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Approximate solutions for crowd-averse robust mean-field games

D. Bauso and T. Mylvaganam and A. Astolfi

Abstract— We consider a population of dynamic agents
(players). The state of each player evolves according
to a linear stochastic differential equation driven by a
Brownian motion and under the influence of a control
and an adversarial disturbance. Every player minimizes
a cost functional which involves quadratic terms on
state and control plus a cross-coupling mean-field term
measuring the congestion resulting from the collective
behavior, which motivates the term “crowd-averse”. For
this game we first illustrate the paradigm of robust
mean-field games. Second, we provide a new approximate
solution approach based on the extension of the state
space and prove the existence of equilibria and their
stability properties. Third, we provide a bound for
the approximation introduced by the solution method.
Simulations illustrating the approximate solution are
presented.

I. INTRODUCTION

We illustrate the robust mean-field game approach

on a population of dynamic agents that wish to regulate

their state to zero. Each agent’s state evolves according

to a linear stochastic differential equation (SDE) driven

by a Brownian motion and under the influence of a

control and an adversarial disturbance. The control

minimizes a cost functional which involves quadratic

terms on state and control plus a cross-coupling mean-

field term involving the control of the single player and

the average control computed over all players. Such a

term allows the redistribution of the control load away

from peak “hours” thus reducing congestion, from

which the term “crowd-averse”. Indeed every player

pays a cost from controlling its own system when

the population as a whole has a high average control.
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Based on the provided mean-field game formulation

we analyze both the microscopic evolution of each

player and the macroscopic evolution of the system

as a whole.

Highlights of contributions. We highlight three main

contributions. First, we establish a robust mean-field

system for the considered game under adversarial

disturbances. Second, we provide a new approximate

solution approach based on the extension of the state

space in the same spirit as [14], [15]. The method

allows to prove the existence of equilibria and their

stability properties. Third, we provide a bound for the

approximation introduced by the solution method.

Related literature on mean-field games. Mean-field

games were formulated by Lasry and Lions in [10]

and independently by M.Y. Huang, P. E. Caines and R.

Malhamé in [7], [8]. The mean-field theory of dynam-

ical games is a modeling framework at the interface

of differential game theory, mathematical physics, and

H∞-optimal control that tries to capture the mutual

influence between a crowd and its individuals. Mean-

field games arise in several application domains such

as economics, physics, biology, and network engineer-

ing (see [1], [5], [6], [8], [9], [13], [17]).

From a mathematical point of view the mean-field

approach leads to a system of two partial differential

equations (PDEs). The first PDE is the Hamilton-

Jacobi-Bellman equation. The second PDE is the

Fokker-Planck equation which describes the density

of the players [10], [16]. Explicit solutions in terms

of mean-field equilibria are not common unless the

problem has a linear-quadratic structure, see [3]. In this

sense, a variety of solution schemes has been recently

proposed based on discretization and/or numerical ap-

proximations [1]. More recently, robustness and risk-

sensitivity have been brought into the picture of mean-

field games [4], [16], where the first PDE is now the

Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation.

The paper is organized as follows. In Section II

we formulate the problem. In Section III we provide

some motivations. In Section IV we derive the mean-

field game. In Section V we introduce the approximate

solution approach and study equilibria and stability

properties. In Section VI we carry out some numer-

ical studies. Finally in Section VII we provide some

conclusions.

Notation We denote by (Ω,F ,P) a complete probabil-
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ity space. We let B be a finite-dimensional Brownian

motion defined on this probability space. Let F =
(Ft)t≥0 be its natural filtration augmented by all the

P−null sets (sets of measure-zero with respect to P).

We use ∂x and ∂2xx to denote the first and second

partial derivatives with respect to x, respectively.

II. PROBLEM SET-UP

Consider a game with an infinite number of homo-

geneous players. For each player let x0 be its initial

state, which is realized according to the probability

distribution m0. The state of the player at time t,
denoted by xt ∈ R, evolves according to a controlled

stochastic process over a finite horizon T > 0, i.e.

dxt = [αxt + βut]dt+ σ [xtdBt + ζtdt] , (1)

where ut ∈ R is the control input, Bt ∈ R is a

Brownian motion, which is independent of the initial

state x0, and independent across players and time. The

constants α ∈ R, β ∈ R and σ ∈ R are parameters,

and ζt ∈ R is an adversarial disturbance.

To introduce a macroscopic description of the game

consider probability density functions on the state and

control spaces:
{
m : R× [0,+∞[→ [0,+∞[, (x, t) 7→ m(x, t)
∫

R
m(x, t)dx = 1 for every t,

and
{
z : R× [0,+∞[→ [0,+∞[, (u, t) 7→ z(u, t),
∫

R
z(u, t)du = 1 for every t.

Define now the average state and control distributions

at time t as






m̄t :=
∫

R
xm(x, t)dx,

zt :=
∫

R
uz(u, t)du.

Finally we introduce a cost functional with penalty

on the final state g(·), stage cost function c(·), and

quadratic penalty on the unknown disturbance:

J(x0, u,m, ζ) = E

(

g(xT )

+
∫ T

0
c(xt, ut, z̄t)dt− γ2

∫ T

0
|ζt|

2dt
)

.
(2)

Players wish to stabilize their state to zero, and there-

fore we can select the stage cost

c(xt, ut, z̄t, ζt) =
h

2
z̄tu

2
t +

[
a

2
x2t +

b

2
u2t

]

,

with h ≥ 0. The term h
2 z̄tu

2
t represents a cross-term

coupling the control of each player and the average

control of the population; a2x
2
t , with a > 0, is the cost

of a non-zero state, and b
2u

2
t , with b > 0, accounts for

a penalty on the control energy. The penalty on the

final state g(xT ) is, in general, convex with minimum

in zero, thus penalizing non-zero states at the end of

the horizon.

Note that the mean of the state is generated by

d

dt
m̄t = αm̄t + βz̄t + σζ̄t.

Considering deterministic disturbance ζt, and using

indistinguishability, we find that the mean of the

average control evolves according to:

z̄t =
1

β

(
d

dt
m̄t

)

−
α

β
(m̄t)−

σ

β
ζ̄t.

A relation between d
dt
m̄t and m̄t is yet to be intro-

duced. However, we will see later that both d
dt
m̄t and

ζ̄t can be approximated by linear functions in m̄t and

therefore we can rewrite

z̄t = k̂m̄t, (3)

for some k̂ ∈ R. The above preamble leads to the

following robust mean-field game problem.

Problem 1: (Robust mean-field problem) Let B
be a one-dimensional Brownian motion defined on

(Ω,F ,P), where F is the natural filtration generated

by B. Let x0 be independent of B and with density

m0(x). Let m∗
t be the optimal mean-field trajectory.

The robust mean-field problem in R and (0, T ] is given

by
{

inf
{ut}t

sup
{ζt}t

J(x, u,m∗, ζ)

dxt = [αxt + βut + σζt] dt + σxtdBt.

III. MOTIVATIONS

We provide three different interpretations of the

problem. The first is an example of inventory control.

The second is the description of a congestion control

problem in networked controlled systems or power

grids. Finally the third is an example from economics

and describes an oil production applications.

Example 1: (Inventory control with shared set-

up costs [13]) In multi-retailer inventory control

equation (1) describes the evolution of the inventory

over time. The control is the reordered quantity and

the disturbance is the unknown market demand. A

classical scenario is where the transportation cost is

shared among all retailers who reorder at a given

time instant, called active retailers. Then a certain

level of coordination of the retailers’ replenishment

strategies may lead to individual costs reduction. Thus

the cross mean-field term in the objective function

(2) accounts for the reduced cost when orders are

placed jointly. The other two terms are usually the

costs of reordering and shortage or the holding costs

on inventory. Clearly, we can generalize the framework

to any application where multiple players share a ser-

vice facility as airport facilities or telephone systems,
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drilling for oil, cooperative farming, and fishing (see

also the references on cost-sharing games in [13]).

Example 2: (Dynamic demand management in

power grids [2], [12]) Players are electrical appli-

ances, say for instance heating or cooling appliances,

and their state is their temperature at a given time.

Each single appliance can be in one of the two states

ON or OFF. The dynamics (1) describe the time

evolution of the temperature of each appliance. Each

single controller is given a cost function that accounts

for i) the energy consumption, which is captured by

the penalty on the control, ii) the deviation of the

mains frequency from the nominal value, represented

by the cross-term, and iii) the deviation of the agent’s

temperature from the reference value, described by the

penalty on the state. With respect to goal ii), the cross

mean-field term incentivizes the appliances to switch

OFF if the mains frequency is below the nominal value

and to switch ON if the mains frequency is above the

nominal value.

Example 3: (Oil production [4], [6]) Suppose we

have a finite number of oil producers, and let the

state be the stock of raw material available at a given

time. Let the control be the produced oil quantity by

a single producer and the adversarial disturbance be a

cautious disturbance parameter reflecting the taxation

or inflation on the produced quantity. Equation (1) is

widely used in stock market models as it describes

the variation of the reserve at time t given the current

reserve and the consumed resource quantity. The term

σtζt is intended to capture the negative and uncertain

influence of taxation, or inflation, on the production.

The cost functional, k̂m̄t is the sale’s price of oil and

the cross-term is related to the income collected from

producing and selling the quantity ut;
a
2 (xt)

2 accounts

for a production energy consumed, a > 0 and bu2t is a

known linear taxation on production. The penalty on

the final state g(xT ) can be assumed quadratic in the

reserve, so that unexploited reserve at the end of the

horizon is penalized.

IV. THE RESULTING MEAN-FIELD GAMES

Let vt(x) be the (upper) value of the robust opti-

mization problem under worst-case disturbance start-

ing at time t from state x. Let the corresponding

Hamiltonian be given by

H(x, p,m) = inf
u

{c(x, u,m) + p(αx+ βu)} ,

where p is the co-state. Then the mean-field system

associated to the robust mean-field game introduced

in Problem 1 is given by






∂tvt +H(x, ∂xvt,mt) +
(
σ
2γ

)2

(∂xvt)
2

+ 1
2σ

2x2∂2xxvt = 0, in R× [0, T [,

vT (x) = g(x), in R,

m0(x) = d(x) in R,

∂tmt + ∂x (mt∂pH(x, ∂xvt,m))

+ σ2

2γ2 ∂x(mt∂xvt)−
1
2σ

2∂2xx
[
x2mt

]
= 0,

in R× [0, T [,

(4)

where d is the initial population state distribution

and g the terminal payoff. Any solution of the above

system of equations is referred to as worst-disturbance

feedback mean-field equilibrium. We are ready to

specialize the results obtained above to the case of

a crowd-averse system.

Theorem 1: The mean-field system associated to

the robust mean-field game for the crowd-averse sys-

tem is described by the equations:






∂tvt +

[

− β2

2(b+hz̄t)
+
(
σ
2γ

)2
]

(∂xvt)
2

+αxt∂xvt +
a
2x

∗2

t + 1
2σ

2x2∂2xxvt = 0,
in R× [0, T [,

vT (x) = φ|x|2, in R,

∂tmt + ∂x

[

mt

(

αxt + β−∂xvtβ
b+hz̄t

+ σ2

2γ2 ∂xvt

)]

+ σ2

2γ2 ∂x(mt∂xvt)

− 1
2σ

2∂2xx
[
x2mt

]
= 0, in R× [0, T [,

m0(x) = d(x) in R,

(5)

where d(x) is a given function. Furthermore, the

optimal control and worst disturbance are






u∗t =
−β
b+hz̄t

∂xvt,

ζ∗t = σ
2γ2 ∂xvt.

(6)

Proof: We first prove condition (6). To this end

write the Hamiltonian as:

H(xt, ∂xvt,mt) = infu

{
h
2 z̄tu

2
t +

[
a
2x

2

+ b
2u

2
t

]

+ ∂xvt(αxt + βu)
}

= 0.
(7)

Differentiating with respect to u gives

(b+ hz̄t)ut + ∂xvtβ = 0, (8)

which yields (6).

We now prove (5). First note that the second and

last equations are the boundary conditions and derive

straightforwardly from Bellman equations and the evo-

lution of the state.
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To prove the first equation, which is a PDE cor-

responding to the HJBI equation, replace u in the

Hamiltonian (7) by its expression (6), i.e.

H(xt, ∂xvt,mt) =
a

2
x∗

2

t +
b

2
u∗

2

t +
h

2
z̄tu

∗2

t

+∂xvtαxt + ∂xvtβu
∗
t

= −
β2

2(b+ hz̄t)
(∂xvt)

2 + αxt∂xvt +
a

2
x∗

2

t .

Using the above expression of the Hamiltonian in the

HJBI equation in (4), we obtain the HJBI in (5).

To prove the third equation, which is a PDE repre-

senting the FPK equation, we simply bring (6) into the

FPK equation in (4), and this concludes the proof.

The significance of the above result is that to find

the optimal control input we need to solve the two

coupled PDEs in (5) in v and m with given boundary

conditions (the second and last conditions). This is

usually done by iteratively solving the HJBI equation

for fixed m and by entering the optimal u obtained

from (6) in the FPK equation in (5), until a fixed point

in v and m is reached.

Note that since the Bellman equation depends ex-

plicitly on the mean of the mean-field and not on the

other moments, one can reduce the mean-field system

to a lower dimensional system. The reduced mean-

field system associated to the robust mean-field game

for the problem under study is






∂tvt +

[

− β2

2(b+hz̄t)
+
(
σ
2γ

)2
]

(∂xvt)
2

+αxt∂xvt +
a
2x

∗2

t + 1
2σ

2x2∂2xxvt = 0,
in R× [0, T [,

vT (x) = φ|x|2, in R,

d
dt
m̄t = αm̄t + βū∗t + σζ̄∗t , in [0, T [,

m̄0 = d̄ > 0,

(9)

where ū∗t = z̄t is the mean of the optimal individual

state feedback control.

V. MEAN-FIELD EQUILIBRIUM AND STABILITY

In this section we study the problem in the extended

state space involving both the state of the player

and the average state distribution. The main idea is

illustrated in Fig. 1. In the mean-field system (9) the

gradient ∂xvt is parametrized in the average distri-

bution m̄t, which evolves according to a nonlinear

differential equation. Then, we replace the dynamics

of m̄t with two linear dynamics on the new variables

m̂t and m̃t (dashed and dotted trajectories) that upper

and lower bound the nonlinear dynamics of m̄t (solid).

−∂xvt m̂t

m̄t

m̃t

Fig. 1. Extended state space: the gradient ∂xvt depends on m̄t,
which is upper and lower bounded by m̂t (dashed) and m̃t (dotted)
respectively.

In the extended state space, the state variable evolves

according to the equations







dxt = [αxt + βut]dt+ σ [xtdBt + ζtdt] ,

d
dt
m̄t = αm̄t + βū∗t + σζ̄∗t ,

(10)

which can be rewritten in matrix form as

[
dxt
dm̄t

]

=
(

α

[
xt
m̄t

]

+ β

[
u∗t
ū∗t

]

+σ

[
ζ∗t
ζ̄∗t

])

dt+

[
σxtdBt

0

]

.
(11)

For this system we introduce an assumption on the rate

of convergence of the state m̄t.

Assumption 1: There exists θ such that

d

dt
m̄t = αm̄t+βū

∗
t+σζ̄

∗
t ≥ −θm̄t, for all t ∈ [0, T ].

The above assumption implies that there exists a

variable m̃t which approximates the average distribu-

tion from below and that evolves according to

{
d
dt
m̃t = −θm̃t, for all t ∈ [0, T ],

m̃0 = m̄0.
(12)

By substituting the current average distribution m̄t by

its estimate m̃t the extended state dynamics takes the

form

[
dxt
dm̃t

]

=
([

α 0
0 −θ

] [
xt
m̃t

]

+

[
β
0

]

u∗t +

[
σ
0

]

ζ∗t

)

dt+

[
σxtdBt

0

]

.
(13)

Given the above dynamics we summarize the problem
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at hand as






inf
{ut}t

sup
{ζt}t

∫ T

0

[s

2
m̃tu

2
t +

q

2
m̃2
t

+
(
a
2x

2
t +

b
2u

2
t − γ2ζ2t

)]

dt
[
dxt
dm̃t

]

=
([

α 0
0 −θ

] [
xt
m̃t

]

+

[
β
0

]

u∗t

+

[
σ
0

]

ζ∗t

)

dt+

[
σxtdBt

0

]

,

where s = 2hk̂ by equation (3). Reformulating the

problem in terms of the extended state

Xt =

[
xt
m̃t

]

,

yields the linear quadratic problem:







inf
{ũt}t

sup
{ζt}t

∫ T

0

[
1

2
(XT

t Q̃Xt +Rũ2t − Γ)ζ2t

]

dt

dXt =
(

ÃXt +Bũt + Cζt

)

dt+ CxtdBt,

where

Q̃ =

[
a 0
0 q

]

, R = b+ sm̃t, Γ = 2γ2,

Ã =

[
α 0
0 −θ

]

, B =

[
β
0

]

, C =

[
σ
0

]

.

The idea is therefore to consider a new value function

Vt(x, m̃) (in compact form Vt(X)) in the extended

state space which satisfies







∂tVt(X) +H(X, ∂XVt(X)) +
(
σ
2γ

)2

|∂xVt(X)|2

+ 1
2σ

2x2∂2xxVt(X) = 0, in R
2 × [0, T [,

VT (X) = g(x) in R
2.

Assume that VT (X) is given by the quadratic form

Vt(X) = [xt m̄t]

[
P11(t) P12(t)
P21(t) P22(t)

]

︸ ︷︷ ︸

P (t)

[
xt
m̄t

]

,

where the matrix P (t) is the solution of the differential

Riccati equation

Ṗ (t) + P (t)Ã+ ÃTP (t)
−2P (t)(BR−1BT − CΓ−1CT )P (t)

+Q̃/2 +W = 0,

(14)

where

BR−1BT − CΓ−1CT =

[
β2

b+sm̃ − 1
2γ2σ

2 0

0 0

]

,

W =

[
σ2P11 0

0 0

]

.

Note that in the stationary case the above differential

equation simplifies to

PÃ+ ÃTP − 2P (BR−1BT − CΓ−1CT )P

+Q̃/2 +W = 0.
(15)

Let P be the solution of the differential Riccati equa-

tion (14), then the optimal control is given by

ũt = −2R−1BTPXt

= − 2
b+sm̄t

[β 0]

[
P11(t) P12(t)
P21(t) P22(t)

] [
xt
m̄t

]

= − 2
b+sm̄t

β(P11(t)xt + P12(t)m̄t),

(16)

and the worst disturbance is

w̃t = 2Γ−1CTPXt

= 1
γ2 [σ 0]

[
P11(t) P12(t)
P21(t) P22(t)

] [
xt
m̄t

]

= 1
γ2σ(P11(t)xt + P12(t)m̄t).

(17)

We are then in the position to establish the following

result, which provides a lower bound for the value

function in (9) when σ = 0.

Theorem 2: Let σ = 0. Then Vt(X) approximates

v(x) from below, i.e.,

Vt(X) ≤ vt(x), ∀X,x, t. (18)

Furthermore, the approximation error is upper bounded

by

vt(x)− Vt(x)

≤ s
(

2β(P11+P12)
b

)2

m̄3
0

[

e−3κt − e(−θ−2κ)t
]

.
(19)

Proof: The main idea is to approximate the mean

distribution m̄t from below by m̃t and from above by

m̂t. In other words we wish the following condition

to hold:

m̃t ≤ m̄t ≤ m̂t, for all t ∈ [0, T ]. (20)

The above is true if we consider the following dynam-

ics:






d
dt
m̄t =

(

α− 2β(P11+P12)
b+sm̄t

)

m̄t,

d
dt
m̃t =

(

α− 2β(P11+P12)
b

)

m̄t := −θm̃t,

d
dt
m̂t =

(

α− 2β(P11+P12)
b+sm̂0

)

m̂t := −κm̂t,

m̄0 = m̂0 = m̃0 ,

(21)

with {

θ = −α+ 2β(P11+P12)
b

,

κ = −α+ 2β(P11+P12)
b+sm̂0

.
(22)

Then, for the approximation error we have

e(t) := vt(x)− Vt(X)

≤
∫ T

0
sũ2τ (m̄τ − m̃τ )dτ

≤
∫ T

0
sũ2τm̄0(

m̄τ

m̄0

− m̃τ

m̄0

)dτ

≤
∫ T

0
sũ2τm̄0(

m̂τ

m̄0

− m̃τ

m̄0

)dτ

(23)
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for any m̄t, m̃t, and m̂t satisfying (20). Now, from

(21)-(22), the above inequalities can be rewritten as

e(t) ≤
∫ t

0
sũ2τm̄0

[

e−κτ − e−θτ
]

dτ (24)

from which, after differentiating with respect to t and

substituting ũt by the expression in (16), we obtain

ė(t) ≤ s
(

2β(P11+P12)
b

m̃t

)2

m̄0

[

e−κτ − e−θτ
]

≤ s
(

2β(P11+P12)
b

)2

m̂2
t m̄0

[

e−κτ − e−θτ
]

≤ s
(

2β(P11+P12)
b

)2(
m̂t

m̄0

)2

m̄3
0

[

e−κτ − e−θτ
]

≤ s
(

2β(P11+P12)
b

)2

m̄3
0

[

e−3κt − e(−θ−2κ)t
]

which proves the claim.

A. Exponential asymptotic stability

In this section we show that the stochastic differen-

tial equation describing the closed-loop system has an

exponentially and asymptotically stable equilibrium.

To see this from (16)-(17) rewrite the dynamics for

xt in (10) as

dxt = [αxt + βu∗t + σζ∗t ] dt+ σxtdBt

=
[

αxt + (− 2β2

b+sm̄t

+ σ2

γ2 )(P11(t)xt + P12(t)m̄t)
]

dt

+σxtdBt t ∈ (0, T ], x0 ∈ R.

and consider the following assumption.

Assumption 2: There exists κ > 0 such that

−κxt ≥
[

α+ (− 2β2

b+sm̄t

+ σ2

γ2 )P11(t)
]

xt

+
[

(− 2β2

b+sm̄t

+ σ2

γ2 )P12(t)
]

m̄t.
(25)

With the above assumption we can perform the analy-

sis within the framework of stochastic stability theory

[11]. To this end consider the infinitesimal generator

L =
1

2
σ2x2t

d2

dx2t
− κxt

d

dxt
. (26)

Then

1

2
E

(

dx2t
d2

dx2t

)

+ E

(

dxt
d

dxt

)

=
1

2

[
E
(
κ2x2tdt

2
)
+ E

(
σ2x2tdB

2
t

)

+E (−2κxtdtσxtdBt)]
d2

dx2t

+ [E (−κxtdt) + E (σxtdBt)]
d

dxt
.

Now, recalling that for a Brownian motion EdBt = 0
and EdB2

t → 0, and ignoring the second-order terms

(in dt2) we obtain (26).

Consider the Lyapunov function V (x) = x2, then

the stochastic derivative of V (x) is obtained by apply-

ing the infinitesimal generator to V (x), which yields

LV (xt) = lim
dt→0

EV (xt+dt)− V (xt)

dt
= [σ2 − 2κ]x2t .

Proposition 5.1 ([11]): Let Assumption 2 hold. If

V (x) ≥ 0, V (0) = 0 and LV (x) ≤ −ηV (x) on Qǫ :=
{x : V (x) ≤ ǫ} for some η > 0 and for arbitrarily

large ǫ, then the origin is asymptotically stable “with

probability one”, and

Px0

{

sup
T≤t<+∞

x2t ≥ λ
}

≤
V (x0)e

−ψT

λ

for some ψ > 0.

From the above theorem we have the following result,

which establishes exponential stochastic stability of the

mean-field equilibrium.

Corollary 5.1: Let Assumption 2 hold. If [σ2 −
2κ] < 0 then lim

t→∞
xt = 0 almost surely and

Px0

{

sup
T≤t<+∞

x2t ≥ λ
}

≤
V (x0)e

−ψT

λ

for some ψ > 0.

B. Mean-field equilibrium

Let Assumption 2 hold. We can approximate the

mean-field equilibrium, which is captured by the evo-

lution of m̄t over the horizon (0, T ], as follows:

d
dt
m̄t ≤ −κm̄t, t ∈ (0, T ], m0 ∈ R× [0, T ],

which yields the upper bound for m̄t:

m̄t ≤ m̄0e
−κt, t ∈ (0, T ], x0 ∈ R.

Essentially, the inequality above describes converging

linear dynamics which upper bound the time evolution

of m̄t, for all t ∈ (0, T ]. As a result

d
dt
m̄t ≤

[

α+ (− 2β2

b+sm̄t

+ σ2

γ2 )(P11(t) + P12)
]

m̄t

t ∈ (0, T ], x0 ∈ R.

Actually, we can derive a differential equation de-

scribing the evolution of the mean distribution which

represents a bound, namely
{

m̄t ≤ m̄0e
ρt

ρ = α+ (− 2β2

b+sm̄t

+ σ2

γ2 )(P11(t) + P12).

The equation above corresponds to saying that the

mean distribution converges exponentially to zero in

absence of the stochastic disturbances (the Brownian

motion), under the assumption that ρ is strictly nega-

tive.
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α β a b θ q γ m̄0

0.1 2 2 1 10 0.1 1 80

TABLE I

SIMULATION PARAMETERS

Input: Set of parameters as in Table I.

Output: Distribution function mt, mean m̄t

and standard deviation std(mt).
1 : Initialize. Generate x0 given m̄0 and std(m0)
2 : for time t = 0, 1, . . . , T − 1 do

3 : if t > 0, then compute mt, m̄t, and std(mt)
4 : end if

5 : for player i = 1, . . . , n do

6 : Compute control ũ using current m̄t

7 : compute new state xt+1 by executing (1)

8 : end for

9 : end for

10 : STOP

Fig. 2. Simulation algorithm

VI. NUMERICAL STUDIES

In this section a system consisting of n = 103 indis-

tinguishable players, with dynamics (1), is considered.

Suppose the players seek to minimise cost functionals

of the form (2) subject to an adversary disturbance,

i.e. consider Problem 1. The optimal control and worst-

case disturbance are given by (6). However, as it is not

possible to obtain closed-form solutions for the PDEs

associated to the mean-field system, the approximate

solutions given by the control (16) and the disturbance

(17) are adopted, where the matrix

P =

[
P11(m̄) 0

0 q
4θ

]

,

with P11(m̄) =
√

(σ2 + 2α)2 + 8( β2

b+hm̄ − σ2

2γ2 ) +

σ2 + 2α, is the positive definite solution to the al-

gebraic Riccati equation (15). The numerical results

are obtained using the algorithm in Figure VI for a

discretised set of states. The parameter σ determines

the influence of the Brownian motion, Bt, and the

disturbance ζt and simulations have been run for two

different values of σ, namely σ0 = 0, σ1 = 0.1.

The selection σ = σ0 corresponds to the case in

which there is no disturbance and the dynamics (1)

is deterministic. The simulations have also been run

for two different values of s, namely s1 = 0.5 and

s2 = 1.5 Recall that large values of s correspond to

large penalties when congestion occurs. The remainder

of the parameters are as shown in Table I.

Figure 3 shows the time histories of the states of

the players with the weights s = s1 (top row) and

s = s2 (bottom row) and the paramters σ = σ0 (left

column) and σ = σ1 (right column). Figure 4 shows

the distribution, mt, of the players states at different

times for the four different selections of parameters.

The initial and final distributions are indicated by

the dashed and solid curves, respectively, whereas the

distribution at intermediate times are denoted by the

dotted curves. Figure 5 shows the time histories of

the mean, m̄t, (left) and the standard deviation (right)

for s = s1 (top) and s = s2 (bottom). The solid

curves corrspond to σ = σ1 whereas the dashed lines

correspond to σ = σ0.
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Fig. 3. Time histories of the state of each player. Top row: s = s1,
bottom row: s = s2, left column: σ = σ0, right column: σ = σ1.
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Fig. 4. The initial (dashed line), final (solid line) and intermediate
(dotted lines) distribution, mt, of the states of the players. Top row:
s = s1, bottom row: s = s2, left column: σ = σ0, right column:
σ = σ1.

Note that in all four cases the players successfully

drive their states to zero. However, for a given value of

the parameter s,the convergence fastest in the absence

of noise and disturbances, i.e. when σ = σ0. Figure
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Fig. 5. Time histories of the mean m̄t (left) and the standard
deviation (right) of the states of the players for s = s1 (left), s = s2
(right), σ = σ0 (dashed line) and σ = σ1 (solid line).

6 shows the the time histories of the control actions

(16) of the players with s = s1 (top row) and s = s2
(bottom row), and σ = σ0 (left column) and σ = σ1
(right column). For the case in which σ = σ1, it is clear

that when s = s1 is selected the players put a larger

effort at the beginning of the simulation than when

s = s2 is selected, and the same is true for σ = σ0.

Since s2 > s1, this implies that in the former case

a larger penalty is incurred when congestion occurs

and therefore one would expect the players to stall

to avoid this, resulting in the convergence to the zero

equilibrium being somewhat slower. The simulations

are consistent with this, as for a given value of σ it

takes more time for the players to drive their states

to zero when the parameter s = s2 is selected in

place of s = s1. The simulations show that the control

actions (16) solve the robust-mean field problem for

the crowd-averse system of players.
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Fig. 6. Time histories of the control actions ũ of the players. Top
row: s = s1, bottom row: s = s2, left column: σ = σ0, right
column: σ = σ1.

VII. CONCLUDING REMARKS

We have illustrated robust mean-field games as a

paradigm for crowd-averse systems. Future directions

include i) the extension of the approximation method

to more general cost functionals, ii) the study of the

case with “local” mean-field interactions rather than

“global” as in the current scenario, and iii) the analysis

of crowd-seeking scenarios in contrast to the crowd-

averse cases analyzed in this paper.
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