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Abstract We consider dynamic systems controlled by boolean signals or de-
cisions. We show that in a number of cases, the receding horizon formulation
of the control problem can be solved via linear programming by relaxing the
binary constraints on the control. The idea behind our approach is concep-
tually easy: a feasible control can be forced by imposing that the boolean
signal is set to one at least one time over the horizon. We translate this idea
into constraints on the controls and analyze the polyhedron of all feasible
controls. We specialize the approach to the stabilizability of switched and
impulsively-controlled systems.

Keywords Impulse Control · Inventory Control · Hybrid Systems

1 Introduction

Hybrid optimal control problems are, in general, difficult to solve (see, e.g.,
[10; 13; 29] and references therein). For this reason, a current research goal
is to isolate those problems that lead to tractable solutions [10]. According to
this aim, in this paper we identify among the larger set of hybrid optimal
control problems dealt in [13], a special class of problems which are easy
to solve. Easy to solve means that the solution algorithms are polynomial
in time and therefore suitable to the on-line implementation in real-time
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problems. We do this by using a paradigm borrowed from the Operations
Research field.

More precisely, this paper is one of the several recent attempts [1; 2; 4;
5; 13] to apply the tools of combinatorial optimization to hybrid optimal
control problems. The general recipe is to take the standard continuous-time
hybrid optimal control problem, discretize it, and reformulate and massage
it until it is suitable for applying one of the several discrete optimization
techniques [4; 5]. Integer programming, or one of its variations, seems to be
specially favorite for this line of research.

In Section 2, we consider systems characterized by a continuous state,
a binary state, and controlled through a binary control. The binary state
describes the two operating modes of the system while the binary controls
represent resets, impulses, or switches between modes. The problem consists
in finding feasible controls, i.e., controls that satisfy certain stabilizability
conditions.

Boolean control/decision spaces can be found in finite-alphabet control
and in particular on-off control problems [16], impulsively-controlled systems
(activate the impulse or not) [10; 20], or switching control (switches be-
tween active and passive modes) [21; 22; 26]. Applications include inventory
with set up costs (reordering or not from a warehouse in order to meet a
demand) [8], distributed computer systems (processing or not the assigned
task) [15], air-conditioning systems control, economics and finance (see, e.g.,
[9] and references therein).

The main result of this work is stated in Section 3. There, we show that
in many cases the receding horizon formulation of the problem can be solved
via linear programming after relaxing the binary constraints on the control
and exploiting the total unimodularity of the constraint matrix [11; 14; 24].
This is the case anytime a feasible solution derives from imposing that the
control is set to one at least one time in the horizon window.

In Section 4, we specialize the approach to the (asymptotic) stabilizability
of switched systems. Two cases are considered: time dependent slow switching
controls and state dependent switching controls. As illustrative example, we
simulate a switched oscillating system under different feasible solutions.

In Section 5, we extend the approach to the Input to State Stabilizability
(ISS) of impulsively controlled systems, according to the definition provided
in [20]. In particular, we focus on ISS systems with dwell time and reverse
dwell time. As illustrative example, we simulate a first order system under
different feasible solutions.

In Section 6, we extend the discussion to inventory applications and in
Section 7, we draw some conclusions.

2 Problem formulation

2.1 Boolean-controlled systems

Consider the following systems characterized by a continuous state x(t) ∈ Rn,
a continuous disturbance d(t) ∈ Rm, and a binary control u(t) ∈ {0, 1}.
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Fig. 1 Transitions between mode 1 and 2.

Equation (1) describes a switched system where q ∈ {0, 1} is a binary
state (the operating modes), function fq : Rn × Rm 7→ Rn is the dynamics
in mode q of x(t), the binary control u(t) ∈ {0, 1} for all t ≥ 0 describes a
switching control returning a switch whenever u(t) is set to one. Transitions
of the binary state from one mode to the other one are described by the
automata displayed in Fig. 1:

ẋ(t) = fq(x(t), d(t)),

q(t+) =

{
q(t) if u(t) = 0

1 − q(t) if u(t) = 1.
(1)

Equation (2) describes an impulsively-controlled system where function
f : Rn × Rm 7→ Rn is the dynamics of x(t), h(x(t), d(t)) is the reset value,
u(t) is the impulse control law returning impulses whenever u(t) is set to one:

ẋ(t) = f(x(t), d(t)) if u(t) = 0
x(t+) = h(x(t), d(t)) if u(t) = 1.

(2)

Let an additional function V : Rn 7→ R be given. For instance, one may
think V (x(t)) being a differentiable norm function. We wish to solve the
following problem.

Problem 1 Find a control u(t) ∈ {0, 1} for all t ≥ 0 such that the following
condition is satisfied

ψ(V (0), V (t), V̇ (t)) > 0, (3)

where ψ : R × R × R 7→ R is a generic function of V (0),V (t), and V̇ (t).

We use V̇ (t) to indicate the derivative of V at time t.

In Section 4, condition (3) reduces to V̇ (t) < 0 (negative derivative) as
we focus on asymptotic stabilizability of a switched system (see also the
switching-based Lyapunov function approach in [12]). Similarly in Section 5
condition (3) describes the Input to State Stabilizability (ISS) condition for
an impulsively-controlled system (see the ISS conditions introduced in [20]).

2.2 Receding horizon

Let a finite set of times {r0, . . . , rh} be arbitrarily chosen and consider a
receding horizon from time ri to time ri+1, with i = 0, . . . , h−1 (control and

prediction horizons coincide). Take a sample interval ∆t = ri−ri−1

N
with the

number of samples N chosen arbitrarily and extract the associated discrete
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times ri+k∆t with k = 0, . . . , N . Let the discrete time continuous and binary
states be ξ(k), and ζ(k) respectively with the initial condition ξ(0) = x(ri)
and ζ(0) = q(ri). Also, let the discrete time control µ(k) and disturbance γ(k)
be obtained by sampling u(t) and d(t) at time ri+k∆t, i.e., µ(k) = u(ri+k∆t)
and γ(k) = d(ri + k∆t).

Then, for k = 0, . . . , N − 1, the sampled counterpart of system (1) is

ξ(k + 1) = ξ(k) + wζ(k)(ξ(k), d(t)), ξ(0) = x(ri)

ζ(k + 1) =

{
ζ(k) if µ(k) = 0

1 − ζ(k) if µ(k) = 1
ζ(0) = q(ri)

µ(k) ∈ {0, 1},

(4)

where wζ(k)(ξ(k), d(t)) =
∫ ri+(k+1)∆t

ri+k∆t
fζ(k)(x(t), d(t))dt. Here we indicate

d(t) as explicit argument of wζ(k)(·) to mean that wζ(k)(·) depends on the
whole function d(t) over the interval from ri + k∆t to ri + (k + 1)∆t. Anal-
ogously to the continuous time case, the condition µ(k) = 1 means that a
switch occurs at time ri +k∆t whereas µ(k) = 0 means that the binary state
is unchanged.

Analogously, the sampled counterpart of system (2) is

ξ(k + 1) = ξ(k) + w(ξ(k), d(t))+
+ (h(ξ(k), γ(k)) − ξ(k))µ(k), ξ(0) = x(ri)

µ(k) ∈ {0, 1},
(5)

where we denote by

w(ξ(k), d(t)) =

∫ ri+(k+1)∆t

ri+k∆t

f(x(t), d(t))dt. (6)

Again, d(t) as explicit argument of wζ(k)(·) means that wζ(k)(·) depends
on the whole function d(t) over the interval from ri + k∆t to ri + (k +
1)∆t. We can relax conditions (3) by considering the following discrete time
counterpart, for k = 0, . . . , N − 1

ψ (V (ξ(0)), V (ξ(k + 1)), V (ξ(k + 1)) − V (ξ(k))) > 0. (7)

Feasible solutions for fixed horizon [ri, ri+1], are u, d, x, and q that satisfy (4)
or (5), (6) and (7) where we define

u = [µ(0), . . . , µ(N − 1)] d = [γ(0), . . . , γ(N − 1)]

x = [ξ(0), . . . , ξ(N)] q = [ζ(0), . . . , ζ(N)].

For a compact description, define the feasible solution set

F(q(ri), x(ri)) = {u,d,x,q ∈ {0, 1}N × RN×m ×

×R(N+1)×n × {0, 1}N+1 : (4) or (5), and (7) satisfied}.

Note that the feasible solution set depends on q(ri), x(ri) because of the
initial conditions on the discrete time state ξ and ζ. Also q(ri), x(ri) are
measured and full known at the beginning of the horizon and therefore they
can be dealt with as known parameters.
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Now, given the set H = {0, . . . , N} of possible values of the index k span-
ning over the horizon window, consider a generic set of subsets {C1, . . . , Cm}
such that

⋃

j Cj = H and each Cj is made by consecutive elements of H, i.e.,
given any pair y, z ∈ Cj with y < z this implies v ∈ Cj for any y < v < z
and for all j = 1, . . . ,m.

We claim that in a number of cases (some of these cases are discussed
in Section 4 and 5) there exists a specific set of subsets {C1, . . . , Cm} with
m ≤ N such that condition (7) is satisfied if at the initial time ri of the
horizon and under certain conditions on the initial states q(ri), x(ri) of the
horizon, we impose that the following constraints on the binary controls hold
true ∑

k∈Cj

µ(k) ≥ lj(q(ri), x(ri)), for all j = 1, . . . , m (8)

where function lj : {0, 1} × Rn → {0, 1} models some logical conditions for
q(ri) and x(ri). In all these situations we can get rid of d, x, and q and
rewrite the feasible solution set in a simplified manner as shown below

F(q(ri), x(ri)) = {u ∈ {0, 1}N : (8) satisfied}.

Rewriting the solution set as above has the advantage of converting the
original dynamic problem (because of the presence of the state variable) into
a static one. This is possible as in a receding horizon setting, variables q(ri)
and x(ri) once measured at time ri enter as parameters in the right-hand
side of (8).

To complete the formulation of the receding horizon problem, let the
following vector of costs of the switching controls over the horizon be given

c = [c0, . . . , cN−1]
T .

The receding horizon problem is then

min
u∈F(q(ri),x(ri))

cT u. (9)

Finally, once obtained the optimal sequence of discrete controls µ(0), . . . , µ(N−
1), we need to reconstruct the continuous time controls u(t). We can do this
through the following function θ : {0, 1}N 7→ {u(t), ri ≤ t < ri+1} returning,
for each interval [ri + k∆t, ri + (k + 1)∆t), the control u(ri + k∆t) = µ(k)
and u(t) = 0 for all t ∈ (ri + k∆t, ri + (k + 1)∆t).

Figure 2 displays the closed-loop system with a switched static feedback.
At time ri the receding horizon controller selects and implements the controls
µ(0), . . . , µ(N − 1) based on the current state x(ri), q(ri). The procedure is
repeated at time ri+1 on the bases of the new state update x(ri+1), q(ri+1).

3 Main result

There is an important aspect that needs to be emphasized and represents
the main result of this work (see also [1; 2]). The set of feasible solutions
F(q(ri), x(ri)) is a discrete set in the sense that it contains only integer
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Fig. 2 Closed-loop system with switched static feedback: at time ri the receding
horizon controller selects and implements the controls µ(0), . . . , µ(N − 1) based on
the measured state x(ri), q(ri). The procedure is repeated at time ri+1 on the bases
of the new state update x(ri+1), q(ri+1).

points. However we can replace the integrality constraints u ∈ {0, 1}N by
the relaxed and more tractable constraints 0 ≤ u ≤ 1 and consider the
resulting polytope

P(q(ri), x(ri)) = {u ∈ RN :
∑

k∈Cj

µ(k) ≥ lj(q(ri), x(ri)), ∀j = 1, . . . , m, 0 ≤ u ≤ 1} .

We clarify this aspect more in details next. Let us rewrite the inequali-
ties (8) in matrix form. We can do this by using a matrix A ∈ {0, 1}m×N ,
with only entries 0 and 1, one row for each inequality of type (8), one column
for each time k. Observe that the constraint matrix is an interval matrix, i.e.,
it has 0-1 entries and each row is of the form

(0, . . . , 0 1, . . . . . . . . . , 1
︸ ︷︷ ︸

0, . . . , 0).

consecutive 1’s

It is well known from the literature [24] that each interval matrix is totally
unimodular where we remind here that a matrix is totally unimodular if the
determinant of any square sub-matrix is equal to −1, 0 or 1. We report next
a simple proof.

Lemma 1 Any interval matrix A is totally unimodular.

Proof We need to show that any generic square sub-matrix R ∈ {0, 1}p×p

of A is such that det(R) ∈ {0,±1}. Take the incidence matrix of a directed
chain graph with p nodes (its determinant is equal to one)

Z :=









1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1








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and compute the matrix L := ZRT . One can see that L is still an incidence
matrix of a directed graph as each column of L has either only one non null
element (1 or −1) or just a 1 and −1 and the rest are zero elements. To see
this, take the jth column of L,

L•j = (Z1•R
T
•j , . . . , Zp•R

T
•j)

T

and observe that the jth column of RT has the following structure

RT
•j = (0, . . . , 0, 1

︸︷︷︸

īth element

, . . . , 1
︸︷︷︸

j̄th element

, 0, . . . , 0)T .

Then, we derive that L(̄i−1)j = Z(̄i−1)•R
T
•j = −1, Lj̄j = Zj̄•R

T
•j = 1 and

Lij = Zi•R
T
•j = 0 for all i 6= ī − 1, j̄. With a little abuse of notation the

same argument can be used to prove that the column L1• has only one
non null element equal to −1 (here note that ī = 1). This proves that L is
still an incidence matrix of a directed graph also that det(L) ∈ {0,±1} or
which is the same that L is totally unimodular. Then we can conclude that
det(R) = det(Z)det(RT ) = det(L) ∈ {0,±1}. ⊓⊔

This means that the polytope P obtained from F by replacing the inte-
grality constraints µ(k) ∈ {0, 1} with the linear constraint 0 ≤ µ(k) ≤ 1 is
an integral polyhedron. As a consequence we have that the linear relaxation
of the receding horizon problem (9) has an integral optimal solution as es-
tablished in the next theorem. Let the vector of logical conditions be defined
as l = [l1(q(ri), x(ri)), . . . , lm(q(ri), x(ri))]

T .

Theorem 1 Solving the receding horizon problem (9) is equivalent to solving
the linear programming problem

min
u

cT u (10)

s.t. Au ≥ l (11)

0 ≤ u ≤ 1. (12)

Proof Apply a standard technique in linear programming to turn the con-
straints (11) into equalities of type

[A I]

[
u

s

]

= l (13)

where s ∈ Rm is the surplus vector and I ∈ Rm×m is the identity matrix.
From the properties of total unimodular matrices one knows that if A is to-
tally unimodular then also [A I] is totally unimodular. Then, take a generic
square sub-matrix R ∈ Rm×m and observe that det(R) ∈ {0,±1}. Any ad-

missible base solution of (13) is of the form v̄ = R−1l = adj(R)
det(R) l where adj(R)

is the adjoint matrix of R. Hence, because of the integrality of l and det(R)
we have that v̄ is integer. This means that constraints (11)-(12) define an in-
tegral polyhedron, and that the optimal solution of the linear programming
problem (10)-(12) is also integer. ⊓⊔
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4 Switched systems

In this section, we show that the paradigmatic problem (10)-(12) suits to the
(asymptotic) stabilizability of switched systems. To do this, we can take for

V (x(t)) any differentiable norm function and simplify equation (3) as V̇ < 0.
Two cases are considered next: time dependent slow switching controls and
state dependent switching controls. For the switched system (1) we wish to
solve the following problem.

Problem 2 Find a switching control u(t) ∈ {0, 1} for all t ≥ 0 such that the
origin is asymptotically stable.

4.1 Time dependent slow switching controls

Let us focus on systems that are stabilizable through a time dependent slow
switching control. In particular, assume that there exists a (minimum) dwell

time T . Minimum dwell time means that for guaranteeing V̇ < 0 it suffices
that the time interval between two successive switches is at least T . Details
on how to compute T for specific classes of problems can be found in [21; 22].

Consider the sampled counterpart (4) starting at time ri, take for sim-

plicity ∆t = 1, and assume that ri − k̂ is the time of the last switch. The
following linear programming problem of type (10)-(12) returns a switching
control satisfying the above dwell time condition:

minu cT u, s.t. 0 ≤ u ≤ 1,




b
︷ ︸︸ ︷

1 . . . . . . 1 0 . . . 0
0 . . . . . . 0 1 . . . 1





︸ ︷︷ ︸

A






µ(0)
...

µ(N − 1)






︸ ︷︷ ︸

u

≥

[
0
1

]

︸︷︷︸

l

, (14)

where b = T − k̂. The above problem derives from taking C1 = {1, . . . , T − k̂},

and C2 = {(T − k̂)+1, . . . , N}. Note that the above constraint matrix A does

not exclude multiple switchings between (T − k̂) + 1 and N which possibly
violate the dwell time condition. However such solutions though admissible,
are not optimal for problem (10)-(12) as multiple switchings increase the
cost.

The receding horizon process repeats at time ri+1 = ri + N∆t (regular

starting times) or at time ri+1 = ri + (k̃ + 1)∆t where k̃ is the last switching
time returned by the problem solved at time ri (time-varying starting times).

4.2 State dependent switchings

We now move to addressing systems that are stabilizable through (hysteresis-
based) state dependent switchings. In other words, we can guarantee the

condition V̇ < 0, if switches occur anytime the state is in a specific region.
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In particular, let us consider two open conic regions Π1 and Π2 which
overlap and such that Π1

⋃
Π2 = Rn \ {0}.

Assume that there exists a hysteresis-based stabilizing switching of the
type described in [22] and recalled next. For each t > 0, if q(t−) = 0 and
x(t) ∈ Π1, keep q(t) = 0. Differently, if q(t−) = 0 but x(t) 6∈ Π1, then assign
q(t) = 1. Analogously, if q(t−) = 1 and x(t) ∈ Π2, keep q(t) = 1. Differently,
if q(t−) = 1 but x(t) 6∈ Π2, then assign q(t) = 0.

Now, we can approximate the above hysteresis-based switching control by
using the linear programming problem (14). To see this, consider the sampled
counterpart (4) starting at time ri, and let ri + b∆t as the expected time to
cross a pre-defined surface S ∈ Π1

⋂
Π2.

The optimal solution of (14) returns no switches between 0 and b, and
only one switch between b + 1 and N − 1, i.e.,

µ(0) = . . . = µ(b) = 0, µ(b + 1) + . . . + µ(N − 1) = 1. (15)

The length of the interval [b + 1, N ] describes how long it takes for a switch
to occur once the state has crossed the surface S. In the special case where
N = b + 1, the surface S turns out to be a switching surface as a switch
occurs any time the surface S is crossed.

4.2.1 Oscillating systems

Consider the second order systems
[

ẋ1

ẋ2

]

=

[
0 1

−κ(q) 0

] [
x1

x2

]

where q ∈ {0, 1} is the mode and with spring coefficient κ(0) = 1 (pas-
sive control) and κ(1) = 2 (aggressive control). The binary state transition
function is as in (1).

It is well known that switching law of type (16) asymptotically stabilizes
the system at the origin [22]:

q(t) =

{
0 if x1(t)x2(t) ≤ 0
1 if x1(t)x2(t) > 0

. (16)

This corresponds to having two switching surfaces S1 = {x ∈ R2 : x1 =
0} and S2 = {x ∈ R2 : x2 = 0} (see, e.g., Fig. 3).

We can approximate a switching law of type (16) as shown next. First
consider the sampled counterpart of the above system. To do this denote by
ω(q) =

√

κ(q). Sampling is possible after defining the following two compo-
nents vector,

wζ(k)(ξ(k)) =









ξ1(k) cos(ω(ζ(k))∆t)+

+( ξ2(k)
ω(ζ(k)) ) sin(ω(ζ(k))∆t) − ξ1(k)

−ξ1(k)ω sin(ω(ζ(k))∆t) + ( ξ2(k)
ω(ζ(k)) )·

·ω(ζ(k)) cos(ω(ζ(k))∆t) − ξ2(k)









,
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with initial condition ξi(0) = xi(ri), i = 1, 2, and where the two components
predict the evolution of position and velocity respectively.

Now, let ri +b∆t be the expected time to cross the surface S1 if q(ri) = 0.
Similarly, let ri+b∆t be the expected time to cross the surface S2 if q(ri) = 1.
To approximate the switching law of type (16) it suffices to take N = b + 1
where b has the meaning discussed above. Actually, the linear programming
problem (14) returns a switch any time one of the surfaces S1 and S2 is
crossed.

A slight modification in the choice of N may return the asymptotically
stabilizing hysteresis-based switching control discussed next (see, Fig. 3).
Take for a small enough α > 0

Π1 = {x ∈ R2 : x1x2 < 0}
⋃
{x ∈ R2 : x2 > αx1},

Π2 = {x ∈ R2 : x1x2 > 0}.
(17)

The overlapping region is Π1

⋂
Π2 = {x ∈ R2 : x1x2 > 0, x2 > αx1}

(grey region), the surface S3 = {x2 = αx1} describes the boundary of Π1

while the surface S2 describes the boundary of Π2. Now take ri such that
x(ri) ∈ Π1 and q(ri) = 0. Compute ri + b∆t as the expected time to cross
the surface S1 or take b = 0 if the state has already crossed S1 (that is, x(ri)
is already in Π1

⋂
Π2). Also take N as the expected time to cross the surface

S3. Then the linear programming problem (14) returns only one switch when
the state is in the overlapping region Π1

⋂
Π2. Let the time of the switch

be ri + e∆t. Note that the resulting switching control is again of type (15).
Fig. 3 top, displays the predicted state trajectory (dashed line) from point
ξ(0) = x(ri) on the x1-axes (also surface S2) to point ξ(N) on surface S3.
In evidence point ξ(b) = x(ri + b∆t) on the x2-axes (also surface S1), and
point ξ(e) = x(ri +e∆t) when the switch occurs. At the next iteration of the
receding horizon procedure, we take ri+1 := ri + (e + 1)∆t. Now, we have
x(ri+1) ∈ Π2 and q(ri+1) = 1. Compute ri+1 + b∆t as the expected time
to cross the surface S2 and take N = b + 1. Then, the linear programming
problem (14) returns only one switch immediately after the state has crossed
S2. Fig. 3 bottom, displays the current state trajectory from x(ri) to x(ri+1)
(solid line) and predicted state trajectory (dashed line) from point ξ(0) =
x(ri+1) to point ξ(N). In evidence point ξ(b) = x(ri + b∆t) on the x1-axes
(also surface S2) when the switch occurs. We can repeat the procedure when
the state is in the second and third quadrant. The resulting hysteresis-based
switching control is such that there exists a periodically decreasing quadratic
function V (x) (if we keep the passive control mode, i.e., q(t) = 0 for all t, the
trajectory describes an ellipsoid with main axes parallel to the x1x2-axes).
Actually, from Fig. 3 it is evident that V (x(ri+2)) − V (x(ri)) < −βx(ri) for
a small enough β > 0. The above condition is a sufficient condition for the
asymptotical stability of the system at the origin.

In Fig. 4 we simulate six different switching times to the “active control”
when the state is in the first and third quadrant. Reading the figure from
top-left to bottom-right the switching times increase which means that the
system remains in the passive control for a longer time in the first and third
quadrant and the converging time increases as well. In the simulation at the
bottom-right, the system switches to the “active control” just before leaving
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k=N 

S2 x(ri) 

S1 

k=e 
switch 

x1 

x2 

S1 

x(ri) 

S3 

switch 

x2 x(ri+1) 

S2 

k=N 

x(ri+2) 

k=0 

k=0 

k=b 

k=b 

Fig. 3 Two successive iterations of the receding horizon procedure: (top) predicted
trajectory (dashed line) at the ith iteration; (bottom) current trajectory (solid line)
and predicted trajectory (dashed line) at the i + 1st iteration. Function V (x(t)) is
periodically decreasing.
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Fig. 4 Trajectories in the x1x2-plane under different feasible solutions.

the first and third quadrant. The six feasible controls are obtained by simply
changing the costs of the controls.
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5 Impulsively-controlled systems

In this section, we show that the paradigmatic problem (10)-(12) suits to
the Input to State Stabilizability (ISS) of impulsively controlled systems,
according to the definition provided in [20].

To do this, we can take for V (x(t)) any differentiable norm function and
consider equation (3) as a reformulation of condition (2) in [20].

In particular, we focus next on ISS systems with dwell time and reverse
dwell time. For the impulsively-controlled system (2) we wish to solve the
following problem.

Problem 3 Find an impulse control law u(t) (i.e., a sequence of impulse
times t1,t2 . . . , tk, . . . ) such that system (2) is input to state stable (ISS)
according to the definition of [20].

5.1 (Reverse) dwell time

In [20] it has been shown that for a number of systems Problem 3 can be
solved by any impulse control law u(t) satisfying some so-called (reverse)
dwell time conditions. A typical dwell time condition requires that intervals
between consecutive impulses must be no shorter than T time units. All
these cases can be dealt with exactly as shown in Section 4.1. On the con-
trary, a typical reverse dwell time condition requires that intervals between
consecutive impulses must be no longer than T time units. We can generalize
the approach by considering m different dwell times T1, T2, . . . , Tm over the
horizon as shown next.

Consider the sampled counterpart (5) starting at time ri, take for sim-
plicity ∆t = 1, and assume that ri − 1 is the time of the last impulse. The
following linear programming problem of type (10)-(12) returns a switching
control satisfying the above reverse dwell time condition:

minu cT u, s.t. 0 ≤ u ≤ 1,









T1

︷ ︸︸ ︷

1 . . . 1 0 . . . 0 . . .

Tm
︷ ︸︸ ︷

0 . . . 0
0 1 . . . . . . . . . 1 . . . 0 . . . 0

...
. . .

...
0 . . . 0 0 . . . 0 . . . 1 . . . 1










︸ ︷︷ ︸

A






µ(0)
...

µ(N − 1)






︸ ︷︷ ︸

u

≥






1
...
1






︸ ︷︷ ︸

l

. (18)

The above problem derives from taking C1 = {0, . . . , T1}, C2 = {1, . . . , 2 +
T2}, . . ., Ci = {i − 1, . . . , i + Ti}, . . ., Cm = {m − 1, . . . , N}. In the next
section, we apply the approach to a first-order system.

5.1.1 First order system

Consider system

ẋ = a(t)x(t) + rand(−1, 1)
︸ ︷︷ ︸

f(x(t),d(t))

+sat(−x−(t))u(t)



Boolean-controlled systems via receding horizon and linear programming 13

with rate a(t) > 0 and where rand(−1, 1) is a random disturbance uniformly
distributed in the interval between −1 and 1, and sat(.) is the typical linear
saturated (at −1 or 1) function. The sat(.) function derives from taking

h(., .) =

{
x(t) − sign(x(t)) if |x(t)| > 1
0 if |x(t)| ≤ 1

.

We simulate a one step (from ri = 0 to ri+1) receding horizon procedure.
The number of sets Ci is m = 27.

We take as initial state x(ri) = x(0) = 9. Let us take as time unit the
value −log((ǫ − 1)/ǫ) = 0.0953 where ǫ = 11 is an upper bound of |x(t)|.
This value derives from the fact that between two consecutive impulses we
can guarantee the condition |x(ri+1)| ≤

ǫ−1
ǫ
|x(ri)| at least on the average

because of the random disturbance rand(−1, 1) (the same condition is always
guaranteed in absence of a random disturbance). The sample interval is 1

10
of the time unit −log((ǫ − 1)/ǫ), i.e., ∆t = −log((ǫ − 1)/ǫ)0.1 = 0.00953.

Now, the rate is a(t) = 0.1 for 0 ≤ t < 14 (during intervals Ci, with
i = 1, . . . , 15) and a(t) = 0.2 for 14 ≤ t < 20 (during intervals Ci, with
i = 16, . . . , 27). The reverse dwell time is computed following the procedure

in [20] as Tj =
# of steps for time unit

rate in Cj
and the result is Tj = 10

0.1 = 100,

for j = 1, . . . , 15 and Tj = 10
0.2 = 50 for j = 16, . . . , 27. It follows that the

horizon length is N = 14 · 100 + 12 · 50 = 2100.
Figure 5 shows the time plot of x(t) when impulses occur at the beginning

of each interval (solid line). This happens when costs are increasing, that is,
c1 < c2 ≤ . . . ≤ cN−1, or also when costs are increasing over each interval

Ci = {
∑i−1

j=1 Tj+1, . . . ,
∑i−1

j=1 Tj+Ti}, i.e., cr < . . . < cs with r =
∑i−1

j=1 Tj+1

and s =
∑i−1

j=1 Tj + Ti. The figure also shows the time plot of x(t) when

impulses occur in the middle of each interval (dotted line). This happens

when on each interval Ci = {
∑i−1

j=1 Tj +1, . . . ,
∑i−1

j=1 Tj +Ti} we have cr < cs

for all r 6= s with r =
∑i−1

j=1 Tj + Ti

2 . Finally, the figure shows the time plot

of x(t) when impulses occur at the end of each interval (dash-dot line). This
happens, for instance, when costs are decreasing, that is, c1 ≥ c2 ≥ . . . >

cN−1 or also when costs are decreasing over each interval Ci = {
∑i−1

j=1 Tj +

1, . . . ,
∑i−1

j=1 Tj + Ti}, i.e., cr ≥ . . . > cs with r =
∑i−1

j=1 Tj + 1 and s =
∑i−1

j=1 Tj + Ti. In all of the three cases the system is ISS stable as the state

x(t) is driven in a neighborhood of the origin whose sizes depend on the
maximal amplitude of the random disturbance.

6 Inventory examples

The following examples are borrowed from the inventory theory. However
they can be generalized to any storage system, such as bank account [19],
water tank. Examples from the economic and financial world are investments
research projects in the natural resource industry [23], target zone models



14 Dario Bauso

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

t

x(
t)

Fig. 5 Time plot of x(t) when impulses occur at the beginning of each interval Ci,
i = 1, . . . , 27 (solid line), in the middle of each interval (dotted line), and at the
end of each interval (dash-dot line).

for the exchange rate [17; 18] (see, e.g., [6] for an exhaustive list of appli-
cations). The first example can be found also in [6] and [10], Example 3.5,
and in [2]. The second example provides a more generic interpretation of the
impulsively-controlled system (2), which is now used to describe a controlled
switched multi–inventory system (see, e.g., [1]).

6.1 Inventory ([6] and [10], Example 3.5)

With in mind the impulsively-controlled system (2), let the state x(t) ∈ R

describe the inventory level, let function V (t) = x(t) and use (3) to impose
the condition x(t) ≥ s, where s is the lower inventory threshold. Resets u(t)
describe the choice of the retailer of reordering, in which case the inventory
is restored at level S = h(x(t), d(t)), or not reordering. Costs of resets c
are transportation costs. Let f(x(t), d(t)) = −d(t) where d(t) ∈ D ⊆ R is
the (nonnegative) demand faced by the retailer. Then, equation (9) is the
minimization of transportation costs, equation (2) is the evolution of the in-
ventory and equation (3) prevents the inventory to be lower than threshold s.
The sample interval is the minimum time occurring between two consecutive
reorders.

This inventory problem is closely related to some well-studied dynamic
lot-sizing problems with the only difference that demand is now unknown but
bounded [7]. As a consequence of this, the well known (low-order) polynomial
time algorithms for lot-sizing problems (see e.g., [25; 27; 28]) do not apply
straightforwardly to our case. New optimization methods have been recently
proposed which cope with bounded uncertainties [8].
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6.2 Switched multi–inventory systems

Consider the family of continuous time linear multi–inventory systems

ẋ(t) = Biuc(t) − d(t), i ∈ {1, . . . ,Q} (19)

where x(t) ∈ IRn is a vector whose components are the buffer levels, uc(t) ∈
IRm is the controlled flow vector, Bi ∈ Qn×m is the controlled process matrix
and d(t) ∈ IRn is the unknown demand. To model backlog x(t) may be less
than zero. Controls and demands are bounded within polytopes according to

uc(t) ∈ Uc = {uc ∈ Rm : u−
c ≤ uc ≤ u+

c } (20)

d(t) ∈ D = {d ∈ Rn : d− ≤ d ≤ d+}, (21)

where u−
c , u+

c , d−, and d+ are assigned vectors. We also assume that matrix
Bi is a “fat matrix” and has full row rank.

For the above switched multi–inventory system, the notion of unstable
mode can be reviewed as follows. We say that each system ẋ(t) = Biuc(t) −
d(t) (henceforth simply system Bi), is an unstable mode if there no exists
feedback stabilizing strategies [3], that is, strategies able to drive the state
within a neighborhood of a reference value xref of radius ǫ in finite time.
This is true if the polytope of demand is not contained in the image of
the polytope of controls via Bi, i.e., D 6⊆ int{BiU}. Henceforth, assume
that only BQ satisfies the above condition, namely, D ⊆ int{BQU} and
that D 6⊆ int{BiU}, i = 1, . . . ,Q − 1. In the following, we refer to systems
B1, . . . , BQ−1 as the unstable modes whereas we refer to system BQ as the
stable mode.

After introducing the stable and unstable modes, the switched multi–
inventory system is alternatively in one of the Q modes as described by the
following dynamics

ẋ =
∑Q

i=1 αi(t)(Biuc(t) − d(t))
∑Q

i=1 αi(t) = 1, binary.
(22)

Transitions between successive unstable modes are autonomous and in accor-
dance to a given sequence (only unstable modes are in the sequence) whereas
transitions from an unstable mode to the stable mode are controlled by the
switching signal µ(k) ∈ {0, 1} for k = 0, . . . , N −1. More precisely, let us call
kth epoch the time interval between t(k) and t(k + 1) where

t(k + 1) = t(k) + T µ(k) + ∆t, (23)

the latter meaning that the epoch has a constant size ∆t if no switch has
occurred, µ(k) = 0, and size ∆t + T if a switch has occurred, µ(k) = 1.
Then, define function σ : {0, . . . , N − 1} → {1, . . . ,Q − 1} which associates
unstable modes to epochs, i.e., σ(k) returns the mode at the generic kth
epoch. For instance, given the mode sequence (assume Q > 3) B3 - B1 - B2

- B2 - . . . then σ(0) = 3, σ(1) = 1, σ(2) = 2, σ(3) = 2 and so on. Then, if
we introduce logical conditions in square brackets and denote by ∧ and ∼
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the two logical operators “and” and “not”, transitions are governed by the
following expressions. For all k = 0, . . . , N − 1

[t = t(k)] ∧ [µ(k) = 1] ∧ [ασ(k−1)(t) = 1] → [αQ(t+) = 1] (24)

[t = t(k)] ∧ [µ(k) = 0] ∧ [ασ(k−1)(t) = 1] → [ασ(k)(t
+) = 1] (25)

[t = t(k) + T ] ∧ [αQ(t) = 1] → [ασ(k)(t
+) = 1]. (26)

Conditions (24) and (25) describe transitions at the beginning of the kth
epoch from mode Bσ(k−1) to BQ if µ(k) = 1 and to Bσ(k) (successive mode in
the sequence) if µ(k) = 0, respectively. Condition (26) describes the transition
from mode BQ to Bσ(k) after a time interval of T (throughout this paper
we always assume that, for the stable mode, a time interval of length T is
large enough to drive the state x within a neighborhood of zero). Finally, the
following condition says that in all the other circumstances no transitions
occur:

∼
(
[t = t(k)] ∧ [ασ(k)(t) = 1]

)
∧ ∼ ([t = t(k) + T ] ∧ [αQ(t) = 1]) → [αi(t

+) = αi(t)].
(27)

Figure 6 displays controlled and uncontrolled transitions (arcs) among
modes (nodes) for Q = 3. Figure 7 displays the time plot for a one dimen-
sional state. In evidence the epoch (sampling interval) between t(3) and t(4)
which has a size of ∆t + T .

To put the above model in the form (5), we need to slightly modify the
definition of the state dependent disturbance in (6) and the sampling rule
introduced in Section 2.2. Actually, now, the disturbance is no longer state
dependent, and sampling occurs at the beginning of each epoch, where the
epochs are defined as in (23). Given this, we only need to change the notation
w(ξ(k), d(t)) into w(k, uc(t), d(t)) and also to specify that if at time t(k) a
switch occurs µ(k) = 1 then one extreme of the integral (6) is shifted forward
of T , i.e.,

w(k, uc(t), d(t)) =

∫ t(k+1)

t(k)+T µ(k)

(Bσ(k)uc(t) − d(t))dt. (28)

 

B1 B2 B3 

Fig. 6 Transitions among different modes: nodes represent unstable modes B1 and
B2 and stable mode B3. Arcs describe controlled transitions (dashed) to the stable
mode B3 and uncontrolled transitions (solid) to the unstable modes B1 and B2.
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Henceforth, we simply write w(k, uc, d) instead of w(k, uc(t), d(t)).

Then, the problem of interest consists in finding the optimal schedule of
the switches among unstable and stable modes thus to maintain the system
in a safe operating region, while minimizing a function related to the cost of
the switches. In this case, the cost of a switch represents the cost of driving
the state to the origin, once a transition to the stable mode has occurred (in
the assumption that such a cost is independent of the value of the state at
the time of the transition). The decision variables are thus binary (whether
to switch to the stable mode at a given time instant or not).

With in mind the sampling rule (23) and the new definition of w(k, uc, d)
as in (28) the sampled multi–inventory model reduces to

ξ(k + 1) = ξ(k) + w(k, uc, d) + (xref − ξ(k))µ(k) µ(0) = 1, (29)

the above equation being a specialization of (5).

Now, assume that we wish to keep the state within a neighborhood of a
reference value xref of size ǫ. Assume x(0) is already in the neighborhood and
take xref = 0 without loss of generality. We can formalize the above concept
by considering, for instance, V (x) = ‖x‖∞. Let X = {x ∈ Rn : V (x) ≤ γ}
for a given threshold γ ∈ R+ with Rn

+ the positive orthant. Condition (7) is
then simply

V (ξ(k + 1)) ≤ γ, k = 0, . . . , N − 1. (30)

With this in mind, the generic set Cj used in (8) can be defined as follows.

xref 

t(1) 

ε 

switch

γ 

∆t T ∆t ∆t t t(2) t(3) t(4) 

Fig. 7 Time plot for a one dimensional state. In evidence the sampling interval
between t(3) and t(4) of different size ∆t + T .
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Definition 1 Set Cj = {k̄, k̄ + 1, . . . , k̃ − 1, k̃} is made up by consecutive
time instants such that, for x(k̄) = xref, it holds

min
uc(.)∈Uc

max
d(.)∈D

V





k̃∑

k=k̄

w(k, uc, d)



 > γ (31)

min
uc(.)∈Uc

max
d(.)∈D

V





k̃−1∑

k=k̄

w(k, uc, d)



 ≤ γ. (32)

Sets Cj ’s define the minimal time intervals which must be “covered” by at
least one reset, for a solution u to be feasible under the worst disturbance.
Difficulties in computing the sets Cj ’s are discussed in the next section.

6.2.1 Computation of sets Cj’s

With in mind the fact that the disturbance is, for this system, state inde-
pendent (see, e.g., (28)) and in the assumption that, for the computation of

sets Cj ’s, no switch occurs between times k̄ and k̃, we must solve a min-max
optimization problem of type

z∗ = min
uc(.)∈Uc

max
d(.)∈D

V





k̃∑

k=k̄

w(k, uc, d)



 . (33)

Note that (33) is the same as the first term of (31). Also, we can imme-

diately observe that the cost V
(
∑k̃

k=k̄ w(k, uc, d)
)

is convex. Now, in state

of solving (33) consider the following greedy min-max problem (the index g
reminds “greedy”). Find the solution of

zg =

k̃∑

k=k̄

(

min
uc(.)∈Uc

max
d(.)∈D

V (w(k, uc, d))

)

. (34)

Note that the greedy problem (34) is obtained from (33) by simply in-
verting the “min max” with the “sum”. Denote by (u∗

c(t), d
∗(t)), the solution

of (33), i.e.,

u∗
c(t) = arg min

uc(.)∈Uc

V





k̃∑

k=k̄

w(k, uc, φ(uc))



 (35)

d∗(t) = φ(u∗
c(t)), (36)

where the function φ(uc) = arg maxd(.)∈D V
(
∑k̃

k=k̄ w(k, uc, d)
)

. Analogously,

denote by (ug
c(t), d

g(t)), the solution of each term of the sum in (34), that is

ug
c(t) = arg min

uc(.)∈Uc

V (w(k, uc, φ(uc))) (37)

dg(t) = φ(ug
c(t)), (38)
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where for each interval t(k) ≤ t ≤ t(k + 1), the function

φg(uc) = arg max
d(.)∈D

V (w(k, uc, d)) . (39)

Associate to (u∗
c(t), d

∗(t)) and (ug
c(t), d

g(t)) the corresponding distur-
bance and state

w∗(k) =

∫ t(k+1)

t(k)

(Bσ(k)u
∗
c − d∗)dt, ξ∗(k) =

∑k−1
r=k̄

w∗
j (r), (40)

wg(ξ(k)) =

∫ t(k+1)

t(k)

(Bσ(k)u
g
c − dg)dt, ξg(k) =

∑k−1
r=k̄

wg(r). (41)

In other words, (40)-(41) are the disturbances and states for the two problems
(33) and (34) respectively.

Note that, we have denoted the first extreme in the two above integrals
simply by t(k) rather than t(k) + T u(k) as for the computation of sets Cj ’s,

we always assume that no switch occurs between times k̄ and k̃. Finally, let

t(k̂) = arg maxt(r),r=1,...,N t(k) ≤ t. Then, the continuous time state can be
obtained as

ξ∗(t) = ξ∗(k̂) +

∫ t

t(k)

(Bσ(k)u
∗
c − d∗)dτ (42)

ξg(t) = ξg(k̂) +

∫ t

t(k)

(Bσ(k)u
g
c − dg)dτ. (43)

We are now ready to establish the exactness of the greedy computation.

Theorem 2 For the multi–inventory system of Section 6.2 it holds zg = z∗.

Proof First, observe that for the multi–inventory system of Subsection 6.2,
V (.) is convex and w(k, uc, d) is linear on d(t). As a consequence of this,
the worst demand d∗ and the greedy demand dg are on a vertex of D. We
specialize the proof to the case where the state trajectory is in the negative
orthant. We wish to show that ξg(k) = ξ∗(k) for all k = k̄, . . . , k̃. First note

that proving ξg(k) ≥ ξ∗(k) for all k = k̄, . . . , k̃ derives straightforwardly by
the definition of d∗ and dg. Now, we prove by induction that ξg(k) ≤ ξ∗(k)

for all k = k̄, . . . , k̃. Actually, for k = k̄, we have ξ(k̄) = 0 and wg(k̄) ≤ w∗(k̄).

The two latter conditions imply ξg(k̄ + 1) ≤ ξ∗(k̄ + 1). Now, for any k < k̃,
assume ξg(k) ≤ ξ∗(k) and prove ξg(k + 1) ≤ ξ∗(k + 1). To do this, observe
that, if ξg(k + 1) > ξ∗(k + 1) then there must exist a time t with t(k) < t ≤

t(k + 1) such that ξg(t) = ξ∗(t) and ξ̇g(t) > ξ̇∗(t). But this is possible only
if d∗ > dg = d+ which contradicts the assumption d− ≤ d ≤ d+. We can
conclude that ξg(k) = ξ∗(k) for all k = k̄, . . . , k̃ and also zg = z∗. ⊓⊔

A last comment concerns the complexity of computing dg. It is worth to
be noted that the maximization over each component di is independent of the
other components and therefore to find dg, it suffices to make a number of n
comparisons of type ξi(t(k))+d+

i and ξi(t(k))+d−i , one for each component.
Such a property derives from the special structure of the multi–inventory
system.
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6.2.2 Numerical Example

See the switched multi–inventory system in Fig. 8. Brackets [0, 8] indicate the
minimum and maximum demand at the nodes. Maximum capacity for each
arc is specified below the name, i.e., “a, 5” means that arc a has maximum
capacity equal to 5. Minimum capacity is 0 for all arcs. Topology 1 has
only arc a, b, . . . , l, topology 2 has the additional arc m and topology 3 has
additional arcs m, n and p. The corresponding incidence matrices are as
follows (B2 is obtained from B1 adding the only column of arc m)

B3 =

B1

︷ ︸︸ ︷









1 −1 0 −1 0 0 0 0 0
0 1 1 0 0 −1 0 0 0
0 0 0 1 −1 0 −1 0 0
0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 1

m,n,p
︷ ︸︸ ︷

0 0 0
0 0 0
0 0 0
0 0 0
1 1 0
0 0 1










Let us also assume that the total demand (summed over all 6 nodes) is at
most equal to 8, that is,

∑

i=1,...,6 di ≤ 8. Then, from (38) the greedy demand

is dg = [0, 0, 0, 0, 8, 0]T for topology 1 and dg = [0, 0, 0, 0, 0, 8]T for topology
2. Also, from (37) the greedy flows are ug

c = [3, 0, 0, 3, 0, 0, 3, 0, 0]T and ug
c =

[1, 0, 3, 1, 0, 3, 1, 1, 3]T for topology 1 and 2 respectively. Assume ∆t = 1, from
(41), we obtain wg(k) = [0, 0, 0, 0, 5, 0]T for topology 1 (namely, for k such
that σ(k) = 1), and wg(k) = [0, 0, 0, 0, 0, 4]T for topology 2 (namely, for k
such that σ(k) = 2).

Observe that only system B3 is ǫ-stabilizable (it satisfies D ⊆ int{B3U}),
whereas systems B1 and B2 are not.

Assume that the system switches autonomously between topology 1 and
2 according to a uniformly distributed random sequence.
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Fig. 8 Switched multi–inventory system: topology 1 has only arcs a, b, . . . , l; topol-
ogy 2 has additional arc m; topology 3 has additional arcs m, n, p.
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Also, assume that at any reset the system switches on B3 so that the
buffer length can be driven within a neighborhood of 50. We also force the
buffer to be non negative (no backlog). Then set xref = 50 and γ = 50.
Over the horizon of length N = 100, the costs of the resets are increasing
(controlled switches to B3 occur at the end of each interval) in the first case
and decreasing in the second case (controlled switches to B3 occur at the
beginning of each interval).

Once the system has switched to B3, the controlled flow in the additional
arcs n and p is of type uc,11(t) = xref−x5(t) and uc,12(t) = 0.2(xref−x6(t))
respectively. For sake of simplicity we assume that when mode B3 is active,
the demand is of type d(t) = [0, 0, 0, 0, 8, 0]. With the above choice of uc,11(t)
and d(t), the system is stabilizable within a neighborhood of size 8 (equal to
the maximal demand at node 5). The initial state is x5(t) = x6(t) = xref =
50.

If V (.) is the ∞-norm, we can compute ‖wg(k)‖∞ for each k. From (34) we
can compute the sets Cj ’s, and derive a set of 100 inequalities of type (8) that
enter as constraints in the linear programming problem (10)-(12) returning
the optimal control sequence (controlled switches). Such a sequence is used
to simulate the state evolution of Fig. 9 in the two cases of decreasing (solid
line) and increasing (dashed line) costs.

7 Conclusions

Hybrid optimal control problems are, in general, difficult to solve. A current
research goal is to isolate those problems that lead to tractable solutions. In
this paper, we have identified among the larger set of hybrid control problems
a special class of optimal control problems which are easy to solve. Easy to
solve means that solution algorithms are polynomial in time and therefore
suitable to the on-line implementation in real-time problems. We have done
this by using a paradigm borrowed from the Operations Research field.
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