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Abstract Classical cooperative game theory is no longer a suitable tool

for those situations where the values of coalitions are not known with cer-

tainty. We consider a dynamic context where at each point in time the

coalitional values are unknown but bounded by a polyhedron. However, the

average value of each coalition in the long run is known with certainty. We

design “robust” allocation rules for this context, which are allocation rules

that keep the coalition excess bounded while guaranteeing each player a cer-

tain average allocation (over time). We also present a joint replenishment

application to motivate our model.

Keywords cooperative games, dynamic games, joint replenishment.

⋆ We thank two anonymous referees for their valuable comments.



2 D. Bauso, J. Timmer

1 Introduction

Classical cooperative game theory is no longer a suitable tool for those situ-

ations where the values of coalitions are not known with certainty (see, e.g.,

Suijs and Borm (1999) [19], Suijs et al. (1999) [20], Timmer et al. (2003) [22],

Timmer et al. (2005) [23]. In this paper we consider a sequence of games,

where, differently from Filar and Petrosjan (2000) [8] and Haurie (1975) [10],

the average coalitions’ values (over time) are known with certainty but the

instantaneous values are unknown but bounded by a polyhedron. This model

may be seen as a dynamic extension of the recently introduced cooperative

interval games (cf. Alparslan Gök et al. (2008) [1–3]) where a coalition value

is a closed interval on the real line.

At each point in time a certain revenue is allocated to each player. In

general, these revenues will not meet the actual instantaneous value of the

coalitions. To keep track of this, an excess vector stores the difference be-

tween the instantaneous value of each coalition and the sum of the allocated

revenues to all its players. (This excess is different from the coalitional excess

that appears, e.g., in the definition of the nucleolus [15]).) We may inter-

pret this excess vector as the state variable describing the history of our

dynamic system. Under the assumption that the only information available

at each time is the excess of the coalitions, our goal is to design “robust”

allocation rules, i.e., allocation rules that i) keep the excess vector bounded

within a pre-defined threshold ǫ at each time (we will refer to such rules as

ǫ-stabilizing), while ii) guaranteeing a certain average allocation vector over
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time. Justification for keeping the excess vector bounded follows from the

observation that a fair allocation should not allocate maximum excess to the

same coalition each time. Our problem of interest may arise in a number

of real life situations as, for instance, in joint replenishment applications

(cf. Section 2.3). One may notice that our problem is similar in spirit to

classical problems in machine learning (cf. Cesa-Bianchi et al. (2006) [6],

Cesco (1998) [7] and Lehrer (2002) [12]). Therefore, after introducing our

allocation rule (or algorithm, since it is an iterative procedure), we compare

it to the algorithms proposed in [7,12].

This paper is organized as follows. In Section 2 we describe the problem.

In Section 3 we design the allocation rule. In Section 4 we compare our algo-

rithm to some existing algorithms. In Section 5 we consider allocation rules

based on the Shapley value. Finally, in Section 6 we draw some conclusions.

2 Problem statement

2.1 Family of balanced games

We start by introducing the definition of a family of games with coalitions’

values lying on pre-assigned closed intervals. Let a game in coalitional form

< N, v > be given where N = {1, . . . , n} is a set of n players and v is

the characteristic function returning the value of each coalition S ⊆ N .

Henceforth let the inclusion S ⊆ N mean “all coalitions of N except the

empty set ∅”. Denote by m = 2n−1 the number of all coalitions of N except
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the empty set ∅ and, with a little abuse of notation, let also v ∈ R
m be the

vector of coalitions’ values, namely, v = [v(S)]S⊆N .

Definition 1 A family of games < N,V > is the set of games < N, v > ob-

tained when v varies within a polyhedron V = {v ∈ R
m : vmin ≤ v ≤ vmax} ,

where the bounds vmin and vmax are given.

For the sake of simplicity, throughout this paper we always assume v ≥ 0.

Also, for the sake of notation, we henceforth denote by 2N the family of

subsets of N . Let us recall the definition of a balanced map and a balanced

game for games < N, v > (see, e.g., Tijs (2003) [21, Def. 11.5]). A map

λ : 2N \ {∅} → R
+ is called a balanced map if

∑

S⊆N λ(S)eS = eN . Here,

R
+ is the set of nonnegative real numbers and eS ∈ R

n is the characteristic

vector for coalition S with eS
i = 1 if i ∈ S and eS

i = 0 if i ∈ N \ S. Also, an

n-person game < N, v > is called a balanced game if for each balanced map

λ : 2N \ {∅} → R
+,

∑

S⊆N

λ(S)v(S) ≤ v(N). (1)

If the above condition is satisfied for each game v ∈ V, we say that the

polyhedron V describes a family of balanced games, as established more

formally in the next definition.

Definition 2 A family of balanced games < N,Vb > is the set of games

< N, v > obtained when v varies within a polyhedron

Vb = {v ∈ V : condition (1) holds} ,

where the bounds vmin and vmax are given.
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Sets of balanced games can also be found in the work of Kranich et al.

(2005) [11] and Lehrer (2002) [12].

Next, let us revisit the notions of core and allocation rules. Indicate with

∆n the simplex in R
n and recall that a game is balanced if and only if the

core is nonempty [5,18]. By definition each game < N, v > with v ∈ Vb is

balanced, and so the core C(v),

C(v) = {a ∈ R
n :

a

v(N)
∈ ∆n,

∑

i∈S

ai ≥ v(S) for all S ⊆ N},

is nonempty. This means that there exists an allocation a ∈ C(v) of v(n)

with the interpretation that no coalition has an incentive to split off from

the coalition N . Now, the problem is to find an allocation rule a(v) such

that a(v) ∈ C(v) for all games v ∈ Vb. To solve this, first observe that the

core is a convex set described by linear equations and inequalities. For our

purpose it is useful to change all inequalities into equations. Therefore, we

first introduce a vector of nonnegative surplus variables s = [s1, . . . , sm−1]
′

where ζ ′ denotes the transposed of a given vector ζ. Each surplus variable

corresponds to a coalition of players and describes the difference between

the allocated value and the coalitional value,
∑

i∈S ai − v(S). Notice that

we only need m − 1 surplus variables because
∑

i∈N ai = v(N) due to the

efficiency condition of the core. Further, we introduce an incidence matrix

B ∈ R
m×n with the characteristic vectors eS as rows, and an augmented
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matrix A ∈ R
m×(n+m−1) defined by

A =











B

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−I

−−−−

0 . . . 0











, (2)

where I is the (m − 1)-dimensional identity matrix. Now, finding an allo-

cation rule a in the core C(v) corresponds to finding a so-called allocation

vector u ∈ R
n+m−1 in the set

U(v) = {u : Au = v, u ≥ 0} (3)

because if u ∈ U(v) then u =
[
a
s

]
for some a ∈ C(v). Observe that, in

general, U(v) is a polyhedron of dimension n − 1.

2.2 Dynamic system

Given the definition of family of balanced games, we now consider a sequence

of games that fluctuates in the bounded polyhedron Vb. We denote this by

v(t), t = 1, 2, . . . with v(t) ∈ Vb for all t (4)

and v(t) = [v(t, S)]S⊆N is the vector of coalitional values. The values of

v(t) and v(t + 1) are not correlated, which means that we cannot describe

transitions from v(t) to v(t+1). This also implies that we cannot take v(t) as

a state variable and define dynamics (neither deterministic nor stochastic)

on it. On the contrary, it is realistic to assume that we know with certainty

the average vector of coalitions’ values v̄, being defined by

v̄ = lim
T−→∞

1

T

T∑

k=0

v(t). (5)
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Obviously, v̄ characterizes the sequence of games under consideration.

Further, assume that allocations to players are made at a higher rate

than the rate of change of the coalitional values, which equals 1. Allowing

different rates means that he who allocates the revenues provides a faster

response in reply to the excesses of the coalitions. We will show later on that

faster allocations allow for lower excesses. More precisely, let the integer

number 1/Θ be the rate of allocations. Then Θ is the time between two

successive allocations. To facilitate our analysis, we stretch the time scale

by the rate 1/Θ and consider a new sequence of games, namely

v(k) = v(t)Θ, k =
t − 1

Θ
+ 1, . . . ,

t

Θ
, t = 1, 2, . . . . (6)

This new sequence of games has the following interpretation. In the original

time interval (t − 1, t] the vector of coalitional values equals v(t). We dis-

tribute these values equally over the 1/Θ allocations that occur in this time

period, so this results in values v(t)Θ for each point in time where alloca-

tions are made. This way we can ensure that the total amount allocated to

the players in the new interval ((t−1)/Θ, t/Θ] does not exceed the available

amount v(t,N).

If we use the notation VΘ
b = Θ · Vb, the sequence of games (4)-(5), is

equivalent to the sequence of games

v(k), k = 1, 2, . . . with v(k) ∈ VΘ
b for each k = 1, 2, . . .

v̄ = limT−→∞
1
T

∑T

k=0 v(k)

(7)

where v̄ = Θv̄. In the remainder of this paper, we will refer to the sequence

of games in (7).
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Now, denote by x(k + 1) ∈ R
m a vector of variables describing the

aggregate coalition excesses over all previous games v(1), . . . , v(k) (the value

x(0) is the excess at time 0), i.e.,

x(k + 1, S) = x(k, S) +
∑

i∈S

ai(k) − (sS(k) + v(k, S)) for all S ⊆ N, (8)

where ai(k) is the revenue allocated to player i and sS(k) is a desired surplus

for coalition S. Roughly speaking, the coalition excess at time k is the

difference between the sum of the allocated revenues to the players of the

coalition and the value of the coalition increased by a desired surplus for that

coalition. The aggregate coalition excess x(k + 1, S) is the coalition excess

summed over all previous games v(1), . . . , v(k) and therefore represents the

state of the system (x(k) describes the history of the system). We rewrite

equation (8) in the following matrix form

x(k + 1) = x(k) + Au(k) − v(k), v(k) ∈ VΘ
b , k = 1, 2, . . . , (9)

where u(k) =
[
a(k)
s(k)

]
, a(k) = [ai(k)]i∈N and s(k) = [sS(k)]S⊂N . The con-

dition u(k) ≥ 0 is omitted for the sake of notation. Now, let the vector

ū ∈ U(v̄) be arbitrarily chosen, where v̄ is assigned once given the sequence

of games (7). The following lemma recalls a result obtained in Bauso et al.

(2006) [4].

Lemma 1 (Average constraint) Let the sequence of games (7) be given.

There exists an allocation rule f : R
m −→ R

n+m−1 such that for u(k) =

f(v(k)),

Au(k) = v(k) (10)
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lim
T−→∞

1

T

T∑

k=0

u(k) = ū (11)

if and only if there exists a matrix D ∈ R
(n+m−1)×m that satisfies

AD = I ∈ R
m×m (12)

D(v − v̄) + ū ≥ 0 ∀v ∈ VΘ
b . (13)

The allocation rule is linear on v(k), that is

u(k) = ū + D(v(k) − v̄). (14)

In the following we call limT−→∞
1
T

∑T

k=0 u(k) the average allocation

(vector).

Note that condition (10) implies that u(k) =
[
a(k)
s(k)

]
∈ U(v(k)) at each

time k. This in turn means that a(k) is an element of the core C(v(k)) of

the game < N, v(k) > obtained from freezing the coalitions’ values at time

k. Furthermore, it is easy to show that the above result and the following

ones are still valid if the budget to allocate at each time period has a fixed

size. Denoting by u+ the maximal size of the budget, condition (13) changes

to 0 ≤ D(v − v̄) + ū ≤ u+, ∀v ∈ VΘ
b .

Observe that the linear allocation rule (14) requires perfect knowledge

of the coalition values at each sample time. Differently, in this paper the

coalitions’ values v(k) are unknown and revenues are allocated at time k

based on the aggregate coalition excesses x(k). Any allocation rule based

on the state x(k) will be referred to as a feedback rule. We are interested in

finding dynamic allocation rules that keep the excess vector bounded within
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a pre-specified threshold while satisfying the condition that if the average

coalitions’s value is v̄ then the average allocation is ū. For this we need the

following definition, see Bauso et al. (2006) [4]. For ξ ∈ R
m, let ξi denote

the ith component of ξ, and define

|ξ| = max
i

|ξi|.

Let Z denote the set of integers, and Z
+ the set of nonnegative integers. Let

f = {f(0), f(1), f(2), . . .} be any bounded one-sided sequence in R
m, and

define

‖f(k)‖ = sup
k∈Z+

|f(k)|.

Our dynamic allocation rule is defined as follows.

Definition 3 Given ǫ > 0 and a reference value xref for system (9), an

ǫ-stabilizing allocation rule is a feedback rule for which there exists a con-

tinuous positive function φ(k), monotonically decreasing and converging to

0 as k −→ ∞ such that for all x(0), the following condition holds true

‖x(k) − xref‖ ≤ max{‖x(0)‖φ(k), ǫ}.

For the sake of simplicity, take xref = 0. Then the above condition implies

that x(k) does not deviate more than ǫ from 0 in the long run. For any x(0)

with ‖x(0)‖ ≤ ǫ the condition simply requires that ‖x(k)‖ ≤ ǫ for all k.

With this in mind, our problem of interest can be stated as follows.

Problem 1 For the sequence of games (7), find an ǫ-stabilizing allocation

rule such that its average allocation equals ū, i.e., limT−→∞
1
T

∑T
k=0 u(k) =

ū.
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Note that the requirement limT−→∞
1
T

∑T

k=0 u(k) = ū simply represents

a constraint on the coalitions’ excess in the long run.

Also, observe that the ǫ-stabilization of the excess vector x(k) means

that at each time k the excess x(k) does not exceed a pre-defined threshold

ǫ of the game < N, v(k) >. Using the definition of the ǫ-core from Lehrer

(2002) [12], the above problem corresponds to finding an allocation rule

that at each time k returns a vector in the ǫ-core of the one-shot game

< N, v(k) >.

Remark 1 We can refrain from the assumption that the average vector of

coalitions’ values is known a-priori and formulate the above problem under

the milder assumption that v̄ is simply averaged on-line over past coalitions’

values. Later on we show that the allocation rule depends on matrix D as in

(12)-(13). Hence, if the value v̄ is averaged on-line, it becomes time varying

and since it appears in the computation of D in (13), the latter matrix must

be updated iteratively.

2.3 Motivating example

Consider a single-period one-warehouse multi-retailer inventory system (see,

e.g., Hartman et al. (2000) [9], Meca et al. (2003) [13], and Meca et al.

(2004) [14]). Figure 1 displays a warehouse W serving three retailers R1,

R2 and R3. Each retailer faces a demand bounded by a minimum and a

maximum value. For instance R1 faces a demand d1 in the interval [d−1 , d+
1 ] =
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W R2

R1

[0,5]

[0,10]

[3,8]
R3

Fig. 1 Example of one warehouse W and three retailers R1, R2 and R3. Retailer

R1 faces a demand in the interval [0, 5], R2 in the interval [0, 10], and R3 in the

interval [3, 8].

[0, 5], R2 faces a demand d2 in the interval [d−2 , d+
2 ] = [0, 10], and R3 faces

a demand d3 in the interval [d−
3 , d+

3 ] = [3, 8].

After demands di are realized, each retailer Ri must choose whether to

fulfill the demand or not. The retailers do not hold any private inventory.

Therefore, if they wish to fulfill their demands, they must reorder goods at

the central warehouse. The retailers may share the total transportation cost

K = 7. Before demands are realized, the warehouse holder decides how to

allocate the transportation costs among the retailers. This decision is only

based on the knowledge of the minimum demand d−
i and maximum demand

d+
i .

The corresponding cost game has a set of three players N = {1, 2, 3},

namely the three retailers. If player i plays alone, the cost of reordering

coincides with the full transportation cost (since a single truck serves him

only) whereas the cost of not reordering is the cost of unfulfilled demand,

that is, lost demand. Assume the latter cost is one unit per unit of unfulfilled
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demand. Then the cost associated to the retailers R1 and R2 are respectively,

c({1}) ∈
[
min{d−

1 ,K},min{d+
1 ,K}

]
= [0, 5]

c({2}) ∈
[
min{d−2 ,K}, min{d+

2 ,K}
]

= [0, 7].

If two players form a coalition they are forced to select a joint decision

(“both reorder” or “both do not reorder”). The cost of reordering for the

coalition also equals the total transportation cost that, this time, must be

shared between the two players. The cost of not reordering is the sum of

the unfulfilled demands of both players. For instance, the cost of coalition

S = {1, 2} is c({1, 2}) ∈
[
min{(d−

1 + d−
2 ),K}, min{(d+

1 + d+
2 ),K}

]
= [0, 7].

For a generic n-player game, we have for all coalitions S ⊆ N

min(K,
∑

i∈S

d−i ) ≤ c(S) ≤ min(K,
∑

i∈S

d+
i ). (15)

We can compute the cost savings v(S) of a coalition S as the difference

between the sum of the costs of the coalitions of the individual players in S

and the cost of the coalition itself, namely,

v(S) =
∑

i∈S

c({i}) − c(S). (16)

Given the upper and lower bounds for c(S) in (15), the value v(S) is

bounded as follows:

∑

i∈S

min(K, d−
i ) − min(K,

∑

i∈S

d−
i ) ≤ v(S) ≤

∑

i∈S

min(K, d+
i ) − min(K,

∑

i∈S

d+
i ).

For example, the cost savings of coalition S = {1, 2} are v({1, 2}) = c({1})+

c({2}) − c({1, 2}) ∈ [0, 5].
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It turns out that the cost savings, or value, of each coalition are bounded

by a minimum and a maximum value, namely, vmin(S) ≤ v(S) ≤ vmax(S)

with fixed bounds vmin(S) and vmax(S). Hence, in the light of Definition 1,

an equivalent description of the joint replenishment application is obtained

by replacing the family of cost games by the family of cost-savings games

< N,V > with

V = {v ∈ R
m : vmin(S) ≤ v(S) ≤ vmax(S), for all S ⊆ N} (17)

and v(S) as in (16). For the sake of brevity we omit the proof that each game

in the polyhedron (17) corresponds to a balanced game. We conclude that

the joint replenishment problem can be described by the family of balanced

games < N,V >. To see the dynamic aspect of the application, consider

a situation where the discussed scenario occurs repeatedly in time, i.e., at

each time (day, week) k = 0, 1, . . ., the warehouse manager allocates the

costs and demands are realized.

3 Dynamic Allocation Rule

The dynamic allocation rule that we propose as a solution to Problem 1

depends on an augmented state variable, to be defined below. Such a state

variable models the excess level of each coalition combined with the devia-

tion of the instantaneous allocation from the pre-defined average allocation

of each coalition. With the given augmented state variable Problem 1 re-

duces to finding an ǫ-stabilizing allocation rule for the augmented dynamic
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system. Actually, as it will be clearer later on, ǫ-stabilizing the augmented

system implies both ǫ-stabilizing the excess vector and meeting the average

constraints.

Given two matrices A and D as in (12) and (13), from a standard prop-

erty of linear algebra, see also the appendix, we can find two matrices C

and F that “square” A and D and satisfy







A

C







[

D F

]

= I. (18)

Now, consider the augmented system

x(k + 1) = x(k) + Au(k) − v(k),

y(k + 1) = y(k) + Cu(k),

(19)

where v(k) is as in (6). The additional dynamic variable y(k) keeps track of

the deviation between the instantaneous and the average allocation of each

player. Define the augmented state variable z ∈ R
n+m−1 as

z(k) =

[

D F

]







x(k)

y(k)







,







x(k)

y(k)







=







A

C







z(k).

This variable satisfies the equation

z(k + 1) =

[

D F

]







x(k + 1)

y(k + 1)







=

[

D F

]







x(k)

y(k)







+

[

D F

]







A

C







u(k) −

[

D F

]







v(k)

0







= z(k) + u(k) − Dv(k). (20)
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This indicates that the allocation rule u(k) = −z(k), which is linear in z,

solves our problem.

Theorem 1 Consider system (20) with v(k) as in (6). The allocation rule

in feedback form

u(k) = −z(k) (21)

satisfies

‖z(k)‖ ≤ ‖Dv(k)‖. (22)

Further, if the average coalitions’ value is v̄ then the average allocation

vector is ū.

Proof To prove (22), we substitute the allocation rule (21) in the dynamics

of system (20). This results in z(k + 1) = −Dv(k) for all k, which im-

plies (22). For the rest of the proof, by summing (20) for different k =

1, 2, . . ., we obtain

1

T

T−1∑

k=0

u(k) −
1

T

T−1∑

k=0

Dv(k) =
z(T ) − z(0)

T
→ 0

as T → ∞, since the numerator is a finite quantity whereas the denominator

tends to infinity. Therefore ū = Dv̄, which concludes the proof. ⊓⊔

For fixed ǫ we wish to find the maximum time period Θ∗ such that

‖Dv(k)‖ ≤ ǫ. Trivially, such a value is Θ∗ = ǫ
δ

where δ = maxv∈Vb
|Dv|.

Then we have the following corollary.

Corollary 1 Consider system (20) with v(k) as in (6). For any ǫ and cor-

responding Θ∗, if Θ ≤ min{Θ∗, 1}, then the allocation rule in feedback form

u(k) = −z(k), (23)
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is ǫ-stabilizing.

Proof It is easy to show that

‖z(k)‖ ≤ ‖Dv(t)Θ‖ ≤ ‖Dv(t)Θ∗‖ ≤ max
v∈Vb

|DvΘ∗| ≤ ǫ.

⊓⊔

A side effect of ‖z‖ ≤ ǫ is that also ‖u‖ ≤ ǫ as u = −z. This means

that the smaller ǫ the smaller the maximum allocation (in magnitude).

Also, observe that the above results can be extended to the case where v̄

is averaged on-line (see Remark 1), with the difference that matrix D must

be updated iteratively according to (12)-(13).

4 Other algorithms in the literature

The idea of ǫ-stabilizing or shrinking the excess vector can be found, from

a different perspective, also in the algorithms proposed by Cesco (1998) [7],

Lehrer (2002) [12] and Sengupta et al. (1996) [16]. Though we have devel-

oped our algorithm independently from the ones cited above, a-posteriori

we recognize that all of them propose an allocation rule that uses a measure

of the extra benefit that a coalition has received up to the current time by

re-distributing the budget among the players. Budget distribution occurs

iteratively until the allocation process converges to an element in the core

or in the ǫ-core if the game is not balanced (in this last case the core is

empty). However, unlike the game in this paper, the games dealt with in [7,

12,16] are games with complete information in the sense that the values
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of the coalitions are known and time invariant. Therefore these dynamic

processes refer to allocations of payments to the players and not to the vari-

ation of the coalitions’ values. Owing to the fact that, in this paper, the

values of the coalitions vary unknowingly, we have been able to guarantee

the convergence to the core only in the long run. Furthermore, if we look at

the game < N, v(k) >, ǫ-stabilization implies that the vector of payments

belongs to the ǫ-core of the game at each time k = 0, 1, . . ..

A last comment regards the computational complexity of the algorithm.

In this sense, it must be noted that to compute the matrix D, upon which the

allocation rule is based, the number of constraints of type (10) to consider

grows exponentially on the number of players n. We refer the reader to

Bauso et al. [4], Section 5, for a procedure based on constraints generation

that returns the matrix D in polynomial time.

5 The Shapley value as a linear allocation rule

In this section we study the Shapley value as a special linear allocation

rule of the form (14). In particular, we show that there is a matrix Φ that

satisfies (12).

The Shapley value φ, introduced in Shapley (1953) [17], is defined by

φ = 1
n!

∑

σ∈Π(N) mσ where Π(N) is the set of all permutations of N and

mσ is the marginal vector corresponding to the permutation σ : N → N .

A marginal vector mσ corresponds to a situation in which the players enter

a room one by one in the order σ(1), σ(2), . . . , σ(n) and where each player
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receives the marginal contribution he creates upon entering. Hence, mσ is

the vector in R
n with elements

mσ
σ(1) = v({σ(1)}),

mσ
σ(2) = v({σ(1), σ(2)}) − v({σ(1)}),

...

mσ
σ(k) = v({σ(1), σ(2), . . . , σ(k)}) − v({σ(1), σ(2), . . . , σ(k − 1)}).

Theorem 2 The Shapley value φ is linear in v, i.e., φ = Lv, where the

matrix L ∈ R
n×m is defined by

Lij =
1

n!
·







−µ!(n − (µ + 1))! if i 6∈ S

(µ − 1)!(n − µ)! if i ∈ S.

(24)

if column j corresponds to coalition S with µ = |S|.

Proof The proof follows immediately from the definition of the Shapley

value in Shapley (1953) [17]. ⊓⊔

To emphasize the dependence of φ on v we henceforth write φ(v) in-

stead of φ. Let s(φ(v)) be the vector of surplus variables when revenues are

allocated according to the Shapley value φ(v). The idea is now to express

s(φ(v)) linearly in v.

Theorem 3 The vector of surplus variables is linear in v, i.e.,

s(φ(v)) = Qv, (25)

where Q ∈ R
(m−1)×m has row i associated to a surplus variable (a coalition

S ⊂ N), column j associated to a coalition M ⊆ N , and generic ijth
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element

Qij =







∑

p∈S Lpj if i 6= j

∑

p∈S Lpj − 1 if i = j.

(26)

Proof First, consider the coalition containing just player 1 and let Li• be

the generic ith row of L. The associated surplus variable is

s1(φ(v)) = φ1−v({1}) = L1•v−v({1}) = (L11−1)v({1})+L12v({2})+. . .+L1mv(N).

The latter equation yields Q1• = [(L11 − 1) L12 . . . L1m] , which is in accor-

dance with (26).

If we repeat the same reasoning for a generic coalition M ⊂ N , the

surplus variable is

sM (φ(v)) =
∑

i∈M

φi − v(M) =
∑

i∈M

Li•v − v(M).

Remind j is the column associated to coalition M . Then, the latter equation

yields Qjk =
∑

i∈M Lik if k 6= j and Qjj =
∑

i∈M Lij − 1 which is in

accordance with (26). ⊓⊔

Using the fact that φ(v) and s(φ(v)) are linear in v, we define the alloca-

tion vector associated to the Shapley value by u(φ(v)) = [φ(v)′ s(φ(v))′]′.

Corollary 2 There exists a matrix Φ ∈ R
(n+m−1)×m, defined by Φ = [L′ Q′]

′

such that u(φ(v)) = Φv. Furthermore Φ is a right inverse of A, i.e., AΦ = I.

Proof From the Theorems 2 and 3 we conclude [φ(v)′ s(φ(v))′]
′
= [L′ Q′]

′
v.

This finishes the proof of the first part.

To prove that AΦ = I, it suffices to show that Ai•Φ•j = 1 if i = j and

zero otherwise. Observe that row i of A, denoted by Ai• ∈ R
1×(n+m−1),
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is associated to a coalition M ⊆ N , whereas column j of Φ, denoted by

Φ•j ∈ R
(n+m−1)×1, is associated to a coalition S ⊆ N . Hence, the condition

i = j is equivalent to M = S.

Now consider once again the row vector Ai•. The first n elements of

this vector correspond to players p = 1, . . . , n and the last m − 1 elements

correspond to all coalitions R ⊂ N (recall the structure of A as described

in (2)). Now the structure of row Ai• may be formulated as:

Ai• = [. . . 1
︸︷︷︸

∀p∈M

. . . . . . 0
︸︷︷︸

∀p6∈M

. . . . . . −1
︸︷︷︸

R=M

. . . . . . 0
︸︷︷︸

∀R 6=M

. . .]. (27)

Analogously, the first n elements of Φ•j correspond to players p = 1 . . . n,

and the last m − 1 elements correspond to all coalitions R ⊂ N (see (24)

and (26)).

Concluding, if i = j, or M = S, then Ai•Φ•j =
∑

p∈S Lpj −(
∑

p∈S Lpj −

1) = 1. On the other hand, if i 6= j, or M 6= S, then Ai•Φ•j = 1
n! [

∑

p∈M Lpj−

∑

p∈M Lpj ] = 0. ⊓⊔

6 Conclusions

Inspired by a joint replenishment application, we studied a dynamic co-

operative game where at each point in time the value of each coalition of

players is unknown and fluctuates within a bounded polyhedron. Under the

assumption that the average value of each coalition in the long run is known

with certainty, we have presented a constructive method to find “robust”

allocation rules, i.e., allocation rules that are close to an excess vector and

guarantee a certain average allocation vector.
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A Computation of the matrices C and F

In this appendix we show how to compute the matrices C and F given

the matrices A and D, as mentioned in Section 3. To simplify notation let

n+m−1 = r. Note that the following conditions follow from (18): AD = I,

AF = 0, CD = 0, and CF = I. First, we rewrite the matrices A,C, D and

F as follows.

– A = [ A0 A1 ] where A0 is a m × (r − m) matrix and A1 is an m × m

non singular matrix.

– C = [ C0 C1 ] where C0 is a (r − m) × (r − m) matrix and C1 is an

(r − m) × m matrix.

– D = [D′
0 D′

1]
′
where D0 is an (r−m)×m matrix and D1 is an m×m

non singular matrix.

– F = [F ′
0 F ′

1]
′

where F0 is a (r − m) × (r − m) matrix and F1 is an

m × (r − m) matrix.

Next, we derive the following relations:

– from AF = 0, we obtain A1F1 = −A0F0. So F1 = −A−1
1 A0F0;

– from CD = 0, we obtain C1D1 = −C0D0. Thus C1 = −C0D0D
−1
1 ;

– from CF = I, we obtain C0F0 = I − C1F1 = I + C0D0D
−1
1 F1 =

I − C0D0D
−1
1 A−1

1 A0F0.
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Imposing, e.g., C0 = I we have F0 = (I + D0D
−1
1 A−1

1 A0)
−1. Conse-

quently,

C = [ I | − D0D
−1
1 ]

F =







(I + D0D
−1
1 A−1

1 A0)
−1

−A−1
1 A0(I + D0D

−1
1 A−1

1 A0)
−1







.


