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Robust control of uncertain multi-inventory systems via Linear Matrix

Inequality

D. Bauso, L. Giarré and R. Pesenti

Abstract— We consider a continuous time linear multi–
inventory system with unknown demands bounded within
ellipsoids and controls bounded within ellipsoids. We address
the problem of ǫ-stabilizing the inventory since this implies some
reduction of the inventory costs. As main result, we provide
conditions under which ǫ-stabilizability is possible through a
saturated linear state feedback control. All the results are based
on a Linear Matrix Inequalities (LMIs) approach.

I. INTRODUCTION

We consider a continuous time linear multi–inventory sys-

tem with unknown demands bounded within ellipsoids and

controls bounded within ellipsoids. The system is modelled

as a first order one integrating the discrepancy between

controls and demands at different sites (buffers). Thus, the

state represents the buffer levels. We wish to study conditions

under which the state can be driven within an a-priori chosen

target set through a saturated linear state feedback control.

Let ǫ be a maximal dimension of the target set, the above

problem corresponds to ǫ-stabilizing the state.

Motivations for ǫ-stabilizing the state derive from the

benefits associated to keeping the state and consequently

also the inventory costs bounded. This work is in line with

some recent literature on robust optimization [1], [6] and

control [2] of inventory systems. Here as well as in [2] we

focus on saturated linear state feedback controls since such

controls arise naturally in any system with bounded controls.

The main results of this work can be summarized as

follows. Initially we introduce the necessary and sufficient

conditions for the ǫ-stabilizability in the form of an inclusion

between convex sets. In the case where both demands and

controls are bounded within polytopes, it is well known that

verifying such conditions is NP-hard [9]. Here, we prove that

verification becomes easy when both demands and controls

are bounded within ellipsoids. This is possible by rewriting

the inclusion between ellipsoids in terms of unconstrained

quadratic maximization.

We first characterize invariant sets through a fourth degree

condition. As verifying such a condition is difficult, we

then propose the best quadratic approximation of the same

condition. We proceed by describing the region of linearity
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sità di Venezia, 30123 Venezia, Italy, (e-mail: pesenti@unive.it)

of the control and conclude by providing LMI conditions on

the target set under which the saturated control ǫ-stabilizes

the system. The case where demands are bounded within

ellipsoids and controls are bounded within polytopes is an

open problem and sufficient LMI conditions to solve it are

presented in [3].

All the results are based on a Linear Matrix Inequalities

(LMIs) approach in line with the recent work [7] on inven-

tory/manufacturing systems.

This paper is arranged as follows. In Section II, we formu-

late the problem. In Section III, we introduce necessary and

sufficient conditions for the admissibility of the problem. In

Section IV we study the problem with ellipsoidal constraints.

In Section V, we provide numerical illustrations. Finally, in

Section VI, we draw some conclusions.

II. PROBLEM FORMULATION

Consider the continuous time linear multi–inventory sys-

tem

ẋ(t) = Bu(t) − w(t), (1)

where x(t) ∈ IRn is a vector whose components are the

buffer levels, u(t) ∈ IRm is the controlled flow vector, B ∈
Qn×m, with m ≥ n and rank(B) = n is the controlled

process matrix and w(t) ∈ IRn is the unknown demand. To

model backlog x(t) may be less than zero. Demands and

controls are bounded within ellipsoids, i.e.,

w(t) ∈ W = {w ∈ Rn : wT Rww ≤ 1} (2)

u(t) ∈ U = {u ∈ Rm : uT Ruu ≤ 1}. (3)

For any positive definite matrix P ∈ Rn×n, define the

function V (x) = xT Px and the ellipsoidal target set Π =
{x ∈ IRn : V (x) ≤ 1}. In addition, for any matrix K ∈
Rn×n, define as saturated linear state feedback control any

policy

u = sat{−Kx} =

{
−Kx if Kx ∈ U
u(x) ∈ ∂U otherwise

(4)

where hereafter ∂F indicates the frontier of a given set F .

Problem 1: (ǫ-stabilizing) Given system (1), find condi-

tions on the positive definite matrix P ∈ Rn×n, under

which there exists a saturated linear state feedback control

u = sat{−Kx} such that it is possible to drive the state

x(t) within the target set Π.

Solving the above problem corresponds to ǫ-stabilizing the

state x where the relation between ǫ and Π is

ǫ := max
x

{‖x‖∞ : x ∈ Π}. (5)
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Fig. 1. Graph with one node and two arcs.

Example 1: Throughout this paper we consider, as illus-

trative example, the graph with one node and two arcs

depicted in Fig. 1. The incidence matrix is B = [1 1].
The continuous time dynamics is

ẋ(t) = [1 1]
︸ ︷︷ ︸

B

[
u1(t)
u2(t)

]

︸ ︷︷ ︸

u

−w = u1(t) + u2(t) − w(t),

with demand bounded in the ellipsoid

w2 ≤ 1

and with the following either ellipsoidal constraints on the

control u

(u1 + u2)
2 ≤ 1, (6)

Finally, the target set is the sphere of unitary radius Π =
{x ∈ R : x2 ≤ 1}.

III. STABILITY NECESSARY AND SUFFICIENT

CONDITIONS

System (1) is ǫ-stabilizable if and only if for all w ∈ W ,

there exists u ∈ int{U} such that Bu = w (see, e.g., [4]).

For the short of notation, the previous condition is usually

expressed as

BU ⊃ W. (7)

Deciding whether (7) holds is NP-hard, when U and W are

polytopes. Here, we prove that verifying (7) becomes easy

when both U and W are ellipsoids. Observe that we can

rewrite Bu = w as uB = B−1w − B−1NuN , where B =
[B|N ] being B a basis of B and N the remaining columns of

B, correspondingly uB are the n components of u associated

to the basis B and uN are the m − n components of u
associated to the columns in N .

As we observe that (7) is equivalent to

max
w∈W

min
u∈Rm:Bu=w

uRuu < 1,

Condition (7) holds if and only if

max
w∈W

min
uN∈Rm−n

f(uB(w, uN ), uN ) =

=
[
wTB−T − uT

NNTB−T |uT
N

]
Ru (8)

[
B−1w − B−1NuN

uN

]

< 1

When we consider the illustrative example in Section 1,

we have B = [1], N = [1] then problem (9) becomes

max
−1≤w≤1

min
u2∈R

f(uB(w, u2), u2) =

= [w − u2|u2]

[
1 0
0 1

] [
w − u2

u2

]

= (w − u2)
2 + u2

2 < 1

Now consider, function f(uB(w, uN ), uN ). It is a dif-

ferentiable convex function in uN . Then, for any w ∈ W
we can analytically determine the best response u∗

N (d) =
arg minuN∈Rm−n f(uB(w, uN ), uN ), by imposing

∇uN
f(uB(w, uN ), uN ) =

2
[
−NTB−T |I

]
Ru

[
B−1w − B−1NuN

uN

]

= 0,

where I is the (m−n)×(m−n) identical matrix. We obtain

u∗
N (w) = −Mw,

where 0 is the (m − n) × n null matrix and

M =

(
[
−NTB−T |I

]
Ru

[
−B−1N

I

])−1

[
−NTB−T |I

]
Ru

[
B−1

0

]

.

In the example under consideration, we have

u∗
2(w) = −

(

[−1|1]

[
1 0
0 1

] [
−1
1

])−1

[−1|1]
[

1 0
0 1

] [
1
0

]

w = w
2 .

For any w ∈ W the minimal value of f(uB(w, uN ), uN ) is

f(uB(w, u∗
N (w)), u∗

N (w)) = w∗T Φw∗,

where

Φ = [B−T + MT NTB−T | − MT ]
︸ ︷︷ ︸

HT

Ru

[
B−1 + B−1NM

−M

]

︸ ︷︷ ︸

H

= HT RuH
(9)

is a positive definite n × n matrix, as M is full rank. So

far, we have shown that we can find the optimal value of

problem (9) by solving problem

max
w∈W

wT Φw, (10)

and checking that the optimal value is less than one.

We are ready to observe that problem (10) is easy as it

reduces to determining the eigenvectors of an n× n matrix.

Theorem 3.1: System (1) is ǫ-stabilizable if and only

if w∗T Φw∗ < 1, for all w∗ eigenvectors associated to

the maximum eigenvalue of matrix R−1
w Φ whose weighted

quadratic norm w∗T Rww∗ is equal to 1.

Proof: As wT Φw is convex, its optimal value w∗ lays

on the frontier ∂W of the set W , i.e., for w∗T Rww∗ =
1. Imposing the Karush Kuhn Tucker first order optimality

condition, we obtain 2(Φ − λRw)w∗ = 0. Then the optimal

values of w∗ are some of the matrix R−1
w Φ eigenvectors

whose weighted quadratic norm w∗T Rww∗ is equal to 1. In

particular, w∗ are the eigenvectors associated to the maximal

eigenvalues of R−1
w Φ.

In the example under consideration Φ =
[
1
2

]
and w∗ = ±1

then w∗T Φw∗ = 1
2 < 1, hence the associated system is ǫ-

stabilizable.



In the following we discuss for which initial state the

system is certainly ǫ-stabilizable through a (pure) linear state

feedback control; hence we show that if we saturated the

previous linear policy the system is ǫ-stabilizable for any

initial state.

IV. ELLIPSOIDAL CONSTRAINTS

Let us start by considering only the constraints (2) on w
and neglect the ellipsoidal constraints (3) on u. Among the

saturated linear state feedback control (4) we prove that we

can solve Problem 1 using controls of type u = sat{−kHx},

with k ∈ R and H ∈ Rn as defined in (9). Note that matrix

H is a right inverse of B, that is BH = I . We motivate the

choice of u = sat{−kHx} with H as defined in (9) as such

a control describes the best response of u under the worst w
as proved in the previous section. Also, note that the scalar

k ∈ R must be lower than a certain value, which means that

we cannot use a bang-bang control. This is motivated by the

following reason. If we use a control u = sat{−kHx}, then

the necessary and sufficient condition (7) becomes

BUlin ⊃ W (11)

where

Ulin = {u ∈ Rm : u = −kHx, k2xT HT RuHx ≤ 1}.
Following the derivation of (10) in the previous Section, we

have that (11) holds if and only if

k2w∗T Φw∗ < 1.

For k = 1 the above condition holds true as it reduces to

(10). Obviously, the value k̂ =
√

1
w∗T Φw∗

is an upper bound

for k, namely, we must choose k such that k < k̂ if we wish

the necessary and sufficient condition (11) be satisfied.

With the above considerations in mind, we can conclude

that the dimensions of the target Π where it is possible to

drive the state are lower bounded.

Denote by λmax(Z) the maximum eigenvalue of a given

matrix Z. In the following theorem we prove that V̇ (x) < 0
within a given set (invariant set). This result will allow

exploiting V (x) as a Lyapunov function to prove the con-

vergence to the target set Π.

Theorem 4.1: Consider system (1) subject to the only

ellipsoidal constraints (2) on w, and controlled via linear

state feedback u = −kHx, with H such that BH = I .

Then condition V̇ < 0 holds if and only if

k2(xT Px)2 − xT PR−1
w Px > 0. (12)

Proof: For H such that BH = I , condition V̇ < 0 is

equivalent to

2kxT Px + 2wT Px > 0. (13)

We aim at proving that V̇ < 0 holds for any x external to an

appropriate smooth closed surface. To do this, we look for

an x ∈ Rn inducing a solution strictly greater than zero for

the following problem

min
w∈W

ζ(x,w) = 2kxT Px + 2wT Px. (14)

As ζ(x,w) is linear in w, the optimal w∗ must lay on the

boundary of set W . The Karush Kuhn Tucker conditions

impose that Px = −λRww∗ for some λ ≥ 0, that is w∗ =
− 1

λ
R−1

w Px. Note that being P full rank, it necessarily holts

thatλ 6= 0 for all x 6= 0. Then, ζ(x,w∗) = 2kxT Px −
2
λ
xT PR−1

w Px > 0. As w∗ lays on the boundary of W ,

we have w∗T Rww∗ =
xT PR−1

w
Px

λ2 = 1 from which λ =
√

xT PR−1
w Px. Hence, ζ(x,w∗) > 0, and therefore also (13)

holds, if and only if (12) holds.

We now exploit V (x) = xT Px as a Lyapunov function

to prove the convergence to the target set Π. We determine

under which conditions on P and k we have that V̇ < 0 or,

equivalently, inequality (12) hold for any x 6∈ Π.

When P = νRw, (12) becomes k2xT Px > ν. Then, in

this case, we can use V (x) to prove the convergence of the

system to Π for k2 ≥ ν.

In the following, we consider the general case when P 6=
νRw.

Lemma 4.2: Consider system (1) subject to the only el-

lipsoidal constraints (2) on w, and controlled via linear state

feedback u = −kHx, with H such that BH = I . Then,

k2(xT Px)2 − xT PR−1
w Px > 0 holds for any x 6∈ Π if and

only if k2 − xT PR−1
w Px ≥ 0 holds for any x ∈ ∂Π.

Proof: (Necessity). Assume that there exists x̂ ∈ ∂Π
such that k2 − xT PR−1

w Px < 0. Then, there also exists

a ball Ball(x̂, r) centered in x̂ with a sufficiently small

radius r > 0 such that for all x ∈ Ball(x̂, r) we have

k2 − xT PR−1
w Px < 0. This implies that there exist x 6∈ Π

for which condition (12) does not hold.

(Sufficiency). Assume that k2 − xT PR−1
w Px ≥ 0 holds

for any x ∈ ∂Π. By contradiction, consider x̂ 6∈ Π, i.e.,

x̂T Px̂ = ρ > 1, such that k2(x̂T Px̂)2 − x̂T PR−1
w Px̂ < 0,

that is k2ρ2 − x̂T PR−1
w Px̂ < 0. Then, there exists x̃ =

x̂√
ρ
∈ ∂Π such that k2ρ2 − ρx̃T PR−1

w Px̃ < 0, that is k2ρ−
x̃T PR−1

w Px̃ < 0. This latter result is contradictory as we

cannot have k2ρ < x̃T PR−1
w Px̃ ≤ k2, for ρ > 1.

Lemma 4.3: Consider system (1) subject to the only el-

lipsoidal constraints (2) on w, and controlled via linear state

feedback u = −kHx, with H such that BH = I . We can

use V (x) to prove the convergence of the system to Π for

k2 ≥ λmax(R−1
w P ).

Proof: Condition k2 − xT PR−1
w Px ≥ 0 holds for any

x ∈ ∂Π if and only if minx∈∂Π{k2 − xT PR−1
w Px} ≥ 0.

Imposing the Karush Kuhn Tucker first order optimality con-

dition, we obtain 2(PR−1
w P −λP )x∗ = 0. Then the optimal

values of x∗ are some of the matrix R−1
w P eigenvectors

whose weighted quadratic norm x∗T Px∗ is equal to 1. In

particular, x∗ are the eigenvectors associated to the maxi-

mal eigenvalues of R−1
w P . For vectors x∗, condition k2 −

x∗T PR−1
w Px∗ ≥ 0 becomes k2 − λmax(R−1

w P )x∗T Px∗ ≥
0, that is k2 − λmax(R−1

w P ) ≥ 0.



Observe that the system converges to the target set ΠR =
{x : k2xT Rwx ≤ 1} as any feasible target set Π = {x :
xT Px ≤ 1}, with k2 ≥ λmax(R−1

w P ) includes ΠR. Indeed,

Π ⊇ ΠR if xT Px − k2xT Rwx = xT (P − k2Rw)x ≤ 0 or

equivalently if P − k2Rw ¹ 0. In turn, the latter condition

is equivalent to R−1
w P − k2I ¹ 0 that certainly holds as

k2 ≥ λmax(R−1
w P )

In the next theorem we introduce the constraints on

controls (3). To this end, we need to define the family of

ellipsoids

Σ0(ξ) = {x ∈ Rn : xT Px ≤ x(0)T Px(0) := ξ} (15)

parametrized in ξ ≥ 1.

Theorem 4.4: Given system (1), we can drive the state

x(t) from any initial value x(0) ∈ Σ0(ξ) to the target set

Π via linear state feedback u = −kHx if the following

conditions hold

k2 ≥ λmax(R−1
w P ) (16)

k2ξλmax(P−1Φ) ≤ 1. (17)

Proof: By Lemma 4.3, under condition (16) it holds

V̇ (t) < 0 for all x(t) 6∈ Π and then V (x) can be considered

as a Lyapunov function for the convergence of the state to the

set Π when the linear control u = −kHx is implemented.

Condition V̇ (t) < 0 also implies that Σ0(ξ) is invariant with

respect to the same linear feedback as ξ ≥ 1 which means

Σ0(ξ) ⊇ Π. Then

max
t≥0

uT (t)Ruu(t) ≤ max
x∈Σ0(ξ)

k2xT HT RuHx =

= max
x∈Σ0(ξ)

k2xT Φx = k2ξλmax(P−1Φ).

Therefore the constraint u = −kHx(t) ∈ U for all t ≥ 0 is

enforced if (17) holds true.

The following theorem provides a solution to Problem 1.

Let us denote by X the set of states x where we can define

a linear control u(x) = −kHx, i.e., X = {x : −kHx ∈ U}.

Consider the saturated linear state feedback control of type

u(x) =

{

−kHx if x ∈ X
− Hx√

xT HT RuHx
if x 6∈ X . (18)

Theorem 4.5: Given system (1), for any positive definite

matrix P ∈ Rn×n satisfying condition (16), the saturated

linear state feedback control (18) drives the state x(t) within

the target set Π for any initial state x(0).
Proof: By construction, u(x) is a continuous function

with U as codmain. When we use such a control, we know

that V̇ (x) < 0 also holds for any x 6∈ Π, if Π ⊂ X and

k2 ≥ λmax(R−1P ) (see Lemma 4.3).

First observe that, for all x ∈ ∂X , we have xT Px >
k2xT HT RuHx = 1, where the latter inequality holds as

Π ⊂ X . Then, for any x 6∈ X , that is for k2xT HT RuHx >

1, we have xT Px
xT HT RuHx

> k2 ≥ λmax(R−1P ) since

both xT Px and xT HT RuHx are positive definite quadratic

forms.

α (10−2) 1 2 3 4 5 6 7 8 9
ξ 31 15 10 7.7 6.2 5.1 4.4 3.8 3.4

α (10−2) 10 15 20 25 30 35 40 45 50
ξ 3 2 1.5 1.2 1 0.8 0.7 0.6 0.6

TABLE I

DEPENDENCE OF ξ ON α IN THE CASE WHERE Ru := αI AND k = 1:

THE HIGHER α THE BIGGER THE REGION Σ0(ξ) AS IN (15) AND ALSO

THE REGION OF LINEARITY X = {x : −kHx ∈ U}.

In Lemma 4.3, we have proved that V̇ (x) < 0 for x ∈
X \Π. Now, we consider x 6∈ X . We have V̇ (x) < 0 if and

only if −xT PBu(x) + xT Pw > 0, for all w ∈ W , that is

min
w∈W

{

xT Px
√

xT HT RuHx
+ xT Pw

}

> 0 (19)

must hold. Applying the Karush-Kuhn-Tuker

conditions, we transform (19) in xT Px√
xT HT RuHx

−
√

xT PT R−1
w Px > 0. In turn, the latter inequality

holds if xT Px
xT HT RuHx

− λmax(R−1P ) > 0, as

xT PT R−1
w Px ≤ λmax(R−1P )xT Px. We then conclude

that V̇ (x) < 0 since xT Px
xT HT RuHx

> k2 ≥ λmax(R−1P ).

Observe that the saturated linear state feedback control

(18) is not decentralized in the sense that the generic ith con-

trol ui in general depends on the demand at different nodes

and on the other controls uj , j 6= i. This is due to either the

structure of matrix H or the ellipsoidal constraints (3).

Example 2: Consider the graph depicted in Fig. 1, with

one node and two arcs and incidence matrix B = [1 1].
Controls are subject to ellipsoidal constraints (6). Then we

have, Rw = 1, Ru = I and Φ = 1
2 . We can stabilize the

system within Π = {x ∈ R : x2 ≤ 1} for any initial state

x(0) ≤
√

2 via a pure linear state feedback u = −kHx. To

see this take Q = I , and observe that the matrix inequality on

Q (??) is satisfied for any k ≥ 1. Furthermore, if we assume

k = 1, then from (17) we must have k2 = 1 ≤ 2
ξ2 = 2

x(0)2 .

V. NUMERICAL ILLUSTRATIONS

Consider the constrained dynamics (1)-(3) for the flow

network system with n = 5 nodes and m = 9 arcs depicted

in Fig. 2 and take without loss of generality Rw = I and

Ru = αI for different values of α = 0.01, . . . , 0.5. Trivially,

the higher the value of the parameter α, the weaker the

constraints on the control (3). Also, from condition (17),

we have that the weaker the constraints (3), the bigger the

region Σ0(ξ) as defined in (15) and also the region of

linearity X = {x : −kHx ∈ U}. In Table I, we display

the dependence of ξ on increasing values of α when k = 1.

Now, for a specific value of α = 0.5, apply the control (18)
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Fig. 2. Example of a system with 5 nodes and 9 arcs.

with k = 1
3 , 1

2 , 1 and matrix H ∈ Rn defined as

H =

















0 1 0 0 0
0 0 0.5 0 0

−0.1 0 0.5 0 0
−0.2 0 0 0 0

0 0 0 0 0
0 0 0.5 0 0

0.1 0 0 1 0
0.6 1 1 0 0
0.4 0 0 1 1

















. (20)

Note that matrix H is a right inverse of B, that is BH = I .

Basically, the columns of the above matrix establish that i)

the demand at node 2 is satisfied by a flow through arc 8 and

1, ii) the demand at node 3 is satisfied by a flow through arc

8, which splits in two equal parts, the first one going through

arc 2 and the second one through arc 3 and 6, iii) the demand

at node 4 is entirely satisfied by a flow through arc 9 and

7, iv) finally the demand at node 5 is satisfied by a flow

through arc 9. Obviously, the first column has no particular

meaning since the demand at node 1 is null.

Now, we simulate the system with initial state x(0) =
[0 4 4 4 4]T and random demand w(t) for (a) k = 1

3 , (b)

k = 1
2 and (c) k = 1. Demand w(t) is randomly extracted

from the set {w(1), w(2), w(3), w(4)} with uniform probabil-

ity where

w(1) = [0 ± 1 0 0 0]T w(2) = [0 0 ± 1 0 0]T

w(3) = [0 0 0 ± 1 0]T w(4) = [0 0 0 0 ± 1]T .

Actually, imposing a maximal (in this case the maximal

demand componentwise is 1) non null demand only at one

node at each time translates into larger oscillations of the

buffers (variable x). For this reason the above demand can

be reviewed as a sort of “worst case” demand.

Fig. 3 displays the time plot of the state variable x(t)
and observe that in all of the three cases, from about

t > 10 on, the state x(t) never exceeds the interval [−k, k]
componentwise. With the above choices of k = 1

3 , 1
2 , 1, and

Rw = I , the possible values for P satisfying condition

(16) are P = k2I . Fig. 4 plots the evolution of function

V (x(t)) − 1 with V (x(t)) = k2xT x for k = 1
3 , 1

2 , 1. The

latter function decreases and from a certain time on (about

t > 10) we always have V (x(t)) ≤ 1. This means that in all

the three cases, we can drive the state within the target sets

Π = {x ∈ Rn : k2xT x ≤ 1}.

From Table I we have that the value of ξ associated to α
is 0.62. Such a value identifies the region Σ(ξ) = {x ∈ Rn :
xT x ≤ 0.62} used to approximate the region of linearity

X = {x : −kHx ∈ U}. Actually, condition (17) guarantees

the condition Σ(ξ) ⊆ X .
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Fig. 3. Time plot of the state variable x(t) when the saturated linear

feedback control (18) is applied with H as in (20) and with gain (a) k = 1

3
,

(b) k = 1

2
and (c) k = 1. Demand w(t) is randomly generated.
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Fig. 4. Time plot of function V (x(t)) − 1 when the saturated linear

feedback control (18) is applied with H as in (20), and k = 1

3
(solid line),

k = 1

2
(dotted line), and k = 1 (dashed line). Function V (x(t)) decreases

and for about t > 8 it satisfies the condition V (x(t)) ≤ 1.

In Fig. 5 we show the projection onto the plane x3-x4 of

the simulated state trajectory for k = 1
2 and displayed in Fig.



3 (a). Starting at point [4 4]T , the trajectory (dotted) is soon

confined within the target set Π = {x ∈ Rn : k2xT x ≤ 1}
described by the dashed sphere of radius 3 and centered in

the origin.

Finally we choose a different matrix

Rw =









1 0 0 0 0
0 1 0 0 0
0 0 3

4 − 1
4 0

0 0 − 1
4

3
4 0

0 0 0 0 1









. (21)

Note that with the new choice of Rw we have bilinear terms

in w3 and w4 in the constraints 2. Then, a possible value

for P satisfying condition (16) is P = k2Rw. In Fig. 6 we

show the projection onto the plane x3-x4 of the simulated

state trajectory for k = 1
2 with the new choice of Rw. Again,

starting at point [4 4]T , the trajectory (dotted) is soon

confined within the target set Π = {x ∈ Rn : k2xT Rwx ≤
1} described by the dashed ellipsoid centered at zero and

with axes 1
k
√

λ1

q1 and 1
k
√

λ2

q2 where q1 = [ 1√
2

1√
2
]T ,

q2 = [− 1√
2

1√
2
]T , λ1 = 1/2 and λ2 = 1 are the

eigenvectors and eigenvalues of the submatrix

[
3
4 − 1

4
− 1

4
3
4

]

of Rw. To simulate a worst case scenario in the sense

clarified above, demand w(t) is randomly extracted from the

set {w(1), w(2), w(3), w(4)} with uniform probability where

w(1) = [0 ± 1 0 0 0]T w(2) = [0 0 ± [2 2] 0]T

w(3) = [0 0 ± [−2
√

2 2
√

2] 0]T w(4) = [0 0 0 0 ± 1]T .
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Fig. 5. Projection onto the plane x3-x4 of the simulated state trajectory
for k = 1

2
, see Fig. 3 (b). Starting at point [4 4]T , the trajectory (dotted)

is soon confined within the sphere of radius 3 and centered in the origin.
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Fig. 6. Projection onto the plane x3-x4 of the simulated state trajectory
for k = 1

2
, when Rw is as in (21). Starting at point [4 4]T , the trajectory

(dotted) is soon confined within the target set (dashed ellipsoid).

VI. CONCLUSIONS AND FUTURE WORKS

This work is a continuation of [2] and is in line with

some recent applications of LMI techniques to inven-

tory/manufacturing systems [7]. In a future work, we will

study the validity in probability of the LMI conditions

derived in this paper. This is in accordance with some recent

literature on chance LMI constraints developed in the area

of robust optimization [5], [8].

REFERENCES

[1] E. Adida, and G. Perakis. A Robust Optimization Approach to
Dynamic Pricing and Inventory Control with no Backorders. Mathe-

matical Programming, Ser. B 107:97–129, 2006.
[2] D. Bauso, F. Blanchini, and R. Pesenti. Robust control policies for

multi-inventory systems with average flow constraints. Automatica,
Special Issue on Optimal Control Applications to Management Sci-
ences, 42(8): 1255–1266, 2006.
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