,ui,u−i) of player i is independent ofu−i if the player

is never active, i.e.,uk
i = 0 for all k = 1, . . . , N − 1. Denote such a payoff value aŝJi(x

0
i ,0, .).

Then, in any equilibrium pointu∗ the following inequality holdJi(x
0
i ,u

∗
−i) ≤ Ĵi(x

0
i ,0, .). Also,

the finiteness of the horizon, the behavior ofγ(., .) andΞ(., .) imply that Ĵi(x
0
i ,ui,u−i) → ∞

if, for some k = 0, . . . , N − 1, |uk
i | → ∞. Then, for each playeri ∈ Γ, there exists a finite

valueB(x0
i ) ≥ 0, function of the initial statex0

i , such that in any equilibrium pointu∗ we have

|uk∗
i | ≤ B(x0

i ) for all stagesk = 0, . . . N , as otherwise we haveJi(x
0
i ,u

∗
−i) > Ĵi(x

0
i ,0, .). As

for any Nash equilibrium each component is an integer value satisfying0 ≤ uk∗
i ≤ B(x0

i ) for

all k = 0, . . . N , then Nash equilibria are finite in number. The next theorem follows.

Theorem 2:At least a Nash equilibrium is Pareto optimal.

Proof: As the Nash equilibria are finite in number, there must necessarily exist a Nash

equilibrium that is not dominated.

October 22, 2007 DRAFT
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IV. SINGLE STAGE GAME

We now consider a finite horizon noncooperative game consisting in a single stage game with

payoffs (in all the equations of this subsection we drop the dependence onk)

Ĵi(xi, ui, u−i) = δ(ui)ψ(a(u)) + γ(xi, ui), (9)

where all the variables and functions have the same definitions and properties of the original

game. Game (9) is trivially obtained from the original game by imposingN = 0.

For eachi ∈ Γ, let l : Z → N, increasing function ofxi, be given. Henceforth, we simply use

the notationli to meanl(xi), i.e., the value of the function for fixedxi. Note that in the single

stage game and once fixed the scenario (xi fixed), xi becomes a known parameter (the initial

inventory) and therefore we can omit dependence ofl(xi) on xi.

Definition 1: A threshold strategyis any functionũ(.) : N × N −→ R such thatũ(a, li)

assumes a positive value ifa ≥ li and is null otherwise. In this caseli is saidthreshold.

The above threshold strategy says that playeri is active only if the number of active playersa

is greater than or equal to thresholdli. Let us now characterize a Nash equilibrium,u∗ =

[u∗
1, . . . , u

∗
n], for the single stage game, whereu∗

i is the best response of playeri. Again, denote

by a∗ =
∑n

j=1,j 6=i δ(u
∗
j) + δ(ui) the vector collecting the number of active players as a function

of ui and for fixedu∗
−i. Condition (8) becomes

u∗
i = arg min

ui∈Ui

[δ(ui)ψ(a∗) + γ(xi, ui)], (10)

and in case of multiple solutions we chooseu∗
i as the lowest among the possible scalar values

that satisfy the above equation. Note that in (10) we can replacea∗ by ã =
∑n

j=1,j 6=i δ(u
∗
j) + 1

and use the same trick explained for the solution of (6)-(7).

Lemma 1:At a Nash equilibriumu∗ = [u∗
1, . . . , u

∗
n], the best responseu∗

i of each playeri is

a threshold strategyu∗
i = ũ(a∗, li) with threshold

li = min{µ ∈ {1, . . . , n} : ψ(µ) < γ(xi, 0)}. (11)

Proof: Let us first prove that the best responseu∗
i of player i is a threshold strategy. On

this purpose, for each playeri, and for any number of active playersβ ≥ α, let ζα andζβ be the

best responses fora∗ = α anda∗ = β respectively (they solve (10) witha∗ = α anda∗ = β).

We show that ifζα > 0 (it meansδ(ζα) = 1, the ith player is active) thenζβ > 0. To see this

October 22, 2007 DRAFT
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observe thatζα > 0 only if

ψ(α) + γ(xi, ζα) ≤ γ(xi, 0).

As ψ(.) is a positive function, to haveζβ > 0 it suffices to prove that

ψ(β) + γ(xi, ζβ) ≤ γ(xi, 0).

Note that the rhs of the above two inequalities are equal as they do not depend on the number

of active players. Then we can show that the latter inequality holds as

ψ(β) + γ(xi, ζβ) ≤ ψ(β) + γ(xi, ζα) ≤ ψ(α) + γ(xi, ζα) ≤ γ(xk
i , 0), (12)

where the first inequality is due to the optimality ofζβ and the second inequality is due to the

monotonicity ofψ on the number of active players. Then, we have proved thatu∗
i = ũ(a∗, li).

Now, to see that the threshold is as in (11) observe that it must also holdψ(α) + γ(xi, u
∗
i ) <

γ(xi, 0) for all α ≥ li andψ(α) + γ(xi, u
∗
i ) ≥ γ(xi, 0) for all α < li. But the latter conditions

hold if and only if the value ofli is as in (11).

As in (7), the best responseu∗
i defined in the above lemma depends on other players course

of action u∗
−i only througha∗. In the next theorem we characterize the unique Pareto optimal

Nash equilibrium. To this aim, let us relate Nash equilibria to subsets of players as follows.

Without loss of generality, assume that the players are indexed increasingly on their thresholds,

i.e., l1 ≤ l2 ≤ . . . ≤ ln. Define compatible setany set of consecutive playersC = {1, . . . , r}

such thatlr ≤ r. Any player of a compatible setC benefits from being active if all the other

players inC are active. Observe that for any Nash equilibriumu∗ = [u∗
1, . . . , u

∗
n] there exists a

compatible setC such thatδ(u∗
i ) = 1 if and only if i ∈ C. Indeed, let̂i = max{i : δ(u∗

i ) = 1},

thenδ(u∗
i ) = 1 for all i ∈ Γ such thati < î sinceli ≤ l̂i. Now, consider themaximal compatible

setC = {1, . . . , λ̄} where

λ̄ = arg max
λ

{λ ∈ {1, . . . , n} : lλ ≤ λ} .

Note thatC may be empty and that, by maximality ofC, li > λ̄ + 1 for all playersi 6∈ C.

Lemma 2:There always exists a Nash equilibriumu∗ = [u∗
1, . . . , u

∗
n] such thatδ(u∗

i ) = 1 if

and only if i ∈ C

Proof: The solutionu∗ describes the case where the active players are the only players in

C and therefore the number of active players isλ̄. Then, no playersi ∈ C benefit by unilaterally

October 22, 2007 DRAFT
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deciding of becoming non active asli ≤ λ̄ and also no playersj 6∈ C benefit by deciding of

becoming active aslj > λ̄ + 1.

Theorem 3:Let u∗ be the Nash equilibrium associated to the maximal compatible setC, i.e.,

δ(u∗
i ) =







1 if i ∈ C

0 otherwise
.

If ψ(λ̄) + γ(xi, u
∗
i ) 6= γ(xi, 0) for all i ∈ C, then

• Pareto optimality.The Nash equilibriumu∗ is Pareto optimal;

• Uniqueness.The Nash equilibriumu∗ is the unique Pareto optimal Nash equilibrium.

• Social optimality. The Nash equilibriumu∗ is social optimal in the set of all Nash equilibria.

Proof: Pareto optimality. We show that the Nash equilibriumu∗ = [u∗
1, . . . , u

∗
n] is Pareto

optimal since any other vector of strategiesu = [u1, . . . , un] induces a worse payoff for at least

one player. In the Nash equilibriumu∗, eachi ∈ C gets a payoffĴi(xi, u
∗
i , u

∗
−i) = ψ(λ̄) +

γ(xi, u
∗
i ) < γ(xi, 0), eachi 6∈ C gets a payoffĴi(xi, 0, u

∗
−i) = γ(xi, 0) < ψ(λ̄ + 1) + γ(xi, ui)

for all ui > 0. Now, consider the vector of strategiesu. DefineD = {i ∈ C : δ(ui) = 0} as the

set of players withli ≤ λ̄ that are not active inu and E = {i 6∈ C : δ(ui) = 1} as the set of

players withli > λ̄ + 1 that are active inu. Let us denote byν andη the cardinality ofD and

E respectively. Trivially,D ∪ E 6= ∅ asu 6= u∗. We deal withE 6= ∅ andE = ∅ separately.

If E 6= ∅ andD = ∅, each playeri ∈ E gets a payoffĴi(xi, ui, u−i) = ψ(λ̄ + η) + γ(xi, ui)

strictly greater thanĴi(xi, 0, u
∗
−i) = γ(xi, 0) as C is the maximal compatible set. The latter

condition trivially holds also whenD 6= ∅ since, in this case, each playeri ∈ E incurs in a

higher payoffĴi(xi, ui, u−i) = ψ(λ̄ + η − ν) + γ(xi, ui).

If E = ∅, thenD 6= ∅, and each playeri ∈ C \ D, if exists, gets a payoff̂Ji(xi, ui, u−i) =

ψ(λ̄ − ν) + γ(xi, ui) > Ĵi(xi, u
∗
i , u

∗
−i) = ψ(λ̄) + γ(xi, u

∗
i ). At the same time, each playeri ∈ D

gets a payoffĴi(xi, 0, u−i) = γ(xi, 0) > Ĵi(xi, u
∗
i , u

∗
−i) = ψ(λ̄)+γ(xi, u

∗
i ). Finally, eachi ∈ Γ\C

gets a payoffĴi(xi, 0, u−i) = γ(xi, 0) = Ĵi(xi, 0, u
∗
−i).

Uniqueness and social optimality. We prove the uniqueness and the social optimality of the

Pareto optimal Nash Equilibrium by showing that it dominates all the other equilibria. Consider a

generic Nash equilibriumu associated to a compatible setC, sayλ its cardinality, different from

C. SinceC is maximal thenC ⊂ C. Then, eachi ∈ C, if exists, gets a payoff̂Ji(xi, ui, u−i) =

ψ(λ) + γ(xi, ui) > Ĵi(xi, u
∗
i , u

∗
−i) = ψ(λ̄) + γ(xi, u

∗
i ); analogously, eachi ∈ C \C gets a payoff
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Ĵi(xi, ui, u−i) = γ(xi, 0) > Ĵi(xi, u
∗
i , u

∗
−i) = ψ(λ̄) + γ(xi, u

∗
i ); finally, each playeri ∈ Γ \ C,

gets a payoffĴi(xi, ui, u−i) = γ(xi, 0) = Ĵi(xi, u
∗
i , u

∗
−i). Then, in any generic Nash equilibrium

each player has a payoff not better than the one associated tou∗.

Observe that if and only ifψ(λ̄)+γ(xi, u
∗
i ) = γ(xi, 0) for all i, there exist two Pareto optimal

Nash equilibria with equal payoff. They are associated respectively to the maximal compatible

set C and to the empty set. Henceforth, we will callPareto optimal Nash equilibriumonly

the equilibriumu∗ associated to the maximal compatible setC. Also, observe that there is no

other Nash equilibrium with a higher number of active players than the Pareto optimal Nash

equilibrium. Let us finally note that the minimizer of the sum of players’ costs, say itsocial

optimum, is in general not an equilibrium. However, if we restrict the minimization within the

set of Nash equilibria, then the social optimum is on the Pareto optimal Nash equilibrium as

it has been shown in the above theorem. Restricting the minimization within the set of Nash

equilibria makes sense as the players participate to a noncooperative game, then any solution

that is not an equilibrium is of no interest.

V. CONSENSUSPROBLEM

With focus on the single stage game (9), we now introduce a protocol that makes the players

strategies converge to the Pareto optimal Nash equilibrium characterized in Theorem 3.

For all playersi ∈ Γ, let us refer tôai as their estimate ofa in the assumption that each player

may exchange information only with a subset of neighbor players. In this sense, the setΓ induces

an undirected connected graphG = (Γ, E) whose edgesetE includes all non oriented couples

(i, j) of players that exchange information with each other. Also, define the neighborhood of

player i the setNi = {j : (i, j) ∈ E} ∪ {i}. Let zi(τ) ∈ R be a continuous time variable

describing the transmitted information forτ ≥ 0 and letT be a sufficiently large time interval.

The information flow is managed through adistributedprotocolΠ = {(fi, φi) : for all i ∈ Γ}

żi(τ) = fi(zj(τ) for all j ∈ Ni), 0 ≤ τ ≤ T, (13)

âi(τ) = φi(zi(τ)) (14)

u∗
i = ũ(âi,ss, li) (15)

wherefi : R
n → R describes the dynamics of the transmitted information of theith node as a

function of the information both available at the node itself and transmitted by the other nodes,
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as in (13);φi : R → R estimates, based on current information, the aggregate info, as in (14).

The protocol receives as inputxi andzj for all j ∈ Ni and must be initialized at a pre-defined

valuezi(0). The value ofxi is used in (15) to computeli according to (11). The protocol uses

the estimatêai,ss to return as output the best responseu∗
i as in (15), wherêai,ss represents the

steady state value assumed byâi(τ), namely

âi,ss = lim
τ→T−

âi(kT + τ), for all i ∈ Γ. (16)

In the rest of this section, we present a distributed protocolΠ = {(fi, φi) : for all i ∈ Γ}

proposed by the authors in [4], such that the steady state estimate coincides with the current

number of active players and with̄λ, i.e., âi,ss = a =
∑

i∈Γ δ(ui) = λ̄. Actually, the latter

condition is sufficient for the convergence to the Pareto optimal Nash equilibrium of Theorem 3.

Assume that the transmitted informationzi(τ) is the current estimate of the percentage of

active players. For instance,zi(τ) = 0.2 means that theith player estimates only a twenty

percent of active players. Then, given the percentage of active playerszi(τ), the estimate of the

number of active players is simply

âi(τ) = φ(zi(τ)) = nzi(τ).

The protocol starts by assuming that all the players are active. This corresponds to initialize

the transmitted stateszi(0) = 1 or which is the same the estimatesâi(0) = n for all i ∈ Γ.

Then, each player averages its estimate on-line on the basis of neighbors’ estimates. If we

denote byz(τ) = {zi(τ)}i∈Γ, the averaging process can be described by

fi(z(τ)) = −Li•z(τ) − ∆(t − ti)

whereLi• is the ith row of the Laplacian matrix (see, e.g., [12], [16] for details), and∆(t− ti)

is an impulse signal due to whichzi(t
−
i ) switches to a lower valuezi(t

+
i ). Such a switch has

the meaning of a correction term acting at any timeti where the estimatêai(ti) crosses from

above the thresholdli and consequently theith player is no longer willing to be active. Impulses

may be activated only after the transient evolution ofżi(τ) has expired. We assume that this

occurs aftertf time units, wheretf is an estimate of the worst case possible settling time of

the protocol dynamics. A standard result in graph theory is that the settling time decreases as

the number of edges in the network increases. Actually, the speed of convergence depends on

the second smallest in magnitude eigenvalue of the Laplacian (known as Fiedler eigenvalue) in
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the sense that the higher (in magnitude) the Fiedler eigenvalue the faster the convergence [13].

In the light of the above consideration,ti is the first sampled timertf , with r = 0, 1, . . . where

function δ(ũ(âi(rtf ), li)) reaches zero, namely

ti = arg min
r∈N rtf (17)

s.t. δ(ũ(âi(rtf ), li)) = 0. (18)

Note that there may exist players characterized byli > n, for which ti = 0, and players

that never satisfy condition (18), for whichti = T . Observe that, as players are indexed by

increasing thresholds, it must also holdT ≥ t1 ≥ t2 ≥ . . . ≥ tn ≥ tn+1 = 0. Furthermore, note

that the evolution of the sampled valuesz(rtf ) for r = 0, 1, . . . is monotonically decreasing

which implies that the impulse may be activated only one time for each player (once you exit

the group you are no longer allowed to rejoin it).

Theorem 4:It holds âi,ss = a =
∑

i∈Γ δ(ui) = λ̄ for all i ∈ Γ.

Proof: With in mind the valuesti as in (17), let us settn+1 = 0, t0 = T and consider

the sequence of increasing discrete timestn+1, tn, . . . , tj+1, tj, . . . , t0. Also denote recursively

by M(tj) = {i ∈ A(tj) : li > |A(tj)|}, whereA(tj) = Γ \
⋃n+1

k=j+1 M(tk), andA(tn+1) = Γ.

Roughly speaking,A(tj) is the set of players that are willing to be active at timetj whereas

M(tj) is the set of players that are no longer willing to be active from timetj on. Then the

evolution of âi(τ) follows the discrete time dynamics

âi(tj−1) = âi(tj) − |M(tj)|, for all i ∈ Γ.

The above dynamics is monotonic decreasing and converges at the first timetj whereA(tj) is

a compatible set. To see this, note that ifA(tj) is compatible thenM(tj) = ∅, and therefore

âi(T ) = . . . = âi(tj−1) = âi(tj), for all i ∈ Γ.

The above equation implies thattj−1 = tj−2 = . . . = T , which means that condition (18)

is never met for playerj − 1, if exists, and for all its predecessors, if any. In the extreme

case, we may haveA(tj) = . . . = A(t1) = ∅ which meanstj < T for all j ∈ Γ and also

that condition (18) is met for all playersj ∈ Γ. We have then proved that the above dynamics

converges whenA(tj) is compatible. It is left to show that the compatible setA(tj) is the maximal

one, namely,A(tj) = C. We show this, by proving that ifA(tk) ⊇ C thenA(tk−1) ⊇ C for all
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k = j + 1, . . . , n + 1. By contradiction, ifA(tk−1) 6⊇ C, there must exist a playeri ∈ M(tk)

such thatli ≤ |C| ≤ |A(tk)| but the latter fact is not possible from the definition ofM(tk). We

conclude the proof by observing that
⋂n+1

k=j+1 M(tk) = ∅ and consequently

âi(tj) = n −
n+1∑

k=j+1

|M(tk)| = |Γ \
n+1⋃

k=j+1

M(tk)| = |A(tj)| = |C| = λ̄.

VI. A BEST RESPONSE PATH ALGORITHM

We have shown that the game (1)-(2) is a potential game as it always admits a potential

function (see Theorem 1). Potential games have the strong property that any best response path

converges to a Nash equilibrium. By best response path we intend a sequence of joint decisions

u(0) → u(1) → . . . whereu(j) = {u1(j) . . .un(j)} andui(j) is the vector of decisions (over

the horizon) of playeri at iterationj. Define a functionσ : N → Γ, which returns a player

for each iterationj of the sequence, i.e.,σ(1) = 2, σ(2) = 5 . . . means that at iteration1,

only player 2 updates its decision, whereas at iteration2, only player 5 updates its decision.

By updating a decision we simply mean replacing the current decision by the best response. It

may happen that the current decision is already the best response and then the updated decision

coincides with the current decision. Now, each joint decisionu(j + 1) is obtained fromu(j)

by an unilateral improvement on the part of playeri = σ(j), i.e., u(j + 1) = [u∗
i ,u−i(j)] and

u
∗
i = {u0∗

i , . . . , uN∗
i } is the solution of (8) for fixedu−i(j + 1) = u−i(j).

More precisely, at iterationj, let the current decision beu(j) = {u1(j), . . . ,un(j)} with

ui(j) = {u0
i (j), . . . , u

N
i (j)} for i = 1, . . . , n. To solve (8) playeri = σ(j) needs to estimate the

number of active players over the horizon. This is possible by modifying the protocol presented

in the previous section. For fixedu(j), denote the vector of decisions at timek by uk(j) =

{uk
i (j)}i∈Γ, then the protocolΠ = {(fi, φi) : for all i ∈ Γ}, where

fk
i (z(τ)) = −Li•z

k(τ), zk
i (0) = δ(uk

i (j)) (19)

âk
i (τ) = φ(zk

i (τ)) = nzk
i (τ). (20)

is such that̂ak
i,ss = a(uk(j)). Remind thata(uk(j)) is the number of active players at stage

k given the decision vectoruk(j). Repeating the same argument fork = 0, . . . , N (we can

run the protocol in parallel) theith player can estimate the number of active players over the
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horizona
0(j) associated to the current decisionu(j), namely,a0(j) = {a(u0(j)), . . . , a(uN(j))}

with a(uk(j)) =
∑

i∈Γ δ(uk
i (j)). In the light of the above comments, we show below the pseudo

code of an algorithm that, for a given functionσ(.), returns a best response path and consequently

converges to a Nash equilibrium. Letui(j) be the solution (decisions of playeri) at iterationj,

then

j = 0; WHILE not converging

{i = σ(j), compute a
0(j) from (19)-(20) using current u(j)

update ui(j + 1) = u
∗
i solution of (8) based on a

0(j),

j := j + 1}

The algorithm eventually converges to a Nash equilibrium which depends on the chosen func-

tion σ(.). However, the choice of any generic functionσ(.) do not compromise the convergence

of the algorithm. The number of iterations is at most2nN . Actually, the best response for player

i does not depend on the value ofu−i, but only on the number of active players. Also, the

algorithm can be stopped if no players have changed their decisions in the lastn iterations. In

the next section we use the above algorithm in a multi-inventory application.

VII. M ULTI -INVENTORY APPLICATION

Each playeri ∈ Γ is a retailer, the statexk
i ∈ Z is the ith inventory,uk

i ∈ Uk
i = N is the

ordered quantity. Letwk
i ∈ N be a deterministic demand, the inventory dynamics is

xk+1
i = xk

i + uk
i − wk

i . (21)

Let c be the purchase cost per stock unit,h the penalty on holding,p the penalty on shortage,

and Kk
i the transportation cost charged to theith retailer that replenishes at stagek. Also, let

us make the common assumption thatc − p < 0. The stage cost for theith retailer is

gi(x
k
i , u

k
i , a

k) = Kk
i

︸︷︷︸

ψ(ak(uk))

δ(uk
i ) + cuk

i + p max(0,−xk+1
i ) + h max(0, xk+1

i )
︸ ︷︷ ︸

γ(xk

i
,uk

i
)

. (22)

Hereψ(ak(uk)) is monotone since the active retailers may share the same truck for their supplies

and so the more they are, the less each of them pays for the transportation.

Example 1:Consider three retailers and parametersK = 24, p = 8, h = 1, c = 2. Retailers

face a deterministic demand over the horizon of ten stages (see Table I). The initial state is
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w1 4 8 6 5 7 8 4 5 6 8

w2 0 0 1 7 8 0 6 2 1 4

w3 0 3 2 0 3 1 1 3 3 0
TABLE I

x0 = [0 0 0]. Let us run the algorithm of the previous section in order to obtain a best

response path. The retailers, at the first iteration, do not consider the possibility of sharing

the transportation cost. No communication occurs among the retailers and they replenish in a

fully uncoordinated fashion as displayed in Fig. 1, left column. The absence of coordination

is evident as retailer 1 replenishes on days0, 2, 5 and 8 (top-left), retailer 2 on day3 and 6

(middle-left), while retailer 3 on days1 and 7 (bottom-left). At a second iteration, the3rd

retailer (σ(2) = 3) estimates the number of active players over the horizon by running the

protocol (19)-(20) and finds its best response by solving (8). The same argument is repeated at

the successive iterations letting the retailers unilaterally improving their payoffs one after the

other. The algorithm converges in six iterations. The supply decisions at Nash equilibrium are

displayed in Fig. 1, right column. Here you can notice that retailers 1 and 3 replenish on day 1,

retailers 1, 2 and 3 replenish on day3 and7, and retailer 1 and 2 on day5.
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