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Abstract— The modeling of switching systems describing states and neighborhoods are functions of the parent state
networks where death and duplication processes occur is and neighborhood respectively.

descrlbeo_l. A dissensus protocol, complementa_ry to consensus The aim of this paper is to introduce a very simple model
protocol, is introduced and the convergence or divergence of th

agents’ state evolution is studied. We discuss some properties [0 Study the property of the dynamics of a set of agents
of the topology reached by the network when different rules of competing for a scarce resource. Here, the availabilityhef t
duplication and inheritance are implemented. resource to each agent is directly described by the agédat sta
_Keywords: Consensus Protocols, Biological Models, Impul- The agents that have a greater availability of the resource
sive networks, Hybrid systems, Switching Systems are stronger (in some sense they better fit the environment)
and then can subtract further resource to the adjacentsagent
This kind of networks arises in many different problems,

Recently, a great interest has been devoted to consenSy§h as averaging with finite capacity channels in sensor
problems (see, e.g., [1], [2] and the literature cited wathi networks or the load balancing in a processor network
In a consensus problem a setogents reach an agreement(S€e [6] or [7]). We try our inspiration from biological
consensuyson the value of a given set of variables, typica”ynetworks, where the description of the death and duplinatio
the ones describing the system state. To this aim ea8focess (BMID) has been studied, in the modeling of the
agent can exchange information only with a subset (sjeéhome evolution or the protein domains, or the genetic
it neighborhoodl of adjacent agents. In its simplest formepidemiological models have largely been studied. Here the
the consensus problem can be modeled as an autonom@&irgh and death models are usefully introduced as stochasti
cooperative linear system where: each componerdf the Markov chain processes (i.e. [9], [8], [10]). Note that ire th
system state can be interpreted as the state oftthagent Present approach we are considering deterministic models
and the dynamic matrix is a symmetric Metzler matrix suc/@nd no probabilistic approach is taken into considerafitre.
that the sum of its columns is equal to zero. Under thed@€sent system can be useful also to model the interactions
hypotheses, it is easy to verify that the value of the systeﬁf a group of retailers shop in franchising of the same brand
state converges to a vector whose components are all eqmﬂt are working in competition on the territory. The death
to the average of the values of the initial state component§f & node corresponds to the closing of the shop and the

In this work, we study a switching system ([3], [5]) thatduplication corresponds of the opening of a new one.
behaves in a complementary manner to the system describedn the following section, the problem of interest is formal-
above. Between two consecutive switchings, it appears &§d. Then in Section Ill some peculiar characteristicshef t
an autonomousompetitivelinear system where, again, eachSystem evolution are described and some open problems are
componentz; of the system state can be interpreted as th@iscussed. Finally some conclusions are drawn in Section IV
state of theith agent, but with an opposite dynamic matrix
that is a symmetric Metzler matrix such that the sum of its [1. THE DISSENSUSPROTOCOL
columns is equal to zero. If no switch occurs, the system . o o i
state diverges as all eigenvalues but one of the dynamicwe consider a switching system describing the evolution
matrix are strictly positive and the remaining one is null®f @ Set ofn agentsl' = {1,...,n}. Let a set of agents
The system state remains bounded as at each switching titng= 11:---»7(tx)} be given with the number of agents
either an agent dies or duplicates. In the former case tfgtx) function of the time instants;. For the easy of
agent is definitively removed from the system, whereas ifotation, the dependence op is omitted, e.g. we write:

the latter case, the agent, say itparent agent, divides and notn(t), when there is no risk of ambiguity. Each
itself in two new children agents. Both the children initial agent exchange information only with a subset of neighbor
agents. More formally, we assume that the Beinduces
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Each agent has a dynamic: its state evolves on the basis  respectively. Then, we have
of the local information implied by its and its neighbor

agents’ states. An forj=n

Nj(tgr1) = Api1 forj=n+1
N;(ty) otherwise
a forj=n

where: zj(ter) = B forj=n+1 4)
z;(t,,,) otherwise

T = ug(xy, l‘(i)) Viel for ¢ <t <tpy Q)

e u; : Rx R" — R is differentiable and, as the model

describes a competitive syste@% <0 for j #1; wherea, 3 > 0 satisfyinga + 8 = B = x,(t; ;). We
. 2() is the state vector of the agents ) with generic also impose the additional conditions thigtUA,, 1 =

componentj defined as follows, N (ty) and eithem\,,NA, 11 #Dorn € Appr,nt+le

A,,. Finally, the connection grap&f’ evolves according
20 _ { x; if j e N, to the following equations:
J 0  otherwise.
[(tgr1) = T(tp)U{n+1}
Let us now describe the agents’ dynamic at the switching E(tky1) = E(ty)U{(n,i):ie€A,}U
time instants. A switching time instant occurs whenever an {(n+1,9) 10 € Apgr}\

agent reaches aitical state that is, its state either becomes . .

zero or reaches a thresholél More formally, {(;n) =5 € Nu(tr)}-

Given particular initial states, two or more agents can

thp1 = argmin{t >t : Ji € 's.t. x;(t) =0V z;(t) = B}. reach a critical state at the same time instanwVe deal with

these situations as limit cases of very close events. Then, w

Without loss of generality, we may assume that, within eackonsider that all the corresponding deaths and divisionsroc
interval ¢, < ¢ < tx41, we renumber the agents so that theyt the same time instant but in (an arbitrary) sequence.

agent reaching the critical state is always agenThen, at | the rest of the paper, we discuss the evolution of the

the switching time instants the system evolves as follows. system under consideration for different choices\gfo and
o If g;n(t];rl) = 0, we say that agent diesand is re- /3. We assume thai; (-, -) has the following linear structure
moved from the system. The agents in the neighborhood ;
of n inherit the gonnections gh No other c?wanges ui(as,2V) = Z (i) = 2;(2)).
occur in the states and the neighborhoods of the agents. jeN:
More formally: for each single agent € N, (tx), let  Then, between two switching time instartisandt 1, the
the connections inherited bybe A; C N, (tx) \ {j}, System evolves according to:

then we have ii(t) = Z (x;(t) —z;(t), 0 <zi(ty) < B, VieT. (5)

N (tk ) _ { Nj(tk) @] Aj Vi e Nn(tk) JEN;

(tps1) = ,

! Nj(te) otherwise For the short of notation, when we refer to system (5), we
ri(tpy1) = w(t,) VieT\{n}. (2) understand a system that evolves according to state equa-

tions (5) between two consecutive switching times, and to
We impose the conditions that the union of all the conthe above described death and division rules at the swichin
nections inherited by all neighbors afmust cover the times. Finally, we also understand that the system initatks
whole set of neighborsV, (tx), thatis,U; e, 1,) As = 0 < z;(0) < B, for all i € I'(0).
N, (ty). We also impose that; = A; U {j} define Now, let the adjacency matrid = [a,;] of a graph be
a graph (N, (tx),€) with a single component, being defined asi; = 0 anda;; = 1 if(j,7) € E where: # j; and

E={(r,s):3j € Np(tg) s.t. 7,5 € Aj}. the Laplacian matrix of the weighted digraph be defined as
Finally, the connection graply evolves according to L = [(;;], wherel;; = 3, a;; and{;; = —a;; wherei # j.
the following equations: For an undirected graph, the Laplacian matrix is symmetric
positive semi-definite. Then, the state equations (5) can be
T(tpt1) = T(tg) \ {n} rewritten as
E(tyt1) = E(tr)U{(F,9):5€ No(te) A () b= —Le, 0<uz(ty)<B ©)

i€ A \{(jin) : j € Ni(tw)}
! whereL = [I;;] is the graph Laplacian of the network.

o If 2,,(t;.,,) = B, we say that the parent agentlivides State equations (5) make agents’ states diverge, we can

producing two children agents andn + 1. The two say that the state of each agent tries to run away from its
children agents inherit the parent connections and stafgighbor states. For this reason, we call this potigsensus
More formally: let the connections inherited by agentgrotocol as opposite to@nsensuprotocol, where the states
nandn +1 be A, Ay © Ny(tg) U {n,n + 1} try to converge to a common group decision value.



Example 1:Fig. 1 shows an example of connection It is apparent thad ;. x;(t) = > ,cp wi(tx), for ¢ <

network and state evolution before the first switching < ¢, as the vecto(1,1,...,1) is a left eigenvector, as-
time instant, that is in the intervab < t < t;, sociated tothe null eigenvalue, of the Laplacian makri4].

for a set of 8 agents whose initial state ig0) = At a switching time instant;, when agent: dies, its state
[1.5,1.0,1.1,1.2,0.5,0.8,1.3,0.9]7. is z,,(t, ) = 0, whereas the states of the other agents remain

unchanged. When a division occurs, the sum of the states of
the children agents is equal to the state of the parent agent
xn(te) + znt1(tk) = z,(t, ) and, again, the other agents’
states remain unchanged.

Here note that, differently from the case in which a linear
consensus problem is implemented, condition (7) does not

7 6 imply that the average value of the system state is preserved

as the number of agents varies with time.

The invariance of (7) implies that, at each time, the number

° e 0 of agents is bounded from below according to
° n(ty) > [X] Vi 8)
k) Z Bl k-

° ° As the connectivity of graplé- is preserved during deaths
and divisions (as it will be shown in the next paragraph),

condition (8) depends critically on the valueswfand 5 in

(4). We next justify the choicer + 5 = B by showing that

if the latter does not hold true, then the number of agents

. converges to one or diverges to infinity. Before doing this,

let us recall the notion of equilibrium for the system under

consideration.

If G has a single component, the system is in an equilib-
rium pointz* only if all the agents have the same state, that
w0 isxz;(t) = x/n forall i € T'. Given the matrixZ, equilibrium

x* is trivially unstable when there are two or more agents
alive.

Now, if, for eachty, o« + 8 < z,(tx) = B then
either the system reaches an unstable equilibrium point or
limg_, o n(t;) = 1. Here note that, by the system definition,
the system is always in equilibrium when it includes a single

Fig. 2. The state evolution of a system of 8 agents. agent. Differently, if, for each]k, a _|_ﬂ > J;n(tk) — B then
either the system reaches an unstable equilibrium point or

In Fig. 1 and 2, we observe that agent 5 is the first ongm,,_.., n(t;) = co. With the above reasoning in mind, the
that reaches a critical state. In particulag(t; ) = 0. Then choicea+ 3 = B appears the only one that makes the model
in ¢1, agent 5 dies. useful to describe situations different from the two catic

We conclude this section observing that we can descrilmases discussed above.
the systems under consideration as a sintpllerid system We next expand more on the connectivity property of the
In particular, we could be interested in studying the evolut division rule (4) and of the death rule (2).
of the discrete time variable(t,) that describes the number  Assume that(¢;) has a single component at timeand a
of agentsalive at the switching time instants as a functiondivision occurs int; ;. Then, the division rule (4) preserves
of the evolution of the continuous system (5). Hereafter, wtihe connectivity ofG. If agentn is in the component of all
use the term alive to stress the fact that agents must havéha other agents iy, ,, then at timet, 1, rule (4) imposes
state strictly greater than zero to be considered as an steméhat each agent is in the same component of either tw

Fig. 1. An example of connection network with 8 agents.

t

of the system. to n + 1. In addition, asA,, N A, 11 # 0 implies thatn and
n+ 1 are both adjacent to a common agg¢rand then are in
I1l. PROPERTIES a same component, then the transitivity property guarantee
) ) that G(tr+1) also has a single component.
A. Basic properties The death rule (2) preserves the connectivity(hf too.
The first basic property is that in system (5) the sum opince graphNV,.(tx), £) has a single component, then each
the components;(¢) of the system state is invariant: pair of agentsr and s in N, (ty), if (r,s) € £, are either
adjacent to a same agetor, if there exists an agent
D wi(t) =) xi(0)=x, VL. (7) that belongs to a path fromto s in (N,(tx),£), they are

pyd er indirectly connected being both connecteduvto



Generally speaking, both rules (2) and (4) are sufficienin this case each division generates twin agents. Consider,
but not necessary, conditions to preserve the connectifity as an example, the same system as above. At timave
the graphG at the switching time instants. As an example, irhavez(¢t;) = B/4 and z2(t1) = x3(t1) = B/2. At time
case of death, the connectivity 6fwould be preserved even ¢,, the agent 1 dies (we have not renumbered the agents for
if A; = {j}forallj € N, (t), ifall j € N, (tx) are adjacent the easy of exposition) and the remaining two twin agents
to a common agent ¢ N, (tx). However, the two rules (2) reach an equilibrium corresponding to a state value equal to
and (4) become also necessary conditions if the connsactivis B /8.
must be guaranteed by agentbefore dying or dividing Until now, we have assumed the graph complete. Let us
on the basis of its local information only, that is, knowingnow consider the asymptotic behavior of the system with a
only the agents and the connections implied by theMsgt  generic connecting graghi(0) when rule (9) is implemented,
Consider the division rule, i\,, UA,,+1 # N, (tx) then, the provided that the number of agents does not diverge and the
information locally available to agemt could not guarantee system does not reach an equilibrium. To this aim, let us
that an agentj in N, (tx) \ A, U A,41 does not remain define asdegreeof agent: the cardinality of the setV;.
disconnected from the remaining ones after agedivision. Then observe that when rule (9) is implemented, at each
If A, NA,s1 = 0, then the agents im\,, could remain division the degrees of the children agents are equal to the
disconnected from the agents in,.;. Similar arguments degree of the parent node plus one. The degrees of agents
hold for the proof of the necessity of the death rule. adjacent to the parent node increase by one, too. Whichever
e death rule is implemented, at each death the degree of the
B. Specific rules . . .
agents adjacent to the dying node may at maximum decrease
Let us now discuss some properties of specific divisioBy one.
and death rules. Let us also definer = lim,_,o max{n(ty) : t; > 7}. If
Initially consider the division rule which makes boththe number of agents does not diverge and the system does
children inherit all the parent connections and connect ot reach an equilibrium, theim < co andsup{t, : n(ty) =
each other. Formally n} = oo. Consider now the generic time instaptsuch that
Ap = Nu(te)U{n+1} n(ty) = n, necessarilyn(;k,_l) = n(tkﬂ) =n—L We
A — Nu(ty) U {n} ) show that, under appropriate assumptions, elm@%,l_) is
nt+l nitk ' a complete graph or the expected value of the cardinality of
With such a rule, ifG(0) is a complete graph the@(t;)  E(tr+1) is greater than the cardinality @ (¢,_1).
are complete graphs for every, whatever death rule is To this end, denote by and ¢ respectively the agent
implemented. Wheri(¢;) is a complete graph, if at time that divides at timet, and the agents that dies at time
tr+1 a death occurs, no agent inherits any new connectioty1. This denomination avoid possible ambiguities given by
as each one is already adjacent to all the other agents. Ifthe renumbering of agents. Now observe thatt, 1) =
time ¢4, a division occurs, condition (9) imposes that thgE(tx—1)| + (|E(tk)| — [E(tk-1)|) + (|E(tet+1)| — |E(tr)])-
two new agents are adjacent (neighbors) to each other alidve denote byAE(ty) = |E(ty)| — |E(tk—1)|, we have

to all the other agents. .

If rule (9) is implemented andv and § are defined as AB(te) = INn(te1)l +1 )
follows, o = min{z;(t;,,) : 0 < ;(ty,,) < B}, 8 = | INa(Ben) | 1 if g € Ne(ti-a)
B — « then the number of agents may diverge. Consider,AE(tkH) = IN - (te—1)| +1 if q chz.ld of r
as an example, the evolution of a system whef@) = 2 [No(tr-1)] s

andz;(0) = B/2 andz3(0) = 3B/4. By property (8), we As a consequence, if is a child of r then |E(tx—1)| =
haven(t;) > 2 for all ¢,. Then, att; only a division can |FE(tx1)|, otherwise, if we can assume that the expected
occur, obtainingz(t1) = x2(t1) = B/4 andxs(t — 1) = value of |[N,(t,—1)| is equal to the expected value of
3B/4. Fromt; on agents 1 and 2 arvins in the sense |N,(t;_1)|, the expected value df£(¢;41)| is greater than
that z1(t) = z2(t) for t > ¢1. Again, asn(tz) > 2 must the expected value df(¢;_1)| unlessG(¢,—1) is complete.

hold, then att, only a division can occur becauseand In this latter situation,N,(tx—1)| = |N,(tx—1)] andr €

2 cannot both die and a third twin is generated, indeed W&, (t;_1), then|E(t;41)| = |E(tg—1)|-

havex;(t2) = xa2(t2) = x3(t2) = B/8 andx4(0) = 7B/8. Following an analogous line of reasoning we can show
Iterating the above argument we have that only divisions mathat the expected value QF(¢,.)| is greater than the expected
occur and at, there arek + 1 twin agents withx; () =  value of |E(¢s)], if t, > ts andn(t.) = n(ts). This means
xo(ty) = ... = a1 = B/4K and thek + 2 agent with that, asymptotically, the connecting graph of the systemdge

Zpt2 = B(1—1/4K). Simple but cumbersome computationsto become complete, provided an equilibrium point is not
show thatt,,1 — t;, converges to zero with rate/k. This reached before.

means that switching time instarnsexist for anyk € N and As a word of caution, we must point out that we are not yet
limg_, o tx = co. In turn, this implies thatim, .., n(t;) = able to assess how reasonable is the main assumption of the
0. previous argument, i.e, that the expected valug\gi(ts—1)|
Differently, if rule (9) is implemented and = 5 = B/2 is equal to the expected value N, (tx—1)|. However,

then the system may reach an equilibrium point. Note thatur simulations seem to confirm such a result, unless very



particular initial states were fixed. As an example, theayst (2) is, for eachj € N, (t), defined by

in Fig. 1, when rule (9) is applied and is fixed equal to L e e e

3 = B/2, converges to a complete graph first and then to A= { N.’L(tk) Vit Z,f 7= J,* (12)

an equilibrium point, where eight agents, each one adjacent U i

to the other ones, all assume a state equal to 1.0375. Herevhere j* € N, (¢x) is arbitrarily picked. In other words,

note that an equilibrium point is reached as the divisior rulthe death rule assigns all the connections of a dying agents

implemented creates twins. to just one of its adjacent agents. From a practical point of
Let us now consider the division rule which equallyview, these choices fok; are the simplest ones to implement

divides the parent’s connections between the two childrethat guarantee the connectivity 6f after the removal of the

Formally, dying node.
It is immediate to see that, if aft, a division occurs,
A, = pick(N,(ty)) U{n +1} |E(ty)| = |E(tg—1)| + 1; if at ¢, a death qccurq,E(z_fk)| <
Apsr = No(ts)\ A, U {n}. (10) |E(tp—1)] — 1 as at least the connectiofm,j*) is not

substituted by a new connection. It is also apparent that the

L considered division and death rules forbid the creation of
Where functionpick(Nn({y)) retrns a random subset of new cycles in the connection graph.-lft;) is the number

.HN"(tk)‘/?J elements O.W"(t’“)' Wi.th such a rule, i.fG(O) of cycles present it7(t;,) then~(ts) < ~(¢,.) for t5 > t,.
is a hole graph, respectively a c_haln graph (see Fig. 3), thenAS a consequence, if(t,) diverges fort, — oo, in the
G(tx) are hole graphs, respectively chain graph, for eVe%ng run the number of divisions must exceed the number

ti, whatever death rule is implemented. A gra@f(ts) is ?I deaths, henceim;, .. |E(ty)|/n(ty) — 1, ie., the

a hole, respectively a chain graph, if its is connected ang o o araph. although connected, becomes sparser and
all the agents have degree two, respectively all the agen(is grapn, 9 ’ P

sparser. If2(t),) does not diverge faf, — oo, we say that the

have degree two a part from two agents at the extreme 8 . . . .
the chain whose degree is one. Assume that at time a ens_|ty of the connection graph cannot increase in the sense
X that if t, > ¢, andn(ts) = n(t,) then |E(ts)| < |E(t,)].

death occurs, if is not an extreme of a chain, the two ager‘t?\lote that, a part for particular initial states or particula

adjacent ton are connected, otherwiseis simply removed . e .
o ’ choices ofj* in presence of death events, the density of the
and no new connection is introduced. Thenpifs not an . : . 4
. - . cgnnection graph indeed decreases ufitppresents a single
extreme of a chain, the degree of the remaining agents is nQ "
: . or. no cycle at all. The conditiohZ (¢x)| < |E(tx—1)] — 1
changed, otherwise an agent with degree two becomes of . L .
. holds strictly wheneveN,, (t,) N, (t;) # 0, situation quite
degree one to replace the degree one of the agent just dead. ; :
: - .~ common if the graph is not sparse.
Assume now that at timé,; a division occurs, condition . . .
: o . Our simulations show that, in general(t;,) converges
(10) imposes that, if: is not an extreme of a chain, each : SO
) to,a hole graph or a chain graph, but a formal proof is still
of the two new agents are adjacent only to each others and

to one of the agents adjacent to their parent, otherwise trqg35|ng. Itis also still an open problem if rules (10) and)(11

two new agents are adjacent to each others and just onem?ke always the system converge. The authors conjecture is

them is adjacent to the only agent adjacent to their parer% at, differently from rule (9), this is always the case. The

Then the degree of the agents different frans not changed !dea that suppc_)rts the conjecture IS tht;.) may diverge
L . . if, most of the times, an agent can increase its state to reach
and, ifn is not an extreme of a chain, the two children hav

degree two, otherwise one of them has degree two and thee threShOIdB w_ithqut pgshing any othgr agent toward a
other one degree one. certain degth. This snuguon may occur if the state in@eas
of the considered agentis distributed at the expenses of the
states of a sufficient number of agents adjacent or in any case
not very distant from it. The agents cannot be very distant
e from n, since the state of increases with exponential speed.
In case of a sparse connecting graph, on the average, each
agent is close only to a limited number of other agents, then
° ° the previously described situation should not occur.
Fig. 4 reports the evolution of the system described in
e e e ° e Section 1 when the above described division and death rules
are implemented. In particulgr in the death rule is chosen
° ° as the agent adjacent to the dying agent with higher value

of the state;j* = argmin{xz;(t, ) : 1 € Ny(tx)}.
Fig. 3. A hole graph and a chain graph. { Z( kH) n( )}
IV. CONCLUSIONS

Let us now consider the asymptotic behavior of the system In this paper we formalize the notion afissensusin
with a generic connecting gragh(0) when the division rule opposition to the well known concept of consensus. The main
(10) is implemented provided that the system does not reaakea is that, given a network of dynamic agents, the state of
an equilibrium. In particular, we assume that the death rukeach single agent diverges from the states of its neighbors.
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Fig. 4. Evolution of the value of(¢;) when rule (10) is applied.

As soon as it reaches a lower or an upper bound the agents
either dies or divides in two new agents. Thus, the topology
of the network is time varying and evolves according to some
pre-defined rules. The aim of our current research is to look
at the system as a switching/impulsive system and analyze
its properties (stability, connectivity, topology) by ngithe
tools of the switching and impulsive theory.
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