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Onrobustness anddynamics in (un)balanced coalitional

games ⋆
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aDICGIM, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy

bDepartment of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

In this paper we investigate robustness and dynamics for coalitional games with transferable utilities (TU games). In particular
we study sequences of TU games. These sequences model dynamic situations in which the values of coalitions of players are not
known beforehand, and are subject to changes over time. An allocation rule assigns a payoff to each player in each time period.
This payoff is bounded by external restrictions, for example due to contractual agreements. Our main questions are: (i) under
which conditions do the allocations converge to a core-element of the game, and (ii) when do the allocations converge to some
specific allocation, the so-called nominal allocation? The main contribution of this paper is a design method for allocation
rules that return solutions in the core or ε-core of the game under delayed information on the coalitions’ values, and therefore
the resulting allocation rule is called robust.

Key words: cooperative TU games, dynamics, robustness, core.

1 Introduction

In this paper, we study sequences of TU games in which
the values of coalitions at future times are not known
beforehand, and are subject to changes over time [1,9].
Such games may arise in a number of real life situations
as, for instance, in joint replenishment applications [3],
or communication networks [10]. In these games, an al-
location rule assigns a payoff to each player in each time
period. This payoff is bounded by external restrictions
for example, due to contractual agreements or budget
limitations.

In spirit with “approachability theory” [4,9] and “regret-
based” minimization [5,7] we pose two main questions:
(i) under which conditions do the allocations converge to
a core-element of the game, and (ii) when do the alloca-
tions converge to some specific allocation, the so-called
nominal allocation? The main contribution of this paper
is a constructive way to design allocation rules for se-
quences of TU games that guarantee the convergence of
the allocations to the core, or the ε-core, of the average
game. Our designmethod also works in case the game de-
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signer has delayed information on the coalitional values,
that is, he does not know the current values of coalitions.
Then the payoffs are based on the cumulative excesses
of the coalitions, which depend on the former coalitional
values. The allocation rule has to be robust to be able
to deal with the uncertain values of the coalitions.

Our approach is different from the one in [11,12] as there
the values of coalitions are modeled by random variables,
whose distributions are known to the players. Also, these
games are static, whereas our model is dynamic since it
considers values of coalitions that vary exogenously over
time (cf. [6,8]).

In this paper, we extend the dynamic system theoretic
framework of [3] such that it can handle external bounds
on the allocations, and we also deal with unbalanced
games. Our results show necessary and sufficient condi-
tions for allocation rules to belong to the cores of the
games, or to converge to specific nominal allocations.

This paper is organized as follows. In Section 2 we intro-
duce themodel. In Sections 3 and 4we present our results
for respectively the balanced and unbalanced games.
Section 5 illustrates our design method by a numerical
example.

Preprint submitted to Automatica 9 May 2012



2 The model

In this section we introduce our model. Let N =
{1, . . . , n} be a set of players. A coalition S is a nonempty
subset of the player setN . Let the inclusion S ⊆ N mean
that S is a coalition. Denote by m = 2n − 1 the number
of coalitions. A cooperative game is a pair < N, v >,
where v is the characteristic function that assigns the
value v(S) to coalition S. If all players cooperate, then
the value v(N) is available. An allocation vector a ∈ R

n

describes how to allocate this value over the players;
player i receives the amount ai. Such an allocation is
fair if it belongs to the core C(v) of the game:

C(v) = {a ∈ R
n :

∑

i∈N

ai = v(N);
∑

i∈S

ai ≥ v(S), S ⊆ N}.

An allocation in the core distributes the value v(N) over
all the players in such a way that any coalition receives
at least as much as it can obtain on its own. A related
concept is the so-called ǫ-core [9]. The ǫ-core is the set
of all allocations such that the total amount received
by each coalition exceeds or is equal to the value of the
coalition reduced by a given tolerance ǫ:

Cǫ(v) := {a ∈ R
n :

∑

i∈N

ai = v(N);

∑

i∈S

ai ≥ v(S)− ǫ, S ⊆ N}.

We say that a game is ǫ-balanced if and only if its ǫ-core
is nonempty.

Let v(t) = [v(t, S)]S⊆N be a vector of values of the coali-
tions at time t, and let V be a bounded polyhedron. The
sequence

< N,v(t) >, t = 1, 2, . . . with v(t) ∈ V for all t, (1)

is a sequence of cooperative games, one for each time
period. Let v̄ be the vector of average coalitions’ values,

v̄ = lim
T−→∞

1

T

T∑

t=1

v(t). (2)

Notice that the coalitions’ values vary according to some
exogenous random process.

Let eS ∈ R
n be the characteristic vector for coalition S

with eSi = 1 if i ∈ S, and eSi = 0 if i /∈ S. Let B ∈ R
m×n

be the matrix whose rows are the characteristic vectors
eS , for all coalitions S. Let I be the (m−1)-dimensional

identity matrix. Define the matrix A ∈ R
m×(n+m−1) by

A =






B

∣
∣
∣
∣
∣
∣
∣
∣

−I

−−−−

0 . . . 0






. (3)

Denote the column vector of nonnegative surplus vari-
ables by s = [s1, . . . , sm−1]

′ ≥ 0, where ζ ′ is the trans-
posed of a given vector ζ. Let

U(v) =
{
u ∈ R

n+m−1 : Au = v, s ≥ 0
}

(4)

be the set of “augmented” allocation vectors u :=
[
a
s

]
∈

R
n+m−1. Now, if < N, v > is a balanced game then

finding an allocation a in the core C(v) is equivalent to
finding an augmented allocation vector u in U(v).

Allocations to players are made at an integer rate 1/Θ,
Θ < 1, whereas the rate of change of the coalitional
values equals one by default. Hence, we obtain a new
sequence,

v(k) = v(t)Θ, k = t−1
Θ + 1, t−1

Θ + 2, . . . , t
Θ ,

t = 1, 2, . . . .
(5)

Let VΘ = Θ · V and v̄ = Θv̄. Then the sequence of
games (1)-(2) corresponds one to one with the sequence
of games

< N, v(k) >, k = 1, 2, . . . with v(k) ∈ VΘ for each k

v̄ = limT−→∞
1
T

∑T

k=1 v(k).
(6)

In the remainder of this paper, we always refer to this
latter sequence of so-called instantaneous games.

We assume that the augmented allocation vector u is
bounded by the polyhedron

U := {u : umin ≤ u ≤ umax}

with umin =
[
amin

0

]
and amin ∈ R

n, amin ≤ 0.

The instantaneous games with the above additional
bounds on allocations provide a stylized model of any
situation where the allocations are subject to budget
limitations, or contracts or binding agreements between
the game designer and the players.

Define x(k + 1) ∈ R
m as the state variable of the sys-

tem at stage k + 1, with x(1) the excess at time 1 (take
x(1) = 0 for sake of simplicity). This vector of variables
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describes the cumulative excesses of the coalitions over
the games v(1), . . . , v(k),

x(k + 1) = x(k) +Au(k)− v(k),

v(k) ∈ VΘ, u(k) ∈ U , k = 1, 2, . . . .
(7)

Here wewrite u(k) =
[
a(k)
s(k)

]
, a(k) = [ai(k)]i∈N with ai(k)

the revenue allocated to player i, and s(k) = [sS(k)]S⊂N .
Note that we can interpret u(k) as the control variable as
it reflects the revenues that the game designer chooses to
allocate to the players at stage k. If at stage k the game
designer knows x(k) and v(k− 1), so the information on
the game values is delayed by one period, then she will
design allocation rules that depend on the state x(k).

3 Balanced games

We start by analysing allocation rules for balanced
games. The lemma below provides necessary and suffi-
cient conditions for sequences of games to be balanced
in terms of the sets VΘ and U .

Lemma 1 All the games in the sequence (6) are balanced
if and only if

VΘ ⊆ AU . (8)

Then there exists an augmented allocation rule u(k) that
depends on v(k) such that

a(k) ∈ C(v(k)), ∀k. (9)

PROOF. From the definitions it follows that balanced-
ness is equivalent to (8). Next, we prove (9).

(Sufficiency) If (8) is true, then there exists a vector
u(k) ∈ {u ∈ U : Au = v(k)} ⊆ U(v(k)) such that u(k)
depends on v(k). Thus a(k) ∈ C(v(k)) by (4).

(Necessity) If (8) is false, i.e., VΘ 6⊆ AU , then there exists
a vertex v(r) of VΘ such that Au 6= v(r) for all u ∈ U ;
U ∩U(v(r)) = ∅. At each time k where v(k) = v(r) there
exists no a(k) ∈ C(v(k)); the core C(v(k)) is empty. 2

We consider situations where the game designer knows
x(k) and v(k − 1) at time k; there is a one-period delay
in the information of the game values. Given a function
f(k), denote by f̄ the long term average of a given func-

tion f(k), i.e., f̄ = limk−→∞
1
k

∑k

j=1 f(j) and f̄k the

average up to time k. The game < N, v̄k > is called the
average game (up to time k).

If v(k) is not known at time k then the core C(v(k))
is also not known, and its elements cannot be used for
allocations. In this case, allocations outside the core may

be approximately close to the core of the average game
according to a certain tolerance ǫ. Average games and
ǫ-balancedness are related as follows.

Theorem 2 Take ǫ = maxv∈VΘ ‖v‖, the infinity norm
of the vector v, and consider a tolerance ǫ(k) := ǫ

k
. As-

sume 0 ∈ VΘ. There exists a time k̃ such that all average
games < N, v̄k > are ǫ(k)-balanced for all k ≥ k̃ if and
only if

VΘ ⊆ int{AU}. (10)

Furthermore, there exists an allocation rule u(k) as a
function of x(k) such that

āk ∈ Cǫ(k)(v̄
k), ∀k ≥ k̃. (11)

PROOF.

(Sufficiency) Assume first that k̃ exists (we prove its
existence below), and take for it the first time instant

where −x(k̃) ∈ VΘ. We show that −x(k̃ + 1) ∈ VΘ for

some u(k̃) ∈ U . By (10), there exists an allocation rule

u(k̃) ∈ U such that Au(k̃) = −x(k̃). Then x(k̃ + 1) =

−v(k̃) by (7) and also −x(k̃ + 1) ∈ VΘ. We can repeat

the same argument inductively for k̃+2 and so on. This
proves that −x(k) ∈ VΘ for all k ≥ k̃.

Now, we prove the existence of k̃. Consider any time
instant k such that −x(k) 6∈ VΘ. Define a new variable
w(k) = x(k − 1) + Au(k − 1) so that w(k) − x(k) =
v(k − 1) ∈ VΘ. Now, choose u(k) := u1(k) + u2(k) ∈ U
with u1(k) satisfying

Au1(k) = w(k)− x(k) = v(k − 1) ∈ VΘ.

Using the above equality, the dynamics for w(k) turn
out to be

w(k + 1) = x(k) +Au(k)

= x(k) +Au1(k) +Au2(k)

=w(k) +Au2(k).

Now select u2(k) such that the norm of w(k+1) is min-
imized, i.e.,

u2(k) = argmin
u∈U

‖w(k) +Au‖. (12)

If u2 is chosen such that Au2 is in the opposite direction
of w, then the formulation of w(k + 1) implies that the
norm of w is reduced. By (10) and 0 ∈ VΘ we have
0 ∈ int{AU}, and so

‖w(k + 1)‖ − ‖w(k)‖ ≤ β < 0
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for some β, until ‖w(k̃)‖ = 0 for a large enough k̃. This in
turn implies that −x(k), whose dynamics can be rewrit-
ten as −x(k) = −w(k)+v(k−1), is ultimately bounded
in VΘ.

Hence we have shown that there exists a time k̃ such that
−x(k) ∈ VΘ, and ‖x(k)‖ ≤ ǫ as well, for all k ≥ k̃. Now,
using ǫ(k) = ǫ/k, the latter inequality implies −ǫ(k) ≤
∑

i∈S āki − s̄kS − v̄kS ≤ ǫ(k) for all S ⊂ N . Therefore
∑

i∈S āki ≥ v̄kS + s̄kS − ǫ(k) ≥ v̄kS − ǫ(k). This proves that

the average games < N, v̄k > are ǫ(k)-balanced for all

k ≥ k̃ and also that (11) holds.

(Necessity) Assume that (10) is false. Then there cer-
tainly exists a vertex v(r) of the polytopic set VΘ such
that either there does not exist u1(k) ∈ U for which
Au1(k) = v(r) or, if it exists, it is such that Au1(k) ∈
∂AU . In the first case we necessarily have u2(k) = 0,
while in the second case (12) shows that u2(k) belongs to
the null space of A, i.e., Au2(k) = 0. Thus if v(k) = v(r)

for all k > 0 then we cannot keep x(k) in VΘ for any k
large enough. Then the average game < N, v̄k > is not
ǫ(k)-balanced for some k > 0, and condition (11) is not
true. 2

Under certain conditions we can design augmented al-
location rules such that averaging the allocations over
the long run results in a desired value, called the nomi-
nal allocation. Let anom ∈ R

N
+ be an a priori given allo-

cation vector, referred to as the nominal allocation. Let
Ext{VΘ} = {1, 2, . . . , b} be the set of indices of all ver-
tices of VΘ. Denote by v(r), r ∈ Ext{VΘ}, a vertex of
the polytopic set VΘ. Assume that v̄ = vnom, the vector
of known nominal coalitions’ values. Consider a matrix
D ∈ R

(n+m−1)×m subject to the conditions:

AD = I ∈ R
m×m, and (13)

umin ≤ D(v(r) − vnom) + unom ≤ umax, (14)

r ∈ Ext{VΘ},

where unom =
[
anom

snom

]
∈ U is such that Aunom = vnom.

We investigate under which conditions

ā = anom. (15)

Theorem 3 Assume that condition (10) is satisfied, and
the average coalitions’ values v̄ are equal to a fixed vnom ∈
VΘ. Furthermore, consider unom =

[
anom

snom

]
∈ U such that

Aunom = vnom. There exists an allocation rule u(k), as
a function of x(k), such that (11) with ǫ = maxv∈VΘ ‖v‖
and (15) hold if and only if there exists a matrix D ∈
R

(n+m−1)×m that satisfies (13) and (15).

PROOF. (Sufficiency) AssumeD satisfies (13) and (15).
Using a standard property of linear algebra, we can find

matrices C ∈ R
(n−1)×(n+m−1) and F ∈ R

(n+m−1)×(n−1)

such that

[

A

C

]
[

D F
]

= I, (16)

with I the (n+m− 1)-dimensional identity matrix. Us-
ing C and y(k) ∈ R

n−1 we construct the augmented dy-
namic system

x(k + 1) = x(k) +Au(k)− v(k)

y(k + 1) = y(k) + Cu(k).
(17)

Also, we use matrix F to define a new variable z(k) ∈
R

n+m−1 as expressed below:

z(k) =
[

D F
]

[

x(k)

y(k)

]

⇔

[

x(k)

y(k)

]

=

[

A

C

]

z(k).

Using (16) and (17), this variable evolves according to
the following dynamic equation:

z(k + 1) =
[

D F
]

[

x(k + 1)

y(k + 1)

]

= z(k) + u(k)−Dv(k). (18)

It is useful to write the above dynamics componentwise.
Then

zi(k + 1) = zi(k) + ui(k)−Div(k), (19)

whereDi is the ith row ofD and ui,min ≤ ui(k) ≤ ui,max.
A possible allocation rule is

ui(k) =







ui,min if zi(k) > −ui,min

ui,max if zi(k) < −ui,max

−zi(k) if −ui,max ≤ zi(k) ≤ −ui,min

. (20)

First, we show that there exists a time k̃ such that
−ui,max ≤ zi(k̃) ≤ −ui,min. Consider zi(k) < −ui,max.
Using (20) in the dynamics (19) and again because of
(15), we obtain zi(k+1)− zi(k) = ui,max −Div(k) > 0.

This holds until−ui,max ≤ zi(k̃) for k̃ large enough. Fur-
ther, the proof for zi(k) > −ui,min is along similar lines.

Next, take without loss of generality unom = vnom = 0.
Because of (15), note that the dynamics (19) and (20)

imply −ui,max ≤ zi(k̃ + 1) = −Div(k̃) ≤ −ui,min.
Repeating the same argument forward in time re-
sults in −ui,max ≤ zi(k + 1) = −Div(k) ≤ −ui,min

for all k ≥ k̃. This proves that for k̃ large enough
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‖z(k)‖ ≤ maxτ≥k̃ ‖Dv(τ)‖ for all k ≥ k̃. This con-

dition also implies that ‖x(k)‖ ≤ maxk≥k̃ ‖Az(k)‖ ≤

maxv∈VΘ ‖ADv‖ = maxv∈VΘ ‖v‖ = maxj=1,...,b ‖v
(j)‖ =

ǫ for all k ≥ k̃, which proves condition (11).

To prove (15), we use (18) to obtain 1
T

∑T

k=1 u(k) −
1
T

∑T

k=1 Dv(k) = (z(T + 1) − z(1))/T . This converges
to 0 as T → ∞, since the numerator is a finite quantity
whereas the denominator tends to infinity. Therefore,
ū = Dv̄, and so ā = anom.

(Necessity) We show that if (13) and (15) do not hold
then (11) does not hold as well. Actually, if (13) and
(15) are not true then invoking results in [2] Section 3
there exists no allocation rule u(k) such that (9) and
(15) hold. This implies that (8) and therefore (10) are
not verified. Invoking Theorem 2, we also have that (11)
does not hold. This concludes our proof. 2

4 Unbalanced games

In this section, we consider allocation rules for sequences
of games that are, in general, not balanced. This is the
case, for instance, when condition (8) in Lemma 1 does
not hold.

Assumption 1 The following condition is satisfied:

VΘ 6⊆ AU . (21)

We also assume that the expected coalitions’ values are
not correlated with the state, and coincide at each time
with the long term average. This is reasonable since the
coalitions’ values are independent of the past allocations
and, differently from [6,8], vary according to some ex-
ogenous random process.

Assumption 2 The vector of coalitions’ values v(k)
satisfies E[v(k)] = v̄ and E[x(k)′v(k)] = 0.

We translate the origin of the u and v spaces without
loss of generality.

Assumption 3 For ease of calculations set unom =
vnom = 0 and assume that v̄ = vnom = 0 ∈ int{AU}.

Define the distance between a point x ∈ R
n and a set

S in R
n as d(x, S) = miny∈S ‖x − y‖, and define the

function V (x) = xTx/2. Our main result on unbalanced
games is stated below.

Theorem 4 Under Assumptions 2 and 3, there exists an
allocation rule u(k) such that d(āk, C(v̄k)) → 0, for k →
∞ with probability one. Furthermore, such an allocation

rule satisfies (15). A possible augmented allocation rule
is

u(k) = argmin
u∈U

V (x(k) +Au). (22)

PROOF. The first part of the theorem, which establishes
d(āk, C(v̄k)) → 0 for k → ∞, is proved if we show that
x(k) tends to zero with probability one. Let u(k) be
defined as in (22), and recall that 0 ∈ int{AU}. For
x 6= 0 the new variable w(k) = x(k − 1) + Au(k − 1)
satisfies the condition

V (w(k+1)) = V (x(k)+Au(k)) ≤ V (x(k)+A0) = V (x(k))

by definition of u(k), and because 0 ∈ U . Further, w(k+
1) = x(k) + Au(k) = x(k + 1) + v(k) by definition of
w(k) and (7). This implies x(k + 1) = w(k + 1)− v(k).
Applying the triangle inequality results in

V (x(k+1)) ≤ V (w(k+1))+V (v(k)) ≤ V (x(k))+V (v(k)).

If we take expectations we obtain E(V (x(k + 1))) ≤
E(V (x(k)))+E(V (v(k))).Recall that limΘ→0 E(V (v(k))) =
0 as v(k) ∈ VΘ and VΘ = ΘV. Then, taking the limit we
have limΘ→0 E(V (x(k + 1))) ≤ limΘ→0(E(V (x(k))) +
E(V (v(k)))) = limΘ→0 E(V (x(k))). This last inequal-
ity implies that x(k) tends to zero with probability one
(and x(k) is said to be stochastically stable).

The proposed rule does imply stochastic stability but it
does not necessarily satisfy (15). To enforce (15) we use
(19) which we rewrite as zi(k+1) = zi(k)+ui(k)−δi(k),
where δi(k) = Div(k), and Di is the ith row of any
matrix D satisfying (13) but not necessarily (15). Note
that E[δi] = DiE[v(k)] = 0. If we consider the function
V (zi(k)) = zi(k)

2/2, and slightly modify (22) to

ui(k) = arg min
ui,min≤µ≤ui,max

V (zi(k) + µ),

then we see that E(V (zi(k + 1))) ≤ E(V (zi(k))) +
E(V (δi(k))). Taking limits results in limΘ→0 E(V (zi(k+
1))) ≤ limΘ→0 E(V (zi(k))) + lim

Θ→0
E(V (δi(k)))

︸ ︷︷ ︸

=0

≤

limΘ→0 E(V (zi(k))) which means that the zi(k) sub-
system is stable with probability one. Then, 1

T
[zi(T ) −

zi(0)] → 0, which implies 1
T

∑T

k=1 [ui(k) − δi(k)] → 0
with probability one. This proves (15). 2

5 Numerical example.

Consider three players and the following coalitions’
values (c.f. multi retailer system in [3]): v({1}) = 0,
v({2}) = 0, v({3}) = 0, v({1, 2}) ∈ [0, 5], v({1, 3}) ∈
[0, 5], v({2, 3}) ∈ [0, 7], v(N) = 12. Let the nominal
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coalitions’ values and the nominal average allocation
vector be

vnom = [0, 0, 0, 2, 3, 4, 12]T , unom = [4, 5, 3, 4, 5, 3, 7, 4, 4]T .

Note that Aunom = vnom. We translate the origin of the
u-v space to unom-vnom. First, we calculate D by using
the linear program in [2, Section 5.2]. Then we compute
matrices C and F that square B and D, as described in
the proof of Theorem 3, using the method explained in
detail in the appendix of [3]. For the maximum sample
time we get Θ∗ > 0.1 and choose Θ = 0.1.

In a first set of simulations, we consider the bounding
polyhedron U := {u ∈ R

9 : −10−1 · unom ≤ u ≤ 10−1 ·
5 · 1)} where 1 is the 9-dimensional vector of ones. Note
that after translation of the origin to (unom, vnom) the
surplus variables may take negative values. Condition
(10) holds and the resulting games in the sequence are
balanced. To see why (10) is true note that

VΘ = 10−1·

{v ∈ R
7 : v({1}) = v({2}) = v({3}) = v(N) = 0,

v({1, 2}) ∈ [−2, 3], v({1, 3}) ∈ [−3, 2], v({2, 3}) ∈ [−4, 3]}.

Also observe that there exists an augmented allocation
vector of type û = 10−1 · [0, 0, 0, 0, 0, 0,×,×,×]T that
satisfies v = Aû ∈ int{AU} for any v ∈ VΘ. The symbols
× refer to the surplus values of coalitions {1, 2}, {1, 3},
and {2, 3} that turn out to belong to intervals [−0.3, 0.2]
[−0.2, 0.3] and [−0.3, 0.4] whichever v ∈ VΘ and as such
the condition û ∈ U holds.

Now, we implement the dynamic allocation rule (20)
to simulate the evolution of the system as displayed in
Figure 1, left. In the simulation, coalition {1, 2} takes
on values from the repeated deterministic sequence
[−2, 3,−2, 3,−2, 3,−2, 3,−2,−2]. Likewise for coali-
tion {1, 3} and sequence [−3, 2,−3, 2,−3, 2,−3, 2, 2, 2]
and coalition {2, 3} and sequence [−4, 3,−4, 3,−4, 3, 3].
Note that after translation of the origin to vnom we must
have v̄ = 0 and therefore we need to consider sequences
with zero mean.

Fig. 1 top left, illustrates the time plot of x(.). The vari-
able is ǫ-stabilized with ǫ < 0.4 in accordance to (11).
Fig. 1 bottom left shows the time plot of ūk − unom,
where ūk is the average of u(k) up to time k. All plots
tend to zero which means that the average ūk tends to
unom.

In a second set of simulations, we consider the bounding
polyhedron U := {u ∈ R

9 : −10−1 ·unom ≤ u ≤ 10−1 ·2 ·
1}. Condition (10) no longer holds (the bounds in U are
too tight) and the resulting games in the sequence are
not balanced. Fig. 1 top right displays the time plot of
x(.). Peaks illustrate that the variable is not ǫ-stabilized

Fig. 1. Time plot of x(k) (top) and ū
k
− unom (bottom) for

the balanced case (left) and unbalanced case (right).

with ǫ < 0.4, in accordance with the results in Section
4. Finally, Fig. 1 bottom right shows the time plot of
ūk − unom, where ūk is the average of u(k) up to time
k. All plots tend to zero which means that the average
ū(k) tends to unom.
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