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ABSTRACT

This paper considers a large number of homogeneous “small

worlds” or games. Each small world involves a set of players

and a corresponding set of possible coalitions, and is mod-

eled as a dynamic game with transferable utilities (TU), where

the characteristic function is a continuous-time stochastic pro-

cess. Considering that a dynamic TU game can be modeled

as a network control problem, the overall system appears as

an assembly of a large number of networks subject to mean-

field interactions. As a result of such mean-field interactions

among small worlds, in each game, a central planner allo-

cates revenues based on the extra reward that a coalition has

received up to the current time and the extra reward that the

same coalition has received in the other games. We obtain

allocation rules that make the grand coalition stable in each

game, while guaranteeing consensus on the excesses, in the

spirit of inequity aversion. Convergences of allocations and

excesses are established via stochastic stability theory.

Index Terms— mean-field games; consensus; multiagent

systems; network flow.

1. INTRODUCTION

In this paper we consider infinite copies of a coalitional

game with transferable utilities (TU game). For each game,

a central planner allocates revenues in order to stabilize the

grand coalition, which occurs when the total amount given

to the member of any sub-coalition exceeds the value of the

sub-coalition itself (see the notion of “core” in [10]). In a

continuous-time repeated game, the excess of a coalition is

the cumulative discrepancy between the total amount given

to the coalition and the value of the coalition up to the cur-

rent time. The coalition’s values are unknown but bounded,

thus the excesses evolve according to controlled uncertain

stochastic differential equations. The objective of the planner
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is to align the excesses with the average value computed over

infinite copies of the same game. Such a phenomenon is

known as crowd-seeking behavior in mean-field games.

Main result. For the problem at hand, we provide a mean-

field game formulation and conduct a heuristic robust con-

trol design based on augmentation and regularization of the

state space [6]. The mean-field game involves a macroscopic

description based on a classical forward Kolmogorov partial

differential equation which generates the distribution of the

excesses over the horizon.

Related literature. The theory on mean-field games origi-

nated in the work of M.Y. Huang, P. E. Caines and R. Mal-

hamé [7, 8] and independently in that of J. M. Lasry and P.L.

Lions [9], where the now standard terminology of Mean Field

Game (MFG) was introduced. The problem we analyze in

this paper follows in spirit the study on robust dynamical TU

coalitional games in [5] with the additional mean-field inter-

actions between infinite copies of the same game, which was

not present in [5]. Explicit solutions in terms of mean-field

equilibria are not common unless the problem has a linear-

quadratic structure, see [1]. This justifies our solution ap-

proach which approximates the original problem by an aug-

mented linear quadratic one.

The rest of the paper is organized as follows. In Section 2,

we illustrate the problem and introduce the model. In Sec-

tion 3, we present the mean-field game. In Section 4, we il-

lustrate the solution approach. Finally, in Section 5, we draw

some conclusions and discuss future works.

Notation. Given a set N = {1, . . . , n} of players and a func-

tion η : S 7→ R defined for each nonempty coalition S ⊆ N ,

we write < N, η > to denote the transferable utility (TU)

game with players’ set N and characteristic function η. We

let ηS be the value η(S) of the characteristic function η asso-

ciated with a nonempty coalition S ⊆ N . Given a TU game

< N, η >, we use C(η) to denote the core of the game:

C(η) =
{

x ∈ R
n
∣
∣
∣
∑

i∈N xi = ηN ,
∑

i∈S xi ≥ ηS

for all nonempty S ⊂ N
}

.

Also, R+ denotes the set of nonnegative real numbers. Given

a random vector ξ, the notation E[ξ] denotes its expected

value. Given a Brownian motion (with drift) B(t), we denote
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by dB(t) its infinitesimal increment, i.e., B(t) =
∫ t

0
dB(τ),

the latter being the Itō integral. We use B̄(t) = B(t)
t

to indi-

cate the average infinitesimal up to time t. If a(t) is the deriva-

tive of an almost everywhere differentiable function, the sym-

bol ã(t) denotes the function itself, i.e., ã(t) =
∫ t

0
a(τ)dτ .

We also use ā(t) = ã(t)
t

to indicate the average up to time t.

2. TU GAMES AS NETWORKS

Consider infinite copies of an n-palyer robust dynamical TU

game < N, η(t) >, where the characteristic function η(t) is a

diffusion process with drift, whose evolution is described by

the stochastic differential equation:
{

dη(t) = w(t)dt+ σdB(t), in R
q,

η(0) = η0,
(1)

where q = 2n−1 is the number of coalitions. For each game,

let a corresponding hypergraph H be given with vertex set V
and edge set E as:

H := {V,E}, V = {v1, . . . ,vq}, E := {e1, . . . , en}.

The vertex set V has one vertex per coalition whereas the edge

set E has one edge per player. A generic edge i is incident on

1 212

123

313 23

Fig. 1. Infinite copies of hypergraph H := {V,E} for a 3-

player coalitional game.

a vertex vj if the player i is in the coalition associated with vj .

Thus, incidence relations can described by a matrix B whose

rows are the characteristic vectors cS ∈ R
n. We recall that the

components of a characteristic vector are cSi = 1 if i ∈ S and

cSi = 0 if i /∈ S. Figure 1 depicts an example of hypergraph

for a 3-player coalitional game on every single grey node. In

the same spirit as in [5], we view allocation ui(t) as the flow

on edge ei and the coalition value wS(t) of a generic coalition

S as the demand in the corresponding vertex vj . In view of

this, allocation in the core of the game C(η(t)) translates into

over-satisfying the demand at the vertices. Specifically,

ũ(t) ∈ C(η(t)) ⇔ BHũ(t) ≥ η(t), (2)

with the last inequality satisfied as an equality due to the effi-

ciency condition of the core, i.e,
∑n

i=1 ũi(t) = ηq(t), where

ηq(t) denotes the qth component of η(t) and is equal to the

grand coalition value ηN (t). Let x(t) ∈ R
q represent the

coalition excess, whose time evolution is given by:

{
dx(t) = (Bu(t)− w(t))dt− σdB(t),
x(0) = x0.

(3)

We assume that the control and the disturbance are bounded

within polytopes, i.e.,

• u(t) is in the control set U ⊆ R
p, p > 0,

• w(t) is in the disturbance set W ⊆ R
q , q > 0.

Given infinite copies of the same game, we can consider

a probability density function m : Rq × [0,+∞[→ [0,+∞[,
(x, t) 7→ m(x, t), which satisfies

∫

Rq m(x, t)dx = 1 for every

time t. Let us also define the mean distribution at time t as

m̄(t) :=
∫

Rq xm(x, t)dx.

In each game, the designer follows the so-called crowd-

seeking law in that it adjusts the current allocation based on

the average distribution of the other games.

Then, for each game, consider a running cost g : Rq ×
R

q → [0,+∞[, (x, m̄) 7→ g(x, m̄) of the quadratic form:

g(x, m̄) =
1

2

[

(m̄− x)
T
Q (m̄− x)

]

, (4)

where Q > 0 , that is positive definite.

Also consider a terminal cost Ψ : Rq × R
q → [0,+∞[,

(x, m̄) 7→ Ψ(x, m̄) of the form

Ψ(x, m̄) =
1

2
(m̄− x)TS(m̄− x), (5)

where S > 0. The problem in its generic form is then the

following:

Problem 1 Find the closed-loop optimal control and worst-

case disturbance for the problem:







infu(·)∈U supw(·)∈W

{

J(x0, u(·), w(·),m(·))

= E

[ ∫ T

0
g(x(t), m̄(t))dt+Ψ(x(T ), m̄(T ))

]}

,

dx(t) = (BHu(t)− w(t))dt− σdB(t),

(6)

where U and W are the sets of all measurable functions u(·)
and w(·) from [0,+∞[ to U and W , respectively, and m(·) as

a time-dependent function is the evolution of the distribution

under the optimal control and the worst-case disturbance.

3. THE MEAN FIELD GAME

Let us denote by v(x, t) the (upper) value of the robust opti-

mization problem under worst-case disturbance starting from

time t at state x (which in this case also turns out to be the

529



lower value, and hence the value, since Isaacs condition [2]

holds–see below). Problem 1 results in the following mean-

field game system for the unknown functions v(x, t), and

m(x, t):






∂tv(x, t) + inf
u∈U

sup
w∈W

{

(Bu− w)T∂xv(x, t)

+g(x, m̄, u, w)
}

+ σ2

2 Tr
(

∂2
xxv(x, t)

)

= 0

in R
q × [0, T [,

v(x, T ) = Ψ(x, m̄) ∀ x ∈ R
q,

∂tm(x, t) + div(m(x, t) · (Bu− w))

−σ2

2 Tr(∂2
xxm(x, t)) = 0, in R

q × [0, T [,
m(0) = m0,
d
dt
m̄t = Bū∗

t − w̄∗
t , in [0, T [,

(7)

where u∗(t, x) and w∗(t, x) are the optimal time-varying

state-feedback controls and disturbances, respectively, ob-

tained as






u∗(t, x) ∈ argminu∈U{(Bu− w∗)∂xv(x, t)
+g(x, m̄)},

w∗(t, x) ∈ argmaxw∈W {(Bu− w)∂xv(x, t)
+g(x, m̄)}.

(8)

Note that the minimization and maximization problems above

are completely decoupled, and hence in (7) the inf sup is the

same as sup inf (that is, Isaacs condition holds [2]), and fur-

thermore inf and sup can be replaced by min and max, re-

spectively, because of optimization of linear functions over

closed and bounded finite-dimensional sets.

The first equation in (7) is the HJBI equation with variable

v(x, t). Given the boundary condition on final state (second

equation in (7)), and assuming a given population behavior

captured by m(·), the HJBI equation is solved backwards and

returns the value function and best-response behavior of the

individuals (first equation in (8)) as well as the worst adver-

sarial response (second equation in (8)). The HJBI equation

is coupled with a second PDE, known as the Fokker-Planck-

Kolmogorov (FPK) equation (third equation in (7)), defined

on variable m(·). Given the boundary condition on initial dis-

tribution m(0) = m0 (fourth equation in (7)), and assuming a

given individual behavior described by u∗, the FPK equation

is solved forward and returns the population behavior time

evolution m(t). The last equation in (7) is obtained by aver-

aging the left and right hand side of the dynamics (3). Any

solution of the above system of equations along with (8) is

referred to as worst-disturbance feedback mean-field equilib-

rium.

4. AUGMENTATION AND REGULARIZATION

This section illustrates a simple heuristic approach toward

solving the set of equations (7)), based on state space aug-

mentation and regularization [6]. The augmented state space

includes the mean distribution, thus the augmented state vari-

ables evolve according to the equations

[
dx(t)
dm̄(t)

]

=
(

B

[
u∗(x, t)
ū∗(t)

]

−

[
w∗(x, t)
w̄∗(t)

])

dt+

[
σdBt

0

]

.
(9)

For this system we introduce an assumption on the rate of

convergence of the state m̄(t).

Assumption 1 There exists a scalar θ > 0 such that

d

dt
m̄(t) = Bū∗(t)− w̄∗(t) ≥ −θm̄t, for all t ∈ [0, T ] ,

where the inequality is to be interpreted component-wise.

The above assumption implies that there exists a variable

m̃(t) which approximates the average mean value from below

and evolves according to

{
d
dt
m̃(t) = −θm̃(t), for all t ∈ [0, T ],

m̃0 = m̄0.
(10)

By substituting the current mean value m̄t by its estimate m̃t

the augmented problem is

inf
u(·)∈U

sup
w(·)∈W

∫ T

0

1

2

[

(m̃(t)− x(t))
T
Q (m̃(t)− x(t))

]

dt

[
dx(t)
dm̃(t)

]

=
([

0 0
0 −θI

] [
x(t)
m̃(t)

]

+

[
B
0

]

u(t)

−

[
I
0

]

w(t)
)

dt+

[
σdB(t)

0

]

.

Reformulating the problem in terms of the augmented state

X(t) =

[
x(t)
m̃(t)

]

,

and regularizing the solution via quadratic penalty terms on

control and disturbance, we have the linear quadratic prob-

lem:

inf
u(·)∈U

sup
w(·)∈W

∫ T

0

[1

2
(X(t)T Q̃X(t) + uT (t)Ru(t)

−wT (t)Γw(t))
]

dt+ Ψ̃(X(T ))

dX(t) =
(

FX(t) +Gu(t) +Hw(t)
)

dt+ LdBt,

where

Q̃ =

[
Q −Q

−Q Q

]

, L =

[
σI
0

]

,

F =

[
0 0
0 −θI

]

, G =

[
B
0

]

, H =

[
−I
0

]

,
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R > 0, Γ > 0, and Ψ̃(X) := Ψ(x, m̃).
The idea is therefore to consider a new value function

Vt(x, m̃) (in compact form Vt(X)) in the augmented state

space which satisfies







∂tVt(X) +H(X, ∂XVt(X))
+ 1

2σ
2Tr∂2

xxVt(X) = 0, in R
2q × [0, T [,

VT (X) = Ψ̃(X) in R
2q,

where H(X, ∂XVt(X)) is the robust Hamiltonian [4]:

H(X, ∂XVt(X)) = 1
2 XT Q̃X + ∂XVt(X)FX

− 1
2 ∂XVt(X)[GR−1GT −HΓ−1HT ](∂XVt(X))T .

This PDE admits the unique solution given by

Vt(X) =
1

2
X(t)T

[
P11(t) P12(t)
P12(t)

T P22(t)

]

︸ ︷︷ ︸

P (t)

X(t) +
1

2
p(t),

where the symmetric matrix P (t) satisfies (is the unique

nonnegative-definite solution of) the generalized (game) Ric-

cati differential equation

Ṗ (t) + P (t)F + FTP (t)

−P (t)(GR−1GT −HΓ−1HT )P (t) + Q̃ = 0 ,

P (T ) =

[
S −S

−S S

]

,

(11)

and p(·) is solved from

ṗ(t) + σ2 TrP (t) , p(T ) = 0 .

Given upper and lower bounds, u+
i and u−

i respectively,

let us introduce the sat function as in [3]:

sat[u−

i
,u

+

i
]{ξ}

.
=







u−

i if ξ < u−

i

u+
i if ξ > u+

i

ξ if u−

i ≤ ξ ≤ u+
i

.

Then a sub-optimal control is given by

ũ(t) = sat
{

−R−1GTP (t)X(t)
}

= sat
{

−R−1BT (P11(t)x(t) + P12(t)m̄(t))
}

,

and the worst-case disturbance can be approximated by

w̃(t) = sat
{

Γ−1HTPX(t)
}

= sat
{

− Γ−1(P11(t)x(t) + P12(t)m̄(t))
}

.

The underlying idea of the approximation above is to consider

the solution of the soft-constrained linear quadratic problem

when the hard constraints are not active, while saturate ev-

ery single component as soon as it reaches its upper or lower

bound.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have provided a mean-field game formulation of infinite

copies of “small worlds” each one described as a TU coali-

tional game. The problem has connections to recent research

on robust dynamic coalitional TU games [5] and robust mean-

field games [4, 6]. A quantitative analysis of the approxima-

tion error of the solution presented is left as future work.
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