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Abstract

This paper deals with repeated nonsymmetric congestion games in which the play-
ers cannot observe their payoffs at each stage. Examples of applications come from
sharing facilities by multiple users. We show that these games present a unique
Pareto optimal Nash equilibrium that dominates all other Nash equilibria and con-
sequently it is also the social optimum among all equilibria, as it minimizes the
sum of all the players’ costs. We assume that the players adopt a best response
strategy. At each stage, they construct their belief concerning others probable be-
havior, and then, simultaneously make a decision by optimizing their payoff based
on their beliefs. Within this context, we provide a consensus protocol that allows the
convergence of the players’ strategies to the Pareto optimal Nash equilibrium. The
protocol allows each player to construct its belief by exchanging only some aggre-
gate but sufficient information with a restricted number of neighbor players. Such
a networked information structure has the advantages of being scalable to systems
with a large number of players and of reducing each player’s data exposure to the
competitors.
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1 Introduction

The main contribution of this paper is the design of a consensus protocol (see,
e.g., [3,24]) that allows the convergence of strategies to a Pareto optimal Nash
equilibrium [2,26] for repeated nonsymmetric congestion games under partial
information.

The repeated games considered in this work are congestion games [25] as, at
each stage or time period, the payoff (cost) that the ith player pays for playing
a strategy is a monotonically nonincreasing function of the total number of
players playing the same strategy. The games are also nonsymmetric as the
payoffs are player-specific functions [22]. Finally, the games are under partial
information as we assume that: each player cannot observe its payoff at each
stage since the payments occur only on the long term; each player learns [30],
i.e., constructs its belief concerning other players’ probable behavior, by ex-
changing information with a restricted number of neighbor players.

A networked information structure has the advantages of being scalable to
systems with a large number of players and of reducing each player’s data
exposure to the competitors. On the other hand, delay in the propagation
of information through the network implies that players’ strategies cannot
converge immediately but only after some stages.

We prove that players can learn using a consensus protocol where the quality
of the information exchanged does not force the players to reveal their past
decisions (see the minimal information paradigm in [11]). In the last part of
the work, we also prove that players can use linear predictors to increase the
protocol speed of convergence.

Congestion games always admit at least one Nash equilibrium as established
by Rosenthal in [25]. However, its efficient computation is a non trivial issue.
Then, from a different perspective, we can review our results as a further
attempt of providing an algorithm that finds Nash equilibria in polynomial
time for special classes of congestion games [19,30,32]. Our results prove also
that the Nash equilibrium that we find is the unique Pareto optimal one.

In addition, we prove that, in our problem, the Pareto optimal Nash equilib-
rium dominates all other Nash equilibria, i.e., it minimizes the cost of each
player and therefore it is also social optimal, as it minimizes the social cost
defined as the sum of players’ costs. This is an important property as it implies
that competition does not induce loss of efficiency in the system.

Examples of applications come from situations where multiple players share a
service facility as airport facilities or telephone systems, drilling for oil, coop-
erative farming, and fishing (see also the literature on cost-sharing games [29],
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and on externality games [14]).

As motivating example, we consider a multi-retailer inventory application.
The players, namely different competing retailers, share a common warehouse
(or supplier) and cannot hold any private inventory from stage to stage, i.e.,
inventory left in excess at one stage is no longer utilizable in the future. The
latter fact prevents the retailers from having large replenishment and stocks.
Such a situation occurs when dealing with perishable goods as, for instance,
the newspapers. Transportation is provided at the retailers’ expense by the
supplier at every stage, e.g., every day, but the players adjust their transporta-
tion payments with the supplier only every once in a while, e.g., once every
two months.

Players aim at coordinating joint orders thus to share fixed transportation
costs. As typical of repeated games, we assume that the retailers act myopi-
cally, that is, at each stage, they choose their best strategy on the basis of a
payoff defined on single stage [23]. The reader is referred to [27] for a general
introduction to multi-retailer inventory problems with particular emphasis on
coordination among non cooperative retailers. Recent more specific examples
are [4], [6], [7], [13] and [31]. The role of information is discussed, e.g., in [9]
and [10]. The modelling of such problems as non cooperative games is in [1],
[17], [20] and [28]. Our idea of selecting the best (Pareto optimal) among sev-
eral Nash equilibria presents some similarities with [7], which however do not
consider the possibility of sharing transportation costs. Alternative ways to
achieve coordination proposed in the literature are either to centralize control
at the supplier [8] and [18], or to allow side payments [16], and [21].

The rest of the paper is organized as follows. In Section 2, we develop the
game theoretic model of the inventory system and formally state the problem.
In Section 3, we prove the existence of and characterize the unique Pareto
optimal Nash equilibrium. In Section 4 we prove some stability properties of
the Pareto optimal Nash equilibrium. In Section 5, we design a distributed
protocol that allows the convergence of the strategies to the Pareto optimal
Nash equilibrium. In Section 6, we analyze the speed of convergence of the
protocol. In Section 7, we introduce a numerical example. Finally, in Section 8,
we draw some conclusions.

2 The Inventory Game

We consider a set of n players Γ = {1, . . . , n} where each player may exchange
information only with a subset of neighbor players. Hereafter, we indicate
with the same symbol i both the generic player and the associated index.
More formally, we assume that the set Γ induces a single component graph
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G = (Γ, E) whose edgeset E includes all the non oriented couples (i, j) of
players that exchange information with each other. In this context, we define
the neighborhood of a player i the set Ni = {j : (i, j) ∈ E} ∪ {i}.

Each player i faces a customer demand and must decide whether to fulfill it
or to pay a penalty pi (see it, for instance, as a missed revenue). Differently,
we can review penalty pi as the cost incurred by the player when, rather
than participating in the game, it fulfills the demand by turning to a different
supplier. We call active player the one who decides to meet the demand. At
each stage of the game, the active players receive the items required by their
customer from the common warehouse. Transportation occurs only once in a
stage/day, and has a total cost equal to K. The transportation cost of each
stage will be divided equally by all the players active on that stage, at the
moment of adjusting their transportation payments with the supplier, e.g.,
once every two months. As the costs do not realize immediately, the players,
before playing a strategy at a given stage, need to estimate the number of
active players, and they do this by exchanging information.

Define the function si(k) ∈ Si = {0, 1} as the strategy of player i, for each
player i ∈ Γ, at stage k. We indicate s(k) = {s1(k), . . . , sn(k)} as the vector
of the players’ strategies and s−i = {s1(k), . . . , si−1(k), si+1(k), . . . , sn(k)} as
the vector of strategies of players j 6= i. At stage k, si(k) is equal to 1 if player
i meets the demand and equal to 0 otherwise. Then si(k) has the following
payoff defined on single stage

Ji(si(k), s−i(k)) =
K

1 + ‖s−i(k)‖1

si(k) + (1 − si(k))pi, (1)

where ‖s−i(k)‖1 is trivially equal to the number of active players other than i.

Note that the above game is a nonsymmetric congestion game with only two
strategies for each player [22], and admits the exact Rosenthal’s potential

function [25] defined as Φ(s) =
∑|A(s)|

j=1
K
j

+
∑

i∈N\A(s) pi where A(s) = {i : si =

1} is the set of active players.

For the above game, best response strategies are the only ones considered in
this paper. In the case of complete information, each player i knows the other
players’ strategies s−i(k) and optimizes repeatedly over stages its payoff (1)
choosing as best response (see, e.g., [26]) the following threshold strategy

si(k) =






1 if ‖s−i(k)‖1 ≥ li

0 otherwise
, (2)

where the threshold li is equal to K
pi

− 1.
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Incomplete information means that player i may only estimate the num-
ber ‖s−i(k)‖1 of all other active players. Note that, for the players, it is not
possible to infer the number of active players from the cost as we assume that
players realize their costs only in the long term and not immediately. In the
rest of the paper, being χ̂i(k) the estimate of ‖s−i(k)‖1, the best response
strategy (2) slightly modifies as

si(k) =






1 if χ̂i(k) ≥ li

0 otherwise
. (3)

To compute χ̂i(k), at stage k, player i processes two types of public informa-
tion: pre-decision information, xi(k), received from the neighbor players in Ni,
and post-decision information, zi(k), transmitted to the neighbor players.
The information evolves according to a distributed protocol Π = {φ, hi i ∈ Γ}
defined by the following dynamic equations:

xi(k + 1) = φi(zj(k) for all j ∈ Ni) (4)

zi(k) = hi(si(k), si(k − 1), xi(k)), (5)

where the functions φi(·) and hi(·) are to be designed in Section 5.

The protocol must be such that χ̂i(k) can be inferred from the converging
value of the pre-decision information xi(k). If this is true, then player i selects
its strategy si(k) = µi(xi(k)) on the basis of the only pre-decision information.

In the rest of the paper we always refer to (3) as when we consider a best
response strategy.

We consider the following problem.

Problem 1 Given the n-player repeated inventory game with binary strategies
si(k) = {0, 1} and payoffs (1), determine a distributed protocol Π = {φ, hi i ∈
Γ} as in (4)-(5) that allows the convergence of strategies (3) to a Pareto op-
timal Nash equilibrium s∗, if exists.

Observe that all results presented in the rest of the paper require only that the
strategies are binary and have a threshold structure. Therefore the structure
of the payoff can be relaxed as long as the best responses maintain a threshold
structure as defined in (2)-(3).

Let us show an example in which the game under consideration may arise.

Example 1 (Newsboy) Consider a newsboy application where, at each stage,
and for each newsboy i, the demand Di is independent identically distributed,
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with probability distribution di(x) and expected value constant over time, E{Di} =
νi. If the newsboy orders a quantity Si from the warehouse, then he will pay
the cost

E
{

K
ni

+ ciSi + hi max(0, Si − Di) + Pi max(0, Di − Si)−

−Bi min(Di, Si)} = K
ni

+ G(ci, Bi, hi, Pi, νi)
(6)

where K is the set up cost, ni the number of newsboys sharing the set up cost,
ci the purchase cost per unit stock, hi and Pi respectively the penalty on storage
and on shortage, and Bi the reward coefficient. In the right hand side of the
above equation, the function G(ci, Bi, hi, Pi, νi) is obtained by averaging the
cost with respect to the probability distribution di(x).
On the other hand, if the newsboy does not order, then he will pay a penalty
for not satisfying the demand

PiE{Di} = Piνi. (7)

To choose whether to reorder or not the newsboy compares the costs or reorder-
ing (6) with the penalty for not satisfying the demand (7). As a consequence,
he will reorder only if the number of newsboys sharing the set up cost ni verifies
K
ni

≤ Piνi − G(ci, Bi, hi, Pi, νi), which is equivalent to

ni ≥






K
Piνi−G(ci,Bi,hi,Pi,νi)

if Piνi ≥ G(ci, Bi, hi, Pi, νi)

∞ if Piνi < G(ci, Bi, hi, Pi, νi).

The right-hand term plays the role of threshold li in the inventory game under
concern.

3 A Pareto optimal Nash equilibrium

The game under consideration always has a Nash equilibrium because it is
a congestion game [25]. In this section we prove that there exists a unique
Pareto optimal Nash equilibrium and we describe its characteristics. To this
end, here and in the rest of the paper, we make, without loss of generality, the
following assumptions:

Assumption 1 The set Γ of players is ordered so that l1 ≤ l2 ≤ . . . ≤ ln.

Assumption 2 There may exist other players i = n+1, n+2, . . . not included
in Γ, all of them with thresholds li = ∞.
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Assumption 3 The players in the empty subset of Γ have thresholds li =
−∞.

The last assumption is obviously artificial, but simplifies the proofs of most
results in the rest of the paper. Indeed, such an assumption allows us to prove
the theorems without the necessity of introducing different arguments in the
case when the set of active players is empty.

3.1 Characterization of Nash equilibria

In a Nash equilibrium s⋆ = {s⋆
1, . . . , s⋆

n}, each player i selects a strategy s⋆
i

such that

Ji(s
⋆
i , s⋆

−i) ≤ Ji(si, s⋆
−i) for all si ∈ Si, i ∈ Γ. (8)

Hence, from (2), we obtain the following equilibrium conditions

s⋆
i =






1 if ‖s⋆
−i‖1 ≥ li

0 otherwise
for all i ∈ Γ. (9)

On the basis of (9), we can state the following property of any Nash Equilib-
rium.

Lemma 1 If s⋆ is a Nash equilibrium then:

i) if player i is active, namely s⋆
i = 1, then all the preceding players 1, . . . , i−1

are also active, i.e., s⋆
1 = . . . = s⋆

i−1 = 1;
ii) if player i is not active, namely s⋆

i = 0, then neither all successive players
i + 1, . . . , n are active, i.e., s⋆

i+1 = . . . = s⋆
n = 0.

PROOF. To prove item i), we show that the assumption s⋆
i = 1 and s⋆

i−1 = 0
are in contradiction. The equilibrium condition (9) and s⋆

i = 1 imply ‖s−i‖1 =∑
j∈Γ, j 6=i s

⋆
j ≥ li. Since s⋆

i−1 = 0, the latter inequality is equivalent to

∑

j∈Γ, j 6=i, j 6=i−1

s⋆
j ≥ li. (10)

However, condition (9) and s⋆
i−1 = 0 also imply ‖s−(i−1)‖1 =

∑
j∈Γ, j 6=i−1 s⋆

j <

li−1. But this last inequality is in contradiction with (10) since

∑

j∈Γ, j 6=i, j 6=i−1

s⋆
j ≤

∑

j∈Γ, j 6=i−1

s⋆
j .
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A complementary argument can be used to prove item ii). 2

Let us now introduce two definitions.

Definition 1 A set C ⊆ Γ is compatible if li ≤ |C| − 1 for all i ∈ C.

In a compatible set C, each player finds convenient to meet the demand if all
other players in C do the same.

Definition 2 A set C ⊆ Γ of cardinality |C| = r is complete if it contains
all the first r players, with r ≥ 0, i.e., C = {1, . . . , r}.

Note that C = ∅ is both a complete and a compatible set.

Theorem 1 The vector of strategies s⋆, defined as

s⋆
i =






1 if i ∈ C

0 otherwise
(11)

is a Nash equilibrium if and only if the set C = {1, . . . , r} ⊆ Γ is both complete
and compatible and the following condition holds

lr+1 > r. (12)

PROOF. Sufficiency. Assume that s⋆, defined as in (11), is a Nash equilib-
rium. Observe that if C = ∅ then it is complete and compatible by definition.
Otherwise, C is complete by Lemma 1 and compatible by definition of a Nash
equilibrium. Finally, note that if C = Γ, condition (12) holds since ln+1 = ∞.
Otherwise, condition (12) holds since the player r + 1 6∈ C chooses a strategy
s⋆

r+1 = 0 that, together with (9), implies lr+1 > ‖s⋆
−(r+1)‖1 = r.

Necessity. Assume that C is complete and compatible and that condition (12)
holds. Observe that Ji(1, s

⋆
−i) ≤ Ji(0, s

⋆
−i) and therefore s⋆

i = 1 holds, for all
players i ∈ C, since C is compatible. Then note that, since C is complete,
all i 6∈ C are such that i > r. From condition (12) we also have li > r for
all i > r. Hence, Ji(0, s

⋆
−i) ≤ Ji(1, s

⋆
−i) holds and consequently s⋆

i = 0 for all
players i 6∈ C. 2

From Theorem 1 we derive the following corollary.

Corollary 1 There always exists a Nash equilibrium

s⋆
i =






1 if i ∈ C

0 otherwise
(13)
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where C is the maximal compatible set.

PROOF. First observe that the set C always exists since it may possibly be
the empty set.
With Assumptions 1, 2, and 3 in mind, we show that if C is maximal then it
is also complete. Assume by contradiction that C is not complete. Let player
i be in C and player i− 1 be not in C. As i ∈ C, then li < |C|. Since li−1 ≤ li,
then li−1 < |C| which in turn implies that also C ∪{i− 1} is a compatible set
in contradiction with the maximality hypothesis on C.
Now, assume that C is equal to {1, . . . , r}. Since C is maximal, C ∪ {r + 1}
is not compatible, so lr+1 > r, i.e., condition (12). Then, even for C ⊂ Γ, the
hypotheses of Theorem 1 hold true, and the vector of strategies s⋆, defined
in (13) is a Nash equilibrium. Note that due to Assumptions 2 and 3 the above
reasoning applies also to the cases C = ∅ and C = Γ. 2

Observe that, if C is the maximal compatible set, it trivially holds

r = |C| = max
λ

{λ ∈ {1, . . . , n} : lλ < λ} . (14)

The following example shows that two Nash equilibria may exist, only one
associated to the maximal compatible set as defined in (13).

Example 2 Consider a set Γ of 8 players and assume K = 60. Penalties pi

and thresholds li are listed in Tab. 1.

Tab. 1 about here

The maximal compatible set C = {1, 2, 3, 4, 5, 6} and the associated Nash equi-
librium s1 = {1, 1, 1, 1, 1, 1, 0, 0}. Pareto optimality is evident as any deviation
from this equilibrium is disadvantageous for at least one player. Also we have
another complete and compatible set, C = {1, 2, 3}, that verifies (12) and is
therefore associated to a second Nash equilibrium s2 = {1, 1, 1, 0, 0, 0, 0, 0}.

3.2 Characterization of the Pareto optimal Nash equilibrium

A vector of strategies ŝ = {ŝ1, . . . , ŝn} is Pareto optimal if there is no other
vector of strategies s such that

Ji(si, s−i) ≤ Ji(ŝi, ŝ−i) for all i ∈ Γ, (15)

where the strict inequality is satisfied by at least one player.
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We say that an equilibrium ŝ = {ŝ1, . . . , ŝn} dominates all the other equilibria
if, for all equilibria s, it is such that

Ji(si, s−i) ≥ Ji(ŝi, ŝ−i), for all i ∈ Γ. (16)

Trivially, if there exists an equilibrium that dominates all other equilibria then
it is also social optimal as it verifies,

∑

i∈Γ

Ji(si, s−i) ≥
∑

i∈Γ

Ji(ŝi, ŝ−i). (17)

In other words, a social optimal Nash equilibrium is the one among all the
Nash equilibria that minimizes the social cost defined as the sum of all the
players’ costs. However, note there may exist vectors of strategies different
from equilibria that induce a smaller cost for the same social cost.

Theorem 2 Let s⋆ be the Nash equilibrium associated to the maximal com-
patible set C. If pi 6=

K

|C|
for all i ∈ C, then

• Pareto optimality. The Nash equilibrium s⋆ is Pareto optimal;
• Uniqueness. The Nash equilibrium s⋆ is the unique Pareto optimal Nash

equilibrium.
• Social optimality. The Nash equilibrium s⋆ is social optimal.

PROOF. Pareto optimality. We show that Nash equilibrium s⋆ is Pareto
optimal since any other vector of strategies s induces a worse payoff for
at least one player. In the Nash equilibrium s⋆, each i ∈ C gets a payoff
Ji(1, s

⋆
−i) = K

|C|
< pi, each i 6∈ C gets a payoff Ji(0, s

⋆
−i) = pi < K

|C|
. Now,

consider the vector of strategies s. Define D = {i ∈ C : si = 0} as the set of
players with li < |C| that are not active in s and E = {i 6∈ C : si = 1} as the
set of players with li ≥ |C| that are active in s. Trivially, D∪E 6= ∅ as s 6= s⋆.
We deal with E 6= ∅ and E = ∅ separately.
If E 6= ∅ and D = ∅, each i ∈ E gets a payoff Ji(1, s−i) = K

|C∪E|
strictly greater

than Ji(0, s
⋆
−i) = pi as C is the maximal compatible sets. The latter condition

trivially holds also when D 6= ∅ since, in this case, each player i ∈ E incurs in
a higher payoff Ji(1, s−i) = K

|(C∪E)\D|
.

If E = ∅, then D 6= ∅, and each i ∈ C \ D, if exists, gets a payoff Ji(1, s−i) =
K

|C\D|
> Ji(0, s

⋆
−i) = K

|C|
. At the same time, each i ∈ D gets a payoff Ji(0, s−i) =

pi > Ji(1, s
⋆
−i) = K

|C|
. Finally, each i ∈ Γ \ C gets a payoff Ji(0, s−i) = pi =

Ji(0, s
⋆
−i).

Uniqueness and social optimality. We prove the uniqueness and the social op-
timality of the Pareto optimal Nash Equilibrium by showing that it dominates
all the other equilibria. Consider a generic Nash equilibrium s associated to a
complete and compatible set C different form C. Since C is maximal then C ⊂
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C. Then, each i ∈ C, if exists, gets a payoff Ji(si, s−i) = K
|C|

> Ji(s
⋆
i , s

⋆
−i) = K

|C|
;

analogously, each i ∈ C \ C gets a payoff Ji(si, s−i) = pi > Ji(s
⋆
i , s

⋆
−i) = K

|C|
;

finally, each player i ∈ Γ \C, gets a payoff Ji(si, s−i) = pi = Ji(s
⋆
i , s

⋆
−i). Then,

in any generic Nash equilibrium each player has a payoffs not better than the
ones associated to s⋆. 2

Observe that if and only if pi = K

|C|
for all i, there exists two Pareto optimal

Nash equilibria with equal payoff. They are associated respectively to the
maximal compatible set C and to the empty set. In the rest of the paper, only
the equilibrium s⋆ associated to the maximal compatible set C will be called
the Pareto optimal Nash equilibrium.

4 Stability of Nash equilibria

In this section, we assume that at each stage k of the repeated game, each
player i knows the number of active players at the previous stage, sets χ̂i(k) =
‖s−i(k − 1)‖1 and applies the best response strategy (3). In this context, we
prove that the Pareto optimal Nash equilibrium s⋆ is stable with respect to
its neighborhood of strategies s such that s ≥ s⋆ componentwise. On the basis
of this result, in the next section, we will be able to study the convergence
properties of the repeated inventory game. Under the above hypothesis on
χ̂i(k), the best response strategy (3) yields the following dynamic model

si(k) =






1 if ‖s−i(k − 1)‖1 ≥ li

0 otherwise
for all i ∈ Γ. (18)

Given an equilibrium s⋆ and the associated complete and compatible set C =
{1, . . . , r}, we define a positive (negative) perturbation at stage 0, the vector
∆s(0) = s(0) − s⋆ ≥ 0 (∆s(0) ≤ 0). In other words, a positive (negative)
perturbation is a change of strategies of a subset of players P = {i ∈ Γ \
C : ∆si(0) = 1} (P = {i ∈ C : ∆si(0) = −1}), called perturbed set. The
cardinality of the perturbed set |P | = ‖∆s(0)‖1 is the number of players that
join the set C (leave the set C). In addition, a positive (negative) perturbation
∆s(0) is maximal when ‖∆s(0)‖1 = |Γ \ C|, (‖∆s(0)‖1 = |C|). In this last
case, all the players in Γ \ C, (C) change strategy.

A Nash equilibrium s⋆ is called stable with respect to positive perturbations if
there exist two integers δ > 0 and k̄ > 0 such that if ‖∆s(0)‖1 ≤ δ, then
s(k) = s⋆ for all k ≥ k̄, when the strategy (18) is applied in the repeated game
by all the players. Analogously a Nash equilibrium s⋆ is called maximally stable
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with respect to positive perturbations if it is stable with respect to the maximal
positive perturbation ∆s(0).

In the following, we introduce some theorems concerning the stability of Nash
equilibria with respect to positive perturbation. The motivation for analyz-
ing positive perturbations stems from the fact that, as we will show later on,
maximal stability with respect to positive perturbations is a property that
distinguishes the Pareto optimal Nash equilibrium from all other Nash equi-
libria. We will exploit the above property in the consensus protocol to force
the convergence of the strategies to the Pareto optimal Nash equilibrium.

Theorem 3 Consider a Nash equilibrium s⋆ associated to a set C = {1, . . . , r}.
The Nash equilibrium s⋆ is stable with respect to positive perturbations ∆s(0) :
||∆s(0)||1 = j − r − 1 if all players i 6∈ C, with r < i ≤ j, have thresh-
olds li ≥ i. In addition, the Nash equilibrium s⋆ is not stable with respect
to positive perturbations ∆s(0) : ||∆s(0)||1 = ĵ − r, if there exists a player
ĵ = arg min{i ∈ Γ \ C : li < i}

PROOF. Stability. Keep in mind that each player observes the other players’
strategies with a one-stage delay throughout this proof. Note that, since s⋆

is a Nash equilibrium, Theorem 1 and the definition of positive perturbation
implies that the following two conditions hold: i) the threshold lr+1 ≥ r + 1
and, ii) at stage k = 0, si(0) = 1, for all i ∈ C ∪ P , whereas si(0) = 0, for all
i ∈ Γ \ C ∪ P . Note also that a positive perturbation ∆s(0) induces players
i ∈ Γ \ C, with thresholds li ≤ |C ∪ P | to change strategy from si(0) = 0 to
si(1) = 1. Differently, all players i ∈ C, will not change strategy, since they
have thresholds li ≤ |C| < |C ∪ P |.
Consider now a particular perturbation ∆s(0) with ||∆s(0)||1 = j − r − 1.
Then, at stage k = 1, all players i ≥ j set si(1) = 0, since they observe j − 1
active players, and their threshold is li ≥ j. Hence, at stage k = 2, player j−1
surely sets sj−1(2) = 0, since it observes at most j − 2 active players and its
threshold is lj−1 ≥ j − 1. Following the same line of reasoning at the generic
stage k with 1 < k < j−r, player j−k+1 sets sj−k+1(k) = 0, since it observes
at most j − k active players and lj−k+1 ≥ j − k + 1. Hence, at most at stage
k = j − r the strategies converge to the desired Nash equilibrium s⋆.
Instability. It is enough to show that the Nash equilibrium s⋆ is not stable with
respect to a perturbation ∆s(0) : ||∆s(0)||1 = ĵ − r induced by the perturbed
set P = {r + 1, . . . , ĵ}. To see this fact, consider that, at stage k = 1, players
r + 1, . . . , ĵ set sr+1(1) = . . . = sĵ(1) = 1 since their thresholds are lower than

or equal to lĵ = ĵ − 1. The players r + 1, . . . , ĵ do not change their strategies
in the following stages, then the desired equilibrium point s⋆ will never be
reached. 2

In the previous theorem, it is immediate to observe that player ĵ may exist
only for ĵ ≥ r + 2, since condition (12) of Theorem 1 imposes lr+1 ≥ r + 1. In
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addition, lĵ = ĵ − 1 since for all i such that r < i < ĵ there holds li ≥ i by

minimality of ĵ.

Given a Nash equilibrium s⋆, Theorem 3 establishes that s⋆ is stable with
respect to any positive perturbation ∆s(0) if a player ĵ = arg min{i ∈ Γ \C :
li < i} does not exist. On the other hand, s⋆ is stable for ||∆s(0)||1 < ĵ−r−1
and is not stable for ||∆s(0)||1 ≥ ĵ − r, if player ĵ exists. Under this latter
hypothesis, Theorem 3 does not hold for a perturbation ||∆s(0)||1 = ĵ− r−1.

For the sake of clarity we compute ĵ and simulate dynamics on strategies for
the system of Example 2.

Example 3 (Example 2 cont’d) Consider the complete and compatible set
C = {1, 2, 3} with associated the second Nash equilibrium s2 = {1, 1, 1, 0, 0, 0, 0, 0}.
Player

ĵ = arg min{i ∈ Γ \ C : li < i} = 6

then Theorem 3 states that s∗ is stable if ‖∆s(0)‖1 < 2 and instable if ‖∆s(0)‖1 ≥
3.

Tab. 2 about here

In Table 2 we simulate the dynamics on strategies under a positive perturba-
tions ‖∆s(0)‖1 = 1 assuming that, for example, player 5 selects s5(0) = 1. At
stage k = 2 the dynamics converges again to the equilibrium s2. Analogously
in Table 3 we simulate the dynamics for ‖∆s(0)‖1 = 3 obtained when, for
example, players 5, 7 and 8 select s5(0) = s7(0) = s8(0) = 1. At stage k = 1
the dynamics converges to the first Nash equilibrium s1 = {1, 1, 1, 1, 1, 1, 0, 0}
showing that s2 is instable.

Tab. 3 about here

Assuming that there exists player ĵ = arg min{i ∈ Γ\C : li < i}, the following
theorem addresses the case ||∆s(0)||1 = ĵ − r − 1.

Theorem 4 Consider a Nash equilibrium s⋆ associated to a set C = {1, . . . , r}.
Assume that there exists a player ĵ = arg min{i ∈ Γ \ C : li < i} and let
î = arg min{i ∈ Γ \ C : li = ĵ − 1}. The vector of strategies s⋆ is not stable
with respect to positive perturbations ∆s(0) : ||∆s(0)||1 = ĵ − r− 1 if and only
if at least one of the following conditions holds:
i) there exist players ĵ + 1, . . . , 2ĵ − î − 1 with threshold equal to ĵ − 1,
ii) there exist players ĵ + 1, . . . , 2ĵ − î.

PROOF. Let us initially observe that, due to the minimality of ĵ, î is less than
or equal to ĵ − 1. If î = ĵ − 1 then condition i) holds since it defines an empty
set.
Sufficiency. We first prove condition i). For doing so, let the perturbed set P
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be equal to {r +1, . . . , ĵ − 1} then sr+1(0) = . . . = sĵ−1(0) = 1, which implies,
at stage k = 1, sr+1(1) = . . . = sî−1(1) = 1, sĵ(1) = . . . = s2ĵ−î−1(1) = 1.

Actually, each player i such that r+1 ≤ i ≤ î−1 observes that at the previous
stage, k = 0, other ĵ − 2 ≥ li players are active and each player i such that
ĵ ≤ i ≤ 2ĵ − î − 1 observes that other ĵ − 1 = li players are active. Similarly,
at stage k = 2, it surely holds that sr+1(2) = . . . = sĵ−1(2) = 1. Hence, from

such a stage on, the players r + 1, . . . , ĵ − 1 surely decide to meet the demand
on at least the even stages, and therefore s⋆ is not stable.
It is left to prove condition ii). Let the perturbed set P be equal to {r +
1, . . . , î − 1, ĵ + 1, . . . , 2ĵ − î} then sr+1(0) = . . . = sî−1(0) = 1 and sĵ+1(0) =
. . . = s2ĵ−î(0) = 1, which implies, at stage k = 1, sr+1(1) = . . . = sĵ(1) = 1.

Actually, each player i such that r+1 ≤ i ≤ î−1 observes that at the previous
stage, k = 0, other ĵ − 2 ≥ li players are active and each player i such that
î ≤ i ≤ ĵ observes that other ĵ − 1 = li players are active. For an analogous
reason, from stage k = 2 on, the players r + 1, . . . , ĵ surely decide to meet
the demand at every stage and strategies converge to a new Nash equilibrium
different from s⋆.
Necessity. Assume that condition i) and condition ii) do not hold. Then the
set Γ includes at most 2ĵ − î − 1 players and the threshold of the last player
must satisfy the following condition l2ĵ−î−1 > ĵ−1. Then, given a perturbation

∆s(0) with ||∆s(0)||1 = ĵ−r−1, at stage k = 1 it holds si(1) = 1 for i such that
either i < î or li = ĵ−1 but i 6∈ P , si(1) = 0 otherwise. Assume without loss of
generality that all i such that li = ĵ−1 but i 6∈ P are smaller than the minimum
ĩ such that l̃i = ĵ − 1 and ĩ ∈ P , then the maximum number of active players
at stage k = 1 may be obtained for P = {r + 1, . . . , î − 1, ĵ, . . . , 2ĵ − î − 1}.
Indeed, by doing this, we preserve all players i with threshold li = ĵ − 1 from
being perturbed at k = 0.
Having chosen such a P , the number of active players at stage k = 1 is equal to
ĵ−1. Indeed, all players i = î, . . . , ĵ−1 have thresholds li = ĵ−1 and therefore
sî(1) = . . . = sĵ−1(1) = 1. At the same time, all players i = ĵ, . . . , 2ĵ − î − 1,

whose thresholds are li ≥ ĵ − 1 observe only other ĵ − 2 active players and
therefore sĵ(1) = . . . = s2ĵ−î−1(1) = 0. Now, at stage k = 2, we have sî(2) =

. . . = sĵ−1(2) = 0 and s2ĵ−î−1(2) = 0, since l2ĵ−î−1 > ĵ − 1. The situation at
k = 2 is equivalent to the one obtainable at k = 0 in presence of a perturbation
with ||∆s(0)||1 = ĵ − r− 2. Since for perturbations with ||∆s(0)|| < ĵ − r− 1,
see Theorem 3, the Nash equilibrium s⋆ is stable, we can affirm that even in
this case the strategies will converge to the Nash equilibrium s⋆. 2

Now, we specialize the previous theorems to the Pareto optimal Nash equilib-
rium.

Corollary 2 The unique Pareto optimal Nash equilibrium is maximally stable
with respect to positive perturbations.
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PROOF. From definition of maximal stability, we must show that s⋆ is stable
with respect to the maximal positive perturbation ∆s(0), with ‖∆s(0)‖1 =
|Γ−C|. From maximality of C it must hold li ≥ i for all i, such that r < i < n.
As a consequence, see Theorem 3, s⋆ is stable with respect to ∆s(0) and
therefore it is also maximally stable. 2

Let us conclude this section remarking that the Pareto optimal Nash equi-
librium may not be globally stable with respect to negative perturbations. It
is straightforward to prove this fact when, e.g., several Nash equilibria exist.
Consider, for instance, the Nash equilibrium s1 = {1, 1, 1, 1, 1, 1, 0, 0} of Ex-
ample 2: any negative perturbation (any of the players 1-6 selects 0 instead of
1) makes the strategies converge to the second equilibrium s2.

5 A Consensus Protocol

In this section, we exploit the stability properties introduced in the previous
section to design a protocol Π̂ = {φi, hi, i ∈ Γ} that allows the distributed
convergence of the best response strategies (3) to the Pareto optimal Nash
equilibrium.

Consider the graph G induced by the set of players Γ as defined in Section 2.
Let L be the Laplacian matrix of G and use Lij and Li• to denote respectively
the i, j entry and the i-th row of L.
Let us consider the almost-linear protocol Π̂ defined by the following dynam-
ics:

xi(k + 1) = zi(k) + α
∑

j∈Ni

Lijzj(k) + δT (k) (19)

zi(k) = xi(k) + si(k) − si(k − 1) for all k ≥ 1 (20)

zi(0) = xi(0) = si(0) (21)

where α is a negative scalar such that the eigenvalues of the matrix (I + αL)
are inside the unit circle, except for the largest one that is equal to one. We
will show that the pre-decision information xi(k) in (19) is a local estimate
of the percentage of the active players at each stage k − 1. The post-decision
information zi(k) in (20) updates the estimate in the light of the strategy
si(k).

Almost linearity is due to the non linear correcting term δT (k) acting any T

stages in (19). This term describes the use of linear predictors, which will be
discussed in Section 6.1. There, we will show that, when using linear predic-
tors, the presence of a non null δT increases the speed of convergence of the
protocol. We will also emphasize this last argument in the numerical example
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of Section 7. Throughout this section, we disregard this term by assuming
δT (k) constantly equal to 0.

In the following we introduce two lemmas. The first one states that, at each

stage k, the average value Avg(x(k)) =
∑

i
xi(k)

n
is the percentage of active

players at the previous stage k− 1. The second lemma states that if no player
changes its strategy for a sufficient number of stages the pre-decision informa-
tion xi(k) converges to the Avg(x(k)). For this last reason, protocol Π̂ may
also be referred to as an average consensus protocol (see, e.g., [24]).

Now, let us initially rewrite the dynamic of the pre-decision information (19)
for k ≥ 1 as

x(k + 1) = (I + αL)(x(k) + s(k) − s(k − 1)) =

s(k) +
∑k

r=0(I + αL)k−rαLs(r).
(22)

To obtain the second term of (22) we substitute in (19) the value of zi(k) in
(20). Then we observe that from (19) it holds x(1) = s(0) + αLs(0) hence,
by induction, if we assume x(k) = s(k − 1) + α

∑k−1
r=0(I + αL)(k−1)−rLs(r), we

obtain the last term of (22).

Lemma 2 Given the dynamic of the pre-decision and the post-decision in-
formation vectors as described in (19), (20) and (21) at each stage k, the
following condition holds

Avg(x(k)) =
‖x(k)‖1

n
=

‖s(k − 1)‖1

n
. (23)

PROOF. Consider the pre-decision information vector x(k) as expressed in
(22). Then, observe that 1′L = 0. Hence, 1′x(k) = 1′s(k − 1) + α1′

∑k−1
r=0(I +

αL)(k−1)−rLrs = 1′s(k − 1) + α
∑k−1

r=0 1′ILrs = 1′s(k − 1) = ‖s(k − 1)‖1, which

in turn implies Avg(x(k)) = ‖x(k)‖1

n
= ‖s(k−1)‖1

n
. 2

Lemma 3 Consider the dynamic of the pre-decision and the post-decision
information vectors as described in (19), (20) and (21) and assume that no
player changes strategy from stage r on, then there exists a finite integer r̂ ≥ 1
such that, for player i, it holds xi(r + r̂) = ‖s(r+r̂−1)‖1

n
= ‖s(r)‖1

n
, i.e., xi(r + r̂)

is equal to the percentage of active players at stage r.

PROOF. We extend to the discrete-time system (22) the results established
for continuous-time systems in [24]. In particular, when no players change
strategy for k > r, we have si(k) − si(k − 1) = 0 and the system (22) is

16



equivalent to

x(k + 1) = (I + αL)x(k), for k ≥ r. (24)

Given the discrete-time system above, there exists r̂ ≥ 0 such that, for each
player i, xi(r̂) = Avg(x(r + r̂)) = ‖s(r+r̂−1)‖1

n
= Avg(x(r + 1)) (see, e.g.,

Corollary 1 in [24]). 2

In the assumption that no player changes strategy from a generic stage r on,
the above arguments guarantee that each player i may estimate the percentage
of the active players in a finite number of stages T . Lemma 3 shows that T is
finite and precisely T ≤ r̂ − r. It will be shown in Section 6, that T ≤ 2n in
presence of linear predictors.
At stage r + T player i estimates the number of all other active players as

χ̂i(r + T ) = ‖s−i(r + T − 1)‖ = ‖s−i(r)‖

= nxi(r + T ) − si(r).
(25)

Now, assume that players can change strategy only at stages k̂ = qT , q =
0, 1, 2, . . .. At stages k̂ ≥ 1, we can generalize (25) as χ̂i(k̂) = nxi(k̂)−si(k̂−T ).
At stage k̂ = 0 let the players estimate all the other players active, i.e., χ̂i(0) =
n − 1.

Theorem 5 The average consensus protocol Π̂ defined in (19), (20) and (21)
allows the best response strategy (3) to converge in (n − 1)T stages to the
unique Pareto optimal Nash equilibrium.

PROOF. Initially observe that no player changes its strategy at stages k 6= qT .
Then note that the best response strategy, sampled at stages k̂, evolves as

si(k̂) =






1 if ‖s−i(k̂ − T )‖1 ≥ li

0 otherwise
.

Such a dynamic is exactly as in (18). The hypothesis χ̂i(0) = n − 1 implies
that, at stage k̂ = 0, the initial strategy s(0) ≥ s⋆ with ‖∆s(0)‖1 ≤ |Γ \ C|.
Since (18) is maximally stable with respect to positive perturbations even
the system of the sampled strategies will converge to the Pareto optimal Nash
equilibrium. The system of sampled strategies converges in at most n−1 stages.
Actually, assume that the Pareto optimal Nash equilibrium is associated to
C = ∅. Then, in the worst case, at stage k̂ = 0, n − 1 players decide to meet
the demand and at each successive stage k̂ = qT only a single player changes
its strategy and decide not to meet the demand any more. 2
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Note that the convergence properties of the protocol established in the previ-
ous theorem still hold for any initial estimate zi(0) in (21) that is an upper
bound of the |C|.

Let us finally observe that the value of T depends on the information available
to the players. If, at each stage k, each player can infer the number of active
players either because it is connected with all the other players or because
it can observe the costs, then T = 1 and the system converge to the Pareto
optimal Nash equilibrium in n− 1 stages. We discuss the value of T for more
generic situations in the following section.

6 A-priori information and speed of convergence of the protocol

In this section, we determine the values of both α and T as functions of
the players’ computation capabilities and their knowledge about the structure
of graph G. We show that T grows linearly with n when players can use
linear predictors and discuss the non linear correcting term δT (k) in (19).
Differently, in absence of linear predictors (δT (k) = 0 for all k) the players must
wait that the pre-decision information converges to the desired percentage of
currently active players. In this latter case the number of stages T may become
proportional to n2log(n) or even to n3log(n) depending on the knowledge that
players have on the eigenvalues of the Laplacian matrix L.
Throughout this section we recall the hypotheses of Lemma 3, i.e., players are
interested in determining the value of Avg(s(r)) = Avg(x(r + 1)) and do not
change strategy from stage r on.

6.1 Linear Predictors

With focus on (19) the non-linear correcting term must i) compensate the
linear dynamics −zi(k) − α

∑
j∈Ni

Lijzj(k) and ii) correct the estimate of the
percentage of active players. For doing so, the non linear correction may take
the form

δT (k) = −zi(k) − α
∑

j∈Ni
Lijzj(k)

+ ρ(xi(k), xi(k − 1), . . . , xi(k − T )).
(26)

Now, we show that it is possible to design ρ linearly as follows

ρ(xi(r + T ), xi(r + T − 1), . . . , xi(r)) =
n−1∑

k=0

γkxi(r + k), (27)
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where γk are the coefficients of the characteristic polynomial of the matrix
I + αL and therefore depend on the structure of graph G [12].
The next theorem shows that each player i may determine the value of Avg(x(r+
1)) in n − 1 stages.

Theorem 6 Given the protocol Π̂ as in (19), (20) and (21), if the players
know the characteristic polynomial of the matrix I + αL, then the number of
stages necessary to estimate the percentage of active players is at most n− 1,
i.e., xi(r+T ) = ‖s(r)‖1

n
with T ≤ n−1 for all players i ∈ Γ and for any generic

stage r ≥ 0.

PROOF. Consider the generic player i. We know from Lemma 3 that there
exists a finite r̂ such that xi(r+ r̂) = Avg(x(r+1)) = Avg(s(r)) independently
of the value of the vector s(r). If r̂ ≤ n − 1 set T = r̂ and the theorem
is proven. If r̂ > n − 1 first observe that, if s(r + k) = s(r) for k ≥ 0,
equation (22) implies x(r + k) = (I + αL)k(x(r) + s(r) − s(r − 1)) and in
particular x(r + r̂) = (I +αL)r̂(x(r)+ s(r)− s(r− 1)), which in turn becomes
x(r + r̂) =

∑n−1
k=0 γk(I + αL)k(x(r) + s(r)− s(r− 1)), where γk are appropriate

coefficients that can be determined if the characteristic polynomial of I+αL is
known making use of the Cayley–Hamilton theorem. Hence, Avg(x(r + 1)) =∑n−1

k=0 γkxi(r + k). 2

An immediate consequence of the above theorem is that, in the worst case,
no other distributed protocol may determine the number of active players
faster than Π̂, provided that players know the characteristic polynomial of the
matrix I + αL. If G is a path graph, the value of T can never be less than n,
since information takes n−1 stages to propagate end to end all over the path.
Now, consider the case in which the players have no knowledge on the structure
of the graph G, then the values of the parameters γk cannot be a priori fixed.
The next theorem proves that 2n stages are sufficient for the generic player to
estimate Avg(x(r + 1)).

Theorem 7 Given the protocol Π̂ as in (19), (20) and (21), the number of
stages necessary to estimate the percentage of active players is at most 2n,
i.e., xi(r + T ) = ‖s(r)‖1

n
with T ≤ 2n for all players i ∈ Γ and for any generic

stage r ≥ 0.

PROOF. Consider the generic player i and follow the same line of reasoning
of the proof of Theorem 7. From Theorem 7 we know that player i can express
the value of Avg(x(r + 1)) as a linear combination of the value of the pre-
decision information available at stages r, . . . , r+n−1, that is Avg(x(r+1)) =∑n−1

k=0 γkxi(r + k). However, in this case, since the structure of the graph G

is not known, player i cannot a-priori fix the values of the coefficients γk.
Nevertheless, under the hypothesis that no player changes its strategy form
stage r on, we know that Avg(x(r+1)) = Avg(x(r+2)) = . . . = Avg(x(r+n))
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by Lemma 2. Then the following set of n + 1 conditions must hold

Avg(x(r + 1)) =
n−1∑

k=0

γkxi(r + k) (28)

Avg(x(r + 1)) =
n−1∑

k=0

γkxi(r + k + 1) (29)

. . . . . . . . .

Avg(x(r + 1)) =
n−1∑

k=0

γkxi(r + k + n − 1) (30)

1 =
n−1∑

k=0

γk. (31)

Condition (31) derives straightforward from

Avg(x(r + 1)) =
n−1∑

k=0

γkxi(r + r̂ + k) =
n−1∑

k=0

γkAvg(x(r + 1)).

Set the unknown value of Avg(x(r + 1)) equal to −γn, collect sample data of
the pre-decision information in the coefficient matrix X and rewrite (31) as




X 1

1′ 0








γ

γn



 =




0

1



 . (32)

When the coefficient matrix in (32) is not singular, player i can easily de-
termine both the desired value Avg(x(r + 1)) and the coefficients γk. On the
contrary, singularity of X implies that system (32) has multiple solutions.
Even in this case we show that the players may determine Avg(x(r +1)) once
proved that all feasible solutions have the same γn component. The last state-
ment holds true if all the eigenvectors associated to a possible null eigenvalue
0 of the coefficient matrix have the nth component equal to 0. In other words,
it must happen that the projection of the kernel of the coefficient matrix on
the variable γn is always 0.
The proof is by contradiction. Indeed, assume, without loss of generality, that

a null eigenvalue exists with associated eigenvector




q

1



 having a non null

nth component. Then, [X 1]




q

1



 = 0. Since X is symmetric it also holds

[q 1]




X

1′



 = 0. However, the last condition would imply that row [1′ 0] can
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be expressed as a linear combination of rows [X 1], but this contradicts the
fact that system (32) surely has a feasible solution. 2

6.2 No Predictors

We now compare the previous results with the ones obtainable when no pre-
dictors are used.

Lemma 3 states that, in any case, the pre-decision information converges to
the desired average value Avg(s(r)) = Avg(x(r + 1)). We are then interested
in deriving after how many stages a player can determine Avg(x(r + 1)) by
rounding the pre-decision information currently available. To this end let us
consider the following autonomous discrete time system of order n

x(k + 1) = (I + αL)x(k). (33)

System (33) describes the evolution of the pre-decision information when play-
ers do not change their strategies from stage r on. Actually, equation (33) is
trivially equivalent to (22) when the players’ strategies are disregarded.
Starting from any initial state x(r+1) the system (33) converges to Avg(x(r+
1)). Then, observe that Avg(x(r + 1)) must be equal to a multiple of 1

n
due

to its physical meaning. As a consequence, we could choose T as equal to the
minimal k such that |xi(k + r +1)−Avg(x(r +1))| < 1

2n
for each player i and

let the players determining Avg(x(r + 1)) by simply rounding xi(k + r + 1) to
its closest multiple of 1

n
.

To determine the value of T , consider first the modal decomposition of the
undriven response of system (33) given by

x(k + r + 1) = (I + αL)kx(r + 1) =
n∑

i=1

βiλ̄
k
i vi,

where, for i = 1, . . . , n, λ̄i is an eigenvalue of I + αL, vi is the associate
eigenvector, and βi depends on the initial state according to

x(r + 1) =
n∑

i=1

βivi.

Note that since the smallest eigenvalue of L is always λ1 = 0, then λ̄1 = 1
and hence β1v1 = Avg(x(r + 1)). Note also that I + αL is symmetric then,
due to the spectral theorem for Hermitian matrices, all its eigenvectors are
orthonormal. Hence, |βi| = ‖v′

ix(r + 1)‖∞ ≤ ‖vi‖∞‖x(r + 1)‖∞ ≤ 1 since the
initial state x(r + 1) satisfies ‖x(r + 1)‖∞ ≤ 1.
We can now state that (subscript ∞ is dropped)
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‖x(k + r + 1) − Avg(x(r + 1))‖= ‖x(k + r + 1) − β1v1‖ =

= ‖
n∑

i=2

λ̄k
i βivi‖ ≤

n∑

i=2

‖λ̄k
i βivi‖≤

n∑

i=2

|λ̄k
i ||βi|‖vi‖ ≤

≤ |λ̂|k
n∑

i=2

‖vi‖
2‖x(r + 1)‖≤ |λ̂|k(n − 1),

where λ̂ is the eigenvalue of I + αL with the second greatest absolute value.
Indeed, the eigenvalue of I + αL with the greatest absolute value is λ̄1.
Given the above arguments a conservative condition on T is to impose |λ̂|T (n−
1) < 1

2n
, from which we obtain

T ≥
−log(2(n − 1)n)

log(|λ̂|)
+ 1. (34)

In condition (34) T depends indirectly on the value of α through the eigenvalue
λ̂. In the following we discuss how to choose α in order to minimize T and,
at the same time, to guarantee the stability of system (33). In (34), T is
minimized if |λ̂| is minimum, since |λ̂| < 1 for system (33) to be stable. Note
that |λ̂| is equal

|λ̂| = max {|1 + αλn| , |1 + αλ2|} . (35)

The optimal α⋆ is then the solution of the following equation

α⋆ = arg min
α

|λ̂| = arg min
α

max {|1 + αλn| , |1 + αλ2|} . (36)

It is easy to show that the solutions of the above equation are

α⋆ =−
2

λ2 + λn

(37)

λ̂⋆ = 1 −
2λ2

λ2 + λn

. (38)

Consider now the stability of system (33). System (33) is stable if |λ̄i| < 1,
i = 2, . . . , n, which in turns implies that |1+αλi| < 1. Since α < 0 and λi > 0,
the latter condition is certainly satisfied if and only if 1 + αλn > −1. From
this last inequality, system (33) is stable if and only if − 2

λn

< α < 0. In this

context, note that − 2
λn

< α⋆ < 0.
Let us now introduce the following lemma that collects well-known properties
on the eigenvalues λ2 and λn that turn useful in the rest of the section. The
interested reader is referred to [5], [12], and [15] for the proofs of the lemma.
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Lemma 4 Let G1 = (Γ, E1) and G2 = (Γ, E2) be two connected graphs on
the same set of vertices Γ, and let λ2(G1) and λ2(G2) the second smallest
eigenvalues of the Laplacian matrices associated to G1 and G2, respectively.
Analogously, let λn(G1) and λn(G2) the greatest eigenvalues of the Laplacian
matrices associated to G1 and G2, respectively. Then, the following properties
hold

(1) λ2(G1) ≤ λ2(G2), if E1 ⊆ E2;
(2) λn(G1) ≤ λn(G2), if E1 ⊆ E2;
(3) λn(G1) = λn(G2) = n, if G1 is complete graph;
(4) λ2(G1) = 2(1 − cos(π

n
)), if G1 is a path graph;

(5) λn(G1) = 2(1 + cos(π
n
)), if G1 is a path graph.

An immediate consequence of the previous lemma is that, if players know λ2

and λn and the graph G is complete, then α⋆ = − 1
n
, λ̂⋆ = 0, and from (34) we

have T = 1, whereas if G is a path graph, α⋆ = −1
2
, λ̂⋆ = cos(π

n
), and hence

T → 2n2log(2(n−1)n)
π2 + 1 as n increases. Differently, if players know neither the

structure of the graph G nor the eigenvalues λ2 and λn. To guarantee the
stability of system (33), condition − 2

λn

< α < 0 must hold for any possible
value of λn. By Lemma 4, the largest λn occurs when G is a complete graph,
where λn = n. Then, α must be chosen within the interval − 2

n
< α < 0. Now,

consider a path graph. The fastest convergence occurs for the greatest |α|, and

when α → − 2
n

we obtain T → n3log(2(n−1)n)
2π2 + 1 as n increases.

7 Simulation Results

In this section we provide a numerical example and some simulation results
for a set Γ of 8 players implementing the designed protocol with and without
predictors. We will see that in both cases the strategies converge to the Pareto
optimal Nash equilibrium though with different speed of convergence. Fig. 1
reports the induced graph G, whereas Tab. 4 lists the players’ thresholds li
and the initial strategies si(0). Note that at k = 0 the strategies are not in
the Pareto optimal Nash equilibrium s∗ = {1, 1, 1, 0, 0, 0, 0, 0}.

Fig. 1 about here

Tab. 4 about here

Fig. 2 displays the evolution of the pre-decision information according to the
protocol Π̂ defined in (19)-(21) when the players use the linear predictors as
in (26)-(27). Fig. 3 shows the evolution of the pre-decision information when
the linear predictors are not present.
Both Fig. 2 and Fig. 3 show that at k = 0 players 1− 2− 3− 4− 5 are active.
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Differently, players 6− 7− 8 are not active, as they can immediately estimate
that the number of active players is below their threshold values. At stage
k = T all the players estimate the number of active players as equal to 5. In
particular, player 5 observes other four active players and since its threshold is
l1 = 5 it changes strategy from s1(T −1) = 1 to s1(T ) = 0 (circles in Fig. 2-3).
At k = 2T , the players’ new estimate is 4 and player 4 changes strategy, too.
Finally, at stage k = 3T , the players strategies converge to the Pareto optimal
Nash equilibrium with ‖s⋆‖1 = 3.
The difference between the two figures is that, in Fig. 2 the value of T is 15
whereas in Fig. 3 the value of T is 80.

Fig. 2 and 3 about here

8 Conclusion

In this paper, we have introduced a consensus protocol to achieve distributed
convergence to a Pareto optimal Nash equilibrium, for a class of repeated
nonsymmetric congestion games under partial information. We have special-
ized the game to a multi-retailer application, where transportation or set up
costs are shared among all retailers, reordering from a common warehouse.
The main results concern: i) the existence and the stability of Pareto optimal
Nash equilibria, ii) the structure of the consensus protocol and its convergence
properties.
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Fig. 1. An example of graph G for a set Γ of 8 players
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Fig. 2. Evolution of nxi(k) in presence of linear predictors as in (26)-(27). The circles
indicate when a player changes strategy.
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Fig. 3. Evolution of nxi(k) in absence of linear predictors. The circles indicate when
a player changes strategy.
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players 1 2 3 4 5 6 7 8

pi 30 30 20 12 10 10 0 0

li = K
p1

− 1 1 1 2 4 5 5 ∞ ∞

Table 1
Players’ thresholds and initial strategies
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players 1 2 3 4 5 6 7 8

li 1 1 2 4 5 5 ∞ ∞

si(0) 1 1 1 0 1 0 0 0

‖s−i(0)‖1 3 3 3 4 3 4 4 4

si(1) 1 1 1 1 0 0 0 0

‖s−i(1)‖1 3 3 3 3 4 4 4 4

si(k ≥ 2) 1 1 1 0 0 0 0 0

‖s−i(k ≥ 2)‖1 2 2 2 3 3 3 3 3

Table 2
Stability of s2 for ‖∆s(0)‖1 = 1.
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players 1 2 3 4 5 6 7 8

li 1 1 2 4 5 5 ∞ ∞

si(0) 1 1 1 0 1 0 1 1

‖s−i(0)‖1 5 5 5 6 5 6 5 5

si(k ≥ 1) 1 1 1 1 1 1 0 0

‖s−i(k ≥ 1)‖1 5 5 5 5 5 5 6 6

Table 3
Instability of s2 for ‖∆s(0)‖1 = 3.
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players 1 2 3 4 5 6 7 8

li 1 1 2 4 5 ∞ ∞ ∞

si(0) 1 1 1 1 1 0 0 0

Table 4
Players’ thresholds and initial strategies
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