
This is a repository copy of Mixed integer predictive control and shortest path
reformulation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/89731/

Version: Submitted Version

Article:

Bauso, D. (2010) Mixed integer predictive control and shortest path reformulation.
(Unpublished)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ar
X

iv
:1

00
3.

28
89

v1
 [

m
at

h.
O

C
]

 1
5

M
ar

 2
01

0

Mixed integer predictive control and shortest path reformulation

Dario Bauso∗

March 16, 2010

Abstract

Mixed integer predictive control deals with optimizing integer and real control variables over a receding
horizon. The mixed integer nature of controls might be a cause of intractability for instances of larger
dimensions. To tackle this little issue, we propose a decomposition method which turns the original n-
dimensional problem into n indipendent scalar problems of lot sizing form. Each scalar problem is then
reformulated as a shortest path one and solved through linear programming over a receding horizon. This
last reformulation step mirrors a standard procedure in mixed integer programming. The approximation
introduced by the decomposition can be lowered if we operate in accordance with the predictive control
technique: i) optimize controls over the horizon ii) apply the first control iii) provide measurement updates
of other states and repeat the procedure.

1 Introduction1

Mixed integer predictive control arises when optimizing integer and real control variables in a receding2

horizon context [1]. For this reason, many authors see it as a specific field in the broader area of optimal3

hybrid control [3]. Optimal integer control problems have been receiving a growing attention and are often4

categorized under different names. See, for instance, the literature on finite alphabet control [5, 9]. Integer5

control requires a bit more than standard convex optimization techniques. From the literature we know6

that new properties come into play. As an example, look at multimodularity presented as the counterpart7

of convexity in discrete action spaces [4]. When talking about mixed integer variables, it is, of course, not8

possible not to mention the more than vast literature on mixed integer programming [7]. It is exactly in this9

context that we have found inspiration as clarified in more details next.10

In this paper, we have moved our steps along the line of [8] which surveys solution methods for mixed11

integer lot sizing models. Indeed, decomposing an n-dimensional dynamic system into n indipendent lot sizing12

systems is almost all about this paper is centered around. The approximation introduced by the decomposition13

can be reduced if we operate in accordance with the predictive control technique: i) optimize controls for14

each indipendent system all over a prediction horizon, ii) apply the first control to each indipendent system,15

iii) provide measurement updates of other states and repeat the procedure. The main contribution of this16

work is to reformulate the mixed integer problem of point i) as a shortest path problem and solve this last17

through linear programming. This approach mirrors the method surveyed in [8] with the differences that here18

the shortest path problems run iteratively forward in time over a receding horizon. Reframing the method19

in a receding horizon context is an element of novelty and presents some additional and new issues which are20

discussed and overcome throughout the paper.21

∗Dipartimento di Ingegneria Informatica, Università di Palermo, V.le delle Scienze, 90128 Palermo, ITALY -

dario.bauso@unipa.it

1

http://arxiv.org/abs/1003.2889v1

This paper differs from [1] as we focus on a smaller class of problems that can be solved exactly and do22

not require advanced relaxation methods which, in turn, are a main topic in [1]. To bring our discussion23

back to hybrid control, the lot sizing like model used here has much to do with the inventory example briefly24

mentioned in [3]. There, the authors simply include the example in the large list of hybrid optimal control25

problems but do not address the issue of how to fit general methods to this specific problem. On the contrary,26

this work cannot emphasize enough the computational benefits deriving from the “nice structure” of the lot27

sizing constraints matrix. Binary variables, used to model impulses, match linear programming in a previous28

work of the same author [2]. There, the linear reformulation is a straightforward derivation of the (inverse)29

dwell time conditions appeared first in [6]. Analogies with [2] are, for instance, the use of total unimodularity30

to prove the exactness of the linear programming reformulation. Differences are in the procedure itself upon31

which the linear program is built up. The shortest path model is an additional element which distinguishes32

the present approach from [2].33

This paper is organized as follows. We state the problem in Section 2. We then move to present the34

decomposition method in Section 3. In Section 4, we turn to introducing the shortest path reformulation and35

the linear program. We dedicate the last Section 5 to support our theoretical analysis with some numerical36

results.37

2 Mixed integer predictive control38

In mixed integer control we usually have continuous state x(k) ∈ R
n, continuous controls u(k) ∈ R

n and
disturbances w(k) ∈ R

n, discrete controls y(k) ∈ {0, 1}n (see e.g., [1]). Evolution of the state over a finite
horizon of length N is described by a linear discrete time dynamics in the general form (1), where A and E

are matrices of compatible dimensions:

x(k + 1) = Ax(k) + Ew(k) + u(k) ≥ 0, x(0) = x(N) = 0. (1)

The above dynamics is characterized by one discrete and continuous control variable per each state, and this39

reflects the idea that we may wish to control indipendently each state component. Also, starting from initial40

state at zero, we wish to drive the final state to zero which is a typical requirement when controlling a system41

over a finite horizon. On this purpose, we have added equality constraints on the final states. Also, we force42

the states to remain confined within a desired region, take for it the positive orthant, which may describe a43

safety region in engineering applications or the desire of preventing shortcomings in inventory applications.44

Continuous and discrete controls are linked together by general capacity constraints (2), where the pa-
rameter C is an upper bound on control:

0 ≤ u(k) ≤ Cy(k), y(k) ∈ {0, 1}n. (2)

For clarity reasons, y(k) is the decision of controlling or not the system, and u(k) is the control action. So if45

we decide not to control the system then the control action is null, otherwise this last is any value between46

zero and its upper bound C.47

The following assumption helps us to describe the common situation where the disturbance seeks to push48

the state out of the desired region.49

Assumption 1 (Unstabilizing disturbance effects)

Ew(k) < 0. (3)

At this point, the non negative nature of controls u(k) should become much clearer. Actually, control50

actions are used to push the state far from boundaries into the positive orthant thus to counterbalance the51

2

unstabilizing effects of disturbances over a certain period to come. However, controlling the system has a52

cost and “over acting” on it is punished by introducing a cost/objective function as explained next.53

The objective function to minimize with respect to y(k) and u(k) is a linear one including proportional,
holding and fixed cost terms expressed by parameters pk, hk, and fk respectively:

N−1
∑

k=0

(

pku(k) + hkx(k) + fky(k)
)

. (4)

Conditions (1)-(4) introduced so far describe coincisely the problem of interest. In the next section, we54

recall a standard method to convert the problem of interest (1)-(4) into a mixed integer linear program55

returning the exact solution in terms of optimal control actions u(k) and y(k).56

Remark 1 For sake of simplicity disturbances w(k) are deterministic and apriori known. The approach57

presented below is still valid if we drop this assumption and turn to consider unknown disturbances. Only, we58

should carefully repropose problem (1)-(4) in a receding horizon form with iterative measuments updates and59

control optimization forward in time all over the horizon.60

2.1 Mixed integer linear program and exact solution.61

The mixed integer nature of the above program makes it intractable for increasing number of variables and62

horizon length. So, the topic presented below is motivated mainly by comparisons reasons and applies only63

to problems of relatively small dimensions.64

Before introducing the mixed integer linear program we need to define the following notation. Let us start
by collecting states, continuous and discrete controls, proportional, holding and fixed costs all in opportune
vectors as shown below:

x = [x(0)T . . . x(N)T]T , u = [u(0)T . . . u(N − 1)T]T , y = [y(0)T . . . y(N − 1)T]T ,

p = [(p0)T . . . (pN−1)T]T , h = [(h0)T . . . (hN−1)T]T , f = [(f0)T . . . (fN−1)T]T .

Furthermore, to put dynamics (1) into “constraints” form, let us introduce matrices A, B and vector b
defined as

A =























−I 0 0 . . . 0 0
A −I 0 . . . 0 0
0 A −I . . . 0 0
0 0 A . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . A −I

0 0 0 . . . 0 −I























; B =



















0 0 . . . 0
B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B

0 0 . . . 0



















; b =
[

−ξT0 (Ew(0))T . . . (Ew(N))T − ξTf

]T

.

Notice that once we take for ξ0 and ξf the value zero, the first and last rows in the aforementioned matrices65

restate the constraints on initial and final state of (1).66

Finally, we are in the condition to establish that problem (1)-(4) can be solved exactly through the
following mixed integer linear program:

(MIPC) min
u,y

J(u, y) = pu+ hx+ fy (5)

Ax+Bu = b (6)

0 ≤ u ≤ Cy, y ∈ {0, 1}nN . (7)

3

The mixed integer linear program (5)-(7) is the most natural mathematical programming representation67

of the problem of interest (1)-(4). For this reason, throughout this paper we will almost always refer to (5)-(7)68

when we wish to bring back the discussion to the source problem (1)-(4) and its exact solution.69

To overcome the intractability of the mixed integer linear program (5)-(7), we propose a new method70

whose underlying idea is to bring back dynamics (1) to the lot sizing model [8]. To do this, we introduce71

some additional assumptions on the structure of matrix A which simplify the tractability and affect in no72

way the generality of the results. This argument is dealt with in details in the next section.73

2.2 Introducing some structure on A74

Our main goal in this section is to rewrite (1) in a “nice” form. With “nice form” we mean a form that75

emphasizes the analogies with standard lot sizing models [8]. “Stop beating around the bush”, we will76

henceforth refer to the following dynamics in state of (1):77

x(k + 1) = x(k) + ∆x(k) + Ew(k) + u(k) ≥ 0. (8)

The reasons why expression (8) is a nice one is that it isolates the dependence of one component state on78

the other ones. To tell it differently we have separated the influence of all other states on state i. It will be79

soon clearer that turning our attention to the new expression (8) is a prelude in view of the decomposition80

approach discussed later on.81

Once clarified the reasons, we need next to clarify how to go from (1) to (8) and what is the underlying82

assumption that allows us to do that. Before doing this let us denote with I ∈ R
n×n the identity matrix and83

aij the dependence of state i on state j. So, we can make the following assumption.84

Assumption 2 Matrix A can be decomposed as

A = I +∆, ∆ =











0 a12 . . . a1,n−1 a1n
a21 0 . . . a2,n−1 a2n
...

...
. . .

...
...

an1 an2 . . . an,n−1 0











.

The reader may notice that (8) is a straighforward derivation of (1) once we take for good Assumption 2.85

Our secondary goal in this section is to preserve the nature of the game which has stabilizing control86

actions playing against unstabilizing disturbances. To do this, in our next assumption we do consider the87

case where the influence of other states on state i is relatively “weak” in comparison to the unstabilizing88

effects of disturbances.89

Assumption 3 (Weakly coupling)
∆x(k) + Ew(k) < 0. (9)

Notice that the above assumption preserves the nature of the game by bounding the effects of mutual90

dependence of state components represented by the term ∆x(k). A closer look at (3) and (9) sounds like the91

term ∆x(k) do not counterbalance the effects of Ew(k). States mutual dependence only emphasize or reduce92

“weakly” the unstabilizing effects of disturbances.93

We end this section by noticing that (8) is not yet in “lot sizing” form [8]. In the next section, we present94

a decomposition approach that translate dynamics (8) into n scalar dynamics in “lot sizing” form [8].95

4

3 Robust decomposition96

With the term “decomposition” we mean a mathematical manipulation through which the original dynamics97

(8) is replaced by n independent dynamics of the form:98

xi(k + 1) = xi(k)− di(k) + ui(k). (10)

The above dynamics is in a typical lot sizing form in the sense that the (inventory) state tomorrow xi(k+1)99

is equal to the (inventory) state today xi(k) plus the discrepancy between today demand di(k) and today100

reordered quantity ui(k). Changing (8) with (10) is possible once we relate the demand di(k) to the current101

values of all other state components and disturbances as expressed below:102

di(k) = −
[

∑n
j=1, j 6=i Aijxj(k) +

∑n
j=1

Eijwj(k)
]

= − [∆i•x(k) + Ei•w(k)] .
(11)

To tell it differently, we do assume that the influence that all other states have on state i enters into equation103

(10) through demand di(k) defined in (11). Our next step is to make the n dynamics in the form (10)104

mutually independent. This is possible by replacing the current state values xj(k), j 6= i with their estimated105

values on the part of agent i which we denote by x̃j(k), j 6= i. Still with reference to (10), this implies to106

replace the current demand di(k) by the “estimated” demand d̃i(k) defined as in (12) where Xk is the set of107

admissible state vectors x(k):108

d̃i(k) = max
ξ∈Xk

{−∆i•ξ − Ei•w(k)} . (12)

The idea behind (12) is to take for estimated value the worst admissible demand, i.e., the demand that would
push the state out of the positive orthant in a fewest time and such a demand is of course the maximal one.
However, it must be noted that we cannot see any drawbacks in combining other decomposition methods
with the approach presented in the rest of the paper. To complete the decomposition, it is left to turn the
objective function (4) into n indipendent components

Ji(ui, yi) =

N−1
∑

k=0

(

pki ui(k) + hk
i xi(k) + fk

i yi(k)
)

.

Note that because of the linear structure of J(u, y) in (5), it turns J(u, y) =
∑n

i=1
Ji(ui, yi). So, in the

end we have translated our original problem into n indipendent mixed integer linear minimization problems
of the form (13)-(15) as requested at the beginning of this section. In the spirit of predictive control, each
minimization problem is then solved forwardly in time all over the horizon. So, for τ = 0, . . . , N − 1 we need
to solve

(MIPCi) min
ui,yi

N−1
∑

k=τ

(

pki ui(k) + hk
i xi(k) + fk

i yi(k)
)

(13)

xi(k + 1) = xi(k)− d̃i(k) + ui(k) ≥ 0, xi(τ) = ξ0i , xi(N) = 0 (14)

0 ≤ ui(k) ≤ Cyi(k), yi(k) ∈ {0, 1}. (15)

It is worth to be noted that non null initial states, which materialize in values of ξ0i strictly greater than109

zero in constraints (14) might induce infeasibility of (MIPCi). So, moving from (MIPC) to (MIPCi) has110

this little drawback that we will discuss in more details later on in Section 4.3 together with some other issues111

concerned with the receding implementation of our method.112

4 Shortest path and linear programming113

So far, we have first formulated the problem of interest and then decomposed it into n indipendent scalar114

problems. By the way, decomposition is only the first step of our solution approach. Actually, the mixed115

5

integer nature of variables in (13)-(15) is still an issue to be dealt with. This second part of the work focuses on116

the relaxation of the integer constraints yi(k) ∈ {0, 1} which would facilitate the tractability of the problem.117

It is well known that relaxation introduces, in general, some approximation in the solution. The main result118

of this work establishes that, for the problem at hand, relaxing and massaging the problem in a certain119

manner, will lead to a shortest path reformulation of the original problem. This is a great result as, it is120

well known that shortest path problem are in turn easily tractable and solvable through linear programming.121

Shortest path formulations are based on the notion of regeneration interval discussed in details in the next122

section.123

4.1 Regeneration interval [α, β]124

Let us start by introducing a formal definition of regeneration interval which represents the central topic in125

this section. The definition, available in the literature for scalar lot sizing models, is borrowed from [8] and126

adapted to each single (scalar) dynamics i of our decomposed n-dimensional model. So, with reference to127

the generic minimization problem i expressed by (13)-(15), let us state what follows.128

Definition 1 (Pochet and Wolsey 1993) A pair of periods [α, β] form a regeneration interval for (xi, ui, yi)129

if xi(α− 1) = xi(β) = 0 and xi(k) > 0 for k = α, α+ 1, . . . , β − 1.130

Given a regeneration interval [α, β], we can define the accumulated demand over the interval dαβi , and131

the residual demand r
αβ
i as132

d
αβ
i =

β
∑

k=α

d̃i(k), r
αβ
i = d

αβ
i −

⌊

d
αβ
i

C

⌋

C. (16)

Our idea is now to translate problem (13)-(15) into new variables. More formally, let us consider variables133

y
αβ
i (k) and ǫ

αβ
i (k) defined in (17) with the following meaning. Variable yαβi (k) is equal to one in presence of134

a saturated control on time k and zero otherwise. Similarly, variable ǫ
αβ
i (k) is equal to one in presence of a135

non saturated control on time k and zero otherwise:136

y
αβ
i (k) =

{

1 if ui(k) = C

0 otherwise.
ǫ
αβ
i (k) =

{

1 if 0 < ui(k) < C

0 otherwise.
(17)

To translate the meaning of yαβi (k) and ǫ
αβ
i (k) in a lot sizing context, such variables tell us on which period137

full or partial batches are ordered.138

At this point and with in mind the above variable transformation, we can rely on well known results in
the lot sizing literature which convert the original mixed integer problem (13)-(15) into a number of linear

programs
(

LP
αβ
i

)

, each one associated to a specific regeneration interval. Regeneration intervals and the

associated linear programs are mutually related in a way that gives raise to a shortest path problem, which
will be the central topic in the next section. For now, we simply repropose below the linear programming
problem associated to a single regeneration interval [α, β]. Denoting by eki = pki +

∑N−1

j=k+1
h
j
i and after some

6

standard manipulation, the linear program for fixed regeneration interval [α, β] appears as:

(

LP
αβ
i

)

min
y
α,β

i
,u

α,β

i

β
∑

k=α

(

Ceki + fk
i

)

y
αβ
i (k) +

β
∑

k=α

(

rαβeki + fk
i

)

ǫ
αβ
i (k) (18)

β
∑

k=α

y
αβ
i (k) +

β
∑

k=α

ǫ
αβ
i (k) =

⌈

d
αβ
i

C

⌉

(19)

t
∑

k=α

y
αβ
i (k) +

t
∑

k=α

ǫ
αβ
i (k) ≥

⌈

dαti
C

⌉

, t = α, . . . , β − 1 (20)

β
∑

k=α

y
αβ
i (k) =

⌈

d
αβ
i − r

αβ
i

C

⌉

(21)

t
∑

k=α

y
αβ
i (k) ≥

⌈

dαti − rαti

C

⌉

, t = α, . . . , β − 1 (22)

y
αβ
i (k), ǫαβi (k) ≥ 0, k = α, . . . , β. (23)

The above model is extensively used in the lot sizing context. We can limit ourselves to a pair of comments139

on the underlying idea of the constraints. So, let us start by focusing on the equality constraints (19) and140

(21). These constraints tell us that the ordered quantity over the interval has to be equal to the accumulated141

demand over the same interval. This makes sense as initial and final state of a regeneration interval are null142

by definition. Let us turn our attention to the inequality constraints (20) and (22). There, we impose that143

the accumulated demand in any subinterval may not exceed the ordered quantity over the same subinterval.144

Again, this is due to the condition that states are nonnegative at any period of a regeneration interval.145

Finally, the objective function (18) is simply a rearrangement of (13) induced by the variable transformation146

seen above and specialized to the regeneration interval [α, β] rather than on the entire horizon [0, N].147

We are ready to recall the following “nice property” of (LPαβ
i) presented first by Pochet and Wolsey in148

[8].149

Theorem 1 (Total unimodularity) The optimal solution of (LPαβ
i) is feasible.150

Proof. The proof is based on the observation that the constraint matrix of (LPαβ
i) is a 0 − 1 matrix. We151

can reorder the constraints in a certain manner, so that matrix has the consecutive 1’s property on each152

column and turns to be totally unimodular. It follows that yα,βi and ǫ
α,β
i are 0− 1 in any extreme solution.153

154

The above theorem represents a first step in the process of converting the mixed integer problem (MIPCi)155

into a linear programming one.156

4.2 Shortest path157

In the previous section we have introduced a linear programming problem associated to a specific regeneration158

interval. In this section, we resort to well known results on lot sizing to come up with a shortest path model159

which links together the linear programming problems of all possible regeneration intervals. Actually, it must160

be noted that the solution of (13) -(15) can be expressed as a unique regeneration interval [0, N] or as a list161

of regeneration intervals.162

So, let us define variables z
αβ
i ∈ {0, 1} which tell us one or zero whenever a regeneration interval [α, β]163

appears or not in the solution of (13) -(15). The linear programming problem solving (13) -(15) takes on the164

form below. For τ = 0, . . . , N − 1, solve165

7

(LPi) min
y
αβ

i
,u

αβ

i
,z

αβ

i

N−1
∑

α=τ+1

N−1
∑

β=α

β
∑

k=α

[

(

Ceki + fk
i

)

y
αβ
i (k) +

β
∑

k=α

(

rαβeki + fk
i

)

ǫ
αβ
i (k)

]

(24)

N
∑

β=τ+1

z
τ+1β
i = 1 (25)

t−1
∑

α=τ+1

z
α,t−1

i −

N
∑

β=t

z
tβ
i = 0 t = τ + 2, . . . , N, τ + 1 ≤ α ≤ β ≤ N (26)

β
∑

k=α

y
αβ
i (k) +

β
∑

k=α

ǫ
αβ
i (k) =

⌈

d
αβ
i

C

⌉

z
αβ
i , τ + 1 ≤ α ≤ β ≤ N (27)

t
∑

k=α

y
αβ
i (k) +

t
∑

k=α

ǫ
αβ
i (k) ≥

⌈

dαti
C

⌉

z
αβ
i , t = α, . . . , β − 1, τ + 1 ≤ α ≤ β ≤ N (28)

β
∑

k=α

y
αβ
i (k) =

⌈

d
αβ
i − r

αβ
i

C

⌉

z
αβ
i τ + 1 ≤ α ≤ β ≤ N (29)

t
∑

k=α

y
αβ
i (k) ≥

⌈

dαti − rαti

C

⌉

z
αβ
i , t = α, . . . , β − 1, τ + 1 ≤ α ≤ β ≤ N (30)

y
αβ
i (k), ǫαβi (k), zαβi ≥ 0, k = α, . . . , β. (31)

Let us spend a couple of words on the meaning of the above linear program. Constraints (27)-(31) should166

be familiar to the reader as they already appeared in (19)-(23). The only difference is that, now, because of167

the presence of zαβi in the right hand term, the constraints referring to a given regeneration interval come168

into play only if that interval is chosen as part of the solution, that is, whenever z
αβ
i is set equal to one.169

Furthermore, a new class of constraints appear in (25)-(26). These constraints are typical of shortest path170

problems and in this specific case help us to force the variables z
αβ
i (k) to describe a path from 0 to N .171

Finally, note that for τ = 0, the linear program (LPi) coincide with the linear program presented by Pochet172

and Wolsey in [8].173

At this point, we are in a position to recall the crucial result established in [8].174

Theorem 2 (Pochet and Wolsey, 1993) The linear program (LPi) solves (MIPCi).175

Proof. (Sketch) It turns out that the linear program (LPi) is a shortest path problem on variables zα,βi . Arcs176

are all associated to a different regeneration interval [α, β] and the respective costs are the optimal values of177

the objective functions of the corresponding linear programs (LPα,β
i). We refer the reader to [8] for further178

details.179

4.3 Receding horizon implementation of (LPi)180

This section is dedicated to certain issues concerned with the implementation of (LPi) in a receding horizon
context as typical of predictive control. As the reader may know, in predictive control we solve (LPi)
iteratively and forward in time all over the horizon. In the formulation of (LPi), this is stated clearly when

8

we specify that τ goes from 0 to N − 1 and for each value of τ we obtain a new linear program of type (LPi).
After we solve (LPi) for τ = 0, we apply the first control to the system, update initial states according to
the last available measurements at time τ = 1 and move to solve a new (LPi) starting at τ = 1. We repeat
this procedure until the end of the horizon, τ = N − 1. So, consecutive linear programs are linked together
by initial state condition expressed in (14), and which we rewrite below

xi(τ) = ξ0i .

At this point, we would restate with emphasis the fact that dealing with non null initial states is a main181

difference between the linear program (LPi) and the linear program used in the lot sizing literature [8]. To182

counter this little issue, we need to elaborate more on how to compute the accumulated demand in (16).183

Actually, take for [τ, t] any interval with x(τ) = ξ0i > s0. Then, condition (16) needs to be revised as184

dτti = max

{

t
∑

k=τ

d̃i(k)− ξ0i , 0

}

. (32)

The rational behind the above formula has an immediate interpretation in the lot sizing context. Actually,185

the effective demand over an interval is the accumulated demand reduced by the inventory stored and initially186

available at the warehouse. From a computational standpoint, the revised formula (32) has a different effect187

depending on the cases where the accumulated demand exceeds the initial state or not as discussed next.188

1.
∑β

k=α d̃i(k) ≥ ξ0i : the mixed linear program (MPCi) with initial state x(τ) = ξ0i > 0 and accumulated189

demand
∑β

k=α d̃i(k) is turned into an (LPi) characterized by null initial state x(α−1) = 0 and effective190

demand d
αβ
i =

∑β

k=α d̃i(k)− ξ0i as in the example below:191

(MPCi)

β
∑

k=α

d̃i(k) = 12, x(τ) = ξ0i = 10 =⇒ (LPi) x(α− 1) = 0, d
αβ
i = 2;

2.
∑β

k=α d̃i(k) < ξ0i : the mixed linear program (MPCi) with initial state x(τ) = ξ0i > 0 and accumulated192

demand
∑β

k=α d̃i(k) is unfeasible. The solution obtained at previous period τ − 1 applies. A second193

example is shown next:194

(MPCi)

β
∑

k=α

d̃i(k) = 7, x(τ) = ξ0i = 10 =⇒ (LPi) unfeasible.

In both cases, the revised formula (32) helps us to generalize the linear program (LPi) to cases where195

the initial state is non null and this is a crucial point when applying the lot sizing model in a receding196

horizon form.197

5 Numerical example198

In this specific example, dynamics (1) takes on the form expressed below. Such a dynamics is particularly199

significative as it reproduces the typical influence between position and velocity in a sampled second-order200

system. Initial and final states are null and state values must remain in the positive quadrant all over the201

horizon. More specifically, denoting by x1 the position and x2(k) an opposite in sign velocity, the dynamics202

appears as:203

[

x1(k + 1)
x2(k + 1)

]

=

[

1 −κ

κ 1

] [

x1(k)
x2(k)

]

−

[

w1(k)
w2(k)

]

+

[

u1(k)
u2(k)

]

≥ 0,

[

x1(0)
x2(0)

]

=

[

x1(N)
x2(N)

]

= 0. (33)

A closer look at the first equation reveals that a greater velocity x2(k) reflects into a faster decrease of position204

x1(k + 1). Similarly, the second equation tells us that a greater position x1(k) induces a faster increase of205

9

velocity x2(k+1) because of some elastic reaction. In both equations, the non negative disturbances wi(k) ≤ 0206

seek to push the states xi(k) out of the positive quadrant in accordance to Assumption 3. Their effect is207

counterbalanced by positive control actions ui. Notice that matrix A can be decomposed as described208

in Assumption 2. Also, acting on parameter κ we can easily guarantee the “weakly coupling” condition209

expressed in Assumption 3.210

Turning to the capacity constraints (2), for this two-dimensional example, these constraints can be rewrit-
ten as:

0 ≤

[

u1(k)
u2(k)

]

≤ C

[

y1(k)
y2(k)

]

,

[

y1(k)
y2(k)

]

∈ {0, 1}2.

It is left to comment on the objective function (4). We consider the case where fixed costs are much more
relevant than proportional and holding ones. This materializes in choosing a high value for fk in comparison
to values of parameters pk, hk as shown in the next linear objective function:

J(u, y) =

N−1
∑

k=0

(1nu(k) + 1nx(k) + 100ny(k)) .

This choice makes sense for two reasons. First, all the work is centered around issues deriving from the211

integer nature of y(k). So, high values of fk emphasize the role of integer variables in the objective function.212

Second, high fixed costs incentivate solutions with the fewest number of control actions and this facilitate213

the validation and interpretation of the simulated results.214

The next step is to decompose dynamics (33) in scalar lot sizing form (14) which we rewrite below:

xi(k + 1) = xi(k)− d̃i(k) + ui(k).

When it comes to the discussion on how to compute the estimated demand d̃i, a natural choice is to set d̃i as215

below, where we have denoted by x̃1(k) (respectively x̃2(k)) the estimated value of state x1(k) (respectively216

x2(k)) available to agent 2 (agent 1):217

[

d̃1(k)

d̃2(k)

]

=

[

0 κ

−κ 0

] [

x̃1(k)
x̃2(k)

]

+

[

w1(k)
w2(k)

]

. (34)

Now, the question is: which expression should we use to represent the set of admissible state vectors Xk
218

appearing in equation (12)? This question has much to do with another one: how does agent 1 predict x̃2219

and the same for agent 2 with respect to state x̃1? A possible answer is shown next:220

[

x̃1(k + 1)
x̃2(k + 1)

]

=

[

x̃1(k)
x̃2(k)

]

+

[

0
κx̄1

]

−

[

0
w2(k)

]

+

[

0
C

]

,

[

x̃1(0)
x̃2(0)

]

=

[

x1(0)
x̃2(0)

]

. (35)

Let us elaborate more on the above equations. Regarding to variable x̃2(k), this is used in the evolution of221

d̃1(k) as in the first equation of (34). Because of the positive contribution of the term κx̃2(k) on d̃1(k), a222

conservative approach would suggest to take for x̃2(k) a possible upper bound of x2(k) and this is exactly223

the spirit behind the evolution of x̃2(k) as expressed in the second equation of (35). Here, x̄1 is an average224

value for x1. A similar reasoning applies to x̃1(k), used in the evolution of d̃2(k) as in the second equation of225

(34). We now observe a negative contribution of the term −κx̃1(k) on d̃2(k) and therefore take for x̃1(k) a226

possible lower bound of x1(k) as shown in the first equation of (35).227

We can now move to show and comment our simulated results. We have carried out two different set228

of experiments whose parameters are displayed in Table 1. In the line of the weakly coupling assumption229

(see Assumption 3), we have set κ small enough and in the range equal from 0.01 to 0.225. Such a range230

works good as we will see that |κxi| is always less than wi, which also means ∆x(k) + Ew(k) < 0. For sake231

of simplicity and without loss of generality, capacity C is set to three, disturbances wi are unitary and x̄1232

is equal to one. Unitary disturbances facilitate the check out and interpretation of the results as when the233

accumulated demand over the horizon turns to be very close to the horizon length. The two experiments234

differ also in the horizon length N for the reasons clarified next.235

10

N κ C w1(k) w2(k) x̄1

I 1 . . . 10 0.1 3 1 1 1
II 6 {0.01, 0.2, 0.225} 3 1 1 1

Table 1: Simulation parameters chosen for the two experiments.

The first set of experiments aims at analysing the computational benefits of decomposition and relaxation236

upon which our solution method is based. So, we consider horizon lenghts N from one to ten. We do not need237

to consider larger values of N as even in this small range of values, differences in the computational times238

are already evident enough as clearly illustrated in Fig. 1. Here, we plot the average computational time vs.239

the horizon length N of the mixed integer predictive control problem (solid diamonds), of the decomposed240

problem (MIPCi) (dashed squares), and of the linear program (LPi). Average computational time means241

the average time for one agent to make a single decision (the total time is about 2N times the average one).242

As the reader may notice, the computational time of the linear program (LPi) is a fraction either of the one243

requested by the (MPC) or of the one required by the (MIPCi).244

(Figure 1 about here)245

In a second set of simulations, we have inspected how the percentage error

ǫ% =
optimal cost of (MPCi)− optimal cost of (MPC)

optimal cost of (MPC)
%

varies with different values of the elastic coefficient κ. The role of κ is crucial as we recall that κ describes the246

effective tightness and coupling between different states x1(k) and x2(k). We do expect that small values for247

coefficient κ, which means weak coupling of state components, may lead to small errors ǫ%. Differently, high248

values of κ, describing a strong coupling between state components, are supposed to induce higher values of249

ǫ%.250

This is in line with what we can observe in Fig. 3 where we plot the error ǫ% as function of coefficient κ.251

For a relatively small values of κ in the range from 0 to 0.2, we observe a percentage error not exceeding the252

one percent, ǫ% ≤ 1. A discountinuity at around κ = 0.2 causes the error ǫ% to go from about 1% to 20%.253

(Figure 2 about here)254

We might not be surprised as discountinuity of errors is typical in mixed integer programs and we try to255

clarify this in more details in the plot of Fig. 4. Here, for a horizon length N = 6 and for a relatively high256

value of κ = 0.225, we display the exact solution (dashed squares) and approximate solution (solid triangles)257

returned by the mixed integer linear program (MIPC) and by the linear program (LPi) respectively. The258

solution is in terms of the time plot of states xi(k), continuous controls ui(k) and discrete controls yi(k).259

Dotted lines represent predicted trajectories in earlier periods of the receding horizon implementation. At a260

first check, and this is in accordance with what we do expect, we note that controls ui(k) never exceed the261

capacity and are always associated to unitary control actions yi(k). Now, with a look at the behaviour of262

discrete controls y1(k), it can be observed that the approximate solution presents four control actions (four263

peaks at one), whereas the exact solution has control y1(k) acting on the system only three times (three264

peaks at one). One peak out of four represents an increase in the use of control actions of about 25 percent265

which reflects into an approximate increase in the percentage error of 20%. A last observation concerning266

the exact plot of yi(k) is that the number of control actions are as minimal as possible, i.e., three for y1(k)267

and two for y2(k). This makes sense as the accumulated demand over the horizon approximates by above the268

horizon length. This implies that the minimum number of control actions can be roughly obtained dividing269

the accumulated demand (about something above six) by the capacity C (equal to three) and rounding the270

fractional result up to the next integer.271

11

(Figure 3 about here)272

Let us move to compare exact and approximate solutions for a smaller value of κ = 0.2. With reference273

to Fig. 4, we observe that, differently from above, discrete controls yi(k) coincide. However, we still have274

notable differences in the plot of continuous controls u1(k) which cause distinct state trajectories for x1(k).275

Small differences can be noted for u2(k) and x2(k) as well. The observed differences still cause a reduced276

percentage error ǫ% = 1.277

(Figure 4 about here)278

We conclude our simulations by showing that the percentage error ǫ% is around zero when we reduce further279

the value of κ to 0.01. This is evident if we look at Fig. 5, where plots of different styles overlap which means280

that exact and approximate solutions coincide.281

(Figure 5 about here)282

References283

[1] D. Axehill, L. Vandenberghe, and A. Hansson, “Relaxations applicable to mixed integer predictive284

control Comparisons and efficient computations”, in Proc. of the 46th IEEE Conference on Decision285

and Control, New Orleans, USA, pp. 4103–4109, 2007.286

[2] D. Bauso, “Boolean-controlled systems via receding horizon and linear programing”, Mathematics of287

Control, Signals, and Systems (MCSS), vol. 21, no. 1, 2009, pp. 6991.288

[3] M. S. Branicky, V. S. Borkar and S. K. Mitter, “A Unified Framework for Hybrid Control: Model and289

Optimal Control Theory”, IEEE Trans. on Automatic Control, vol. 43, no. 1, 1998, pp. 31–45.290

[4] P. R. De Waal and J. H. Van Schuppen, “A class of team problems with discrete action spaces: optimality291

conditions based on multimodularity”, SIAM Journal on Control and Optimization, vol. 38, pp. 875–892,292

2000.293

[5] G.C. Goodwin and D.E. Quevedo, “Finite alphabet control and estimation”, International Journal of294

Control, Automation, and Systems, vol. 1, no. 4, pp. 412–430, 2003.295

[6] J. Hespanha, D. Liberzon, A. Teel, “Lyapunov Characterizations of Input-to-State Stability for Impulsive296

Systems”, Automatica, vol. 44, no. 11, 2008, pp. 2735–2744.297

[7] G. L. Nemhauser, and L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons Ltd,298

New York, 1988.299

[8] Y. Pochet, and L. A. Wolsey, “Lot Sizing with constant batches: Formulations and valid inequalities”,300

Mathematics of Operations Research, vol. 18, no. 4, pp. 767–785, 1993.301

[9] D. C. Tarraf, A. Megretski and M. A. Dahleh, “A Framework for Robust Stability of Systems Over302

Finite Alphabets”, IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1133– 1146, June 2008.303

12

0 5 10 15 20
10

−2

10
−1

10
0

10
1

10
2

N

se
c

Figure 1: Average computational time vs. horizon length N of the mixed integer predictive control problem
(solid diamonds), of the decomposed problem (MIPCi) (dashed squares), and of the linear program (LPi).

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

elastic coefficient

pe
rc

en
ta

ge
 e

rr
or

Figure 2: Percentage error ǫ% for different values of the elastic coefficient k.

13

0 2 4 6
0

1

2

3

x 1(k
)

k
0 2 4 6

0

1

2

3

x 2(k
)

k

0 2 4 6
0

1

2

3

u 1(k
)

k
0 2 4 6

0

1

2

3

u 2(k
)

k

0 2 4 6
0

1

2

3

y 1(k
)

k
0 2 4 6

0

1

2

3

y 1(k
)

k

Figure 3: Elastic coefficient κ = 0.225. Exact solution (dashed squares) and approximate solution (solid
triangles) returned by the mixed integer linear program (MIPC) and by the linear program (LPi) respectively.
Horizon length N = 6. Time plot of states xi(k), continuous controls ui(k) and discrete controls yi(k).

0 2 4 6
0

1

2

3

x 1(k
)

k
0 2 4 6

0

1

2

3

x 2(k
)

k

0 2 4 6
0

1

2

3

u 1(k
)

k
0 2 4 6

0

1

2

3

u 2(k
)

k

0 2 4 6
0

1

2

3

y 1(k
)

k
0 2 4 6

0

1

2

3

y 1(k
)

k

Figure 4: Elastic coefficient κ = 0.20. Exact solution (dashed squares) and approximate solution (solid
triangles) returned by the mixed integer linear program (MIPC) and by the linear program (LPi) respectively.
Horizon length N = 6. Time plot of states xi(k), continuous controls ui(k) and discrete controls yi(k).

14

0 2 4 6
0

1

2

3

x 1(k
)

k
0 2 4 6

0

1

2

3
x 2(k

)

k

0 2 4 6
0

1

2

3

u 1(k
)

k
0 2 4 6

0

1

2

3

u 2(k
)

k

0 2 4 6
0

1

2

3

y 1(k
)

k
0 2 4 6

0

1

2

3

y 1(k
)

k

Figure 5: Elastic coefficient κ = 0.001. Exact solution (dashed squares) and approximate solution (solid
triangles) returned by the mixed integer linear program (MIPC) and by the linear program (LPi) respectively.
Horizon length N = 6. Time plot of states xi(k), continuous controls ui(k) and discrete controls yi(k).

15

	1 Introduction
	2 Mixed integer predictive control
	2.1 Mixed integer linear program and exact solution.
	2.2 Introducing some structure on A

	3 Robust decomposition
	4 Shortest path and linear programming
	4.1 Regeneration interval [,]
	4.2 Shortest path
	4.3 Receding horizon implementation of (LPi)

	5 Numerical example

