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Abstract

Purpose

Model fitting of DCE-MRI data with non-linear least

squares (NLLS) methods is slow and may be biased by

the choice of initial values. The aim of this study was to

develop and evaluate a linear least-squares (LLS) method

to fit the two-compartment exchange and -filtration mod-

els.

Methods

A second-order linear differential equation for the mea-

sured concentrations was derived where model parameters

act as coefficients. Simulations of normal and pathological

data were performed to determine calculation time, accu-

racy and precision under different noise levels and tempo-

ral resolutions. Performance of the LLS was evaluated by

comparison against the NLLS.

Results

The LLS method is about 200 times faster, which reduces

the calculation times for a 256×256 MR slice from 9 min

to 3 sec. For ideal data with low noise and high temporal

resolution the LLS and NLLS were equally accurate and

precise. The LLS was more accurate and precise than the

NLLS at low temporal resolution, but less accurate at high

noise levels.

Conclusion

The data show that the LLS leads to a significant reduc-

tion in calculation times, and more reliable results at low

noise levels. At higher noise levels the LLS becomes ex-

ceedingly inaccurate compared to the NLLS, but this may

be improved by using a suitable weighting strategy.

INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging

MRI (DCE-MRI) involves the serial acquisition of T1-

weighted MR images before, during, and after an intra-

venous administration of contrast agent. Tracer-kinetic

analysis of the data produces physiological parameters

such as tissue blood flow, capillary permeability, and the

volume of the extravascular, extracellular space (1).

The most common class of tracer-kinetic models are the

multi-compartment models, which are also widely used

in other modalities such as positron-emission tomography

(PET) and computed tomography (CT). Current stan-

dards in DCE-MRI are the two- or three parameter Patlak

and Tofts models (2,3), which do not produce a measure-

ment of tissue blood flow. In recent years, the increasing

availability of DCE-MRI at high temporal resolution has

promoted the use of four-parameter flow-weighted models

such as the two-compartment exchange model (2CXM) (4)

and the renal two-compartment filtration model (2CFM)

(5,6).

Non-linear least squares (NLLS) methods are the most

commonly used algorithms to fit the model to the data (7).

They require a choice of initial values which is updated it-

eratively using gradient-descent type methods, until the

difference between predicted and measured data is mini-

mal. The process is slow, and there is a risk of convergence

to local minima (8,9). If this happens the result is biased

by the initial values. A potential solution is to repeat the

fit over a grid of initial values, but this requires massive

computing capacity for pixel-based analysis (10).

An alternative is the use of linear least squares (LLS)

methods, which produce parameter estimates by solving

a linear system of equations. This is a fast computation

that is guaranteed to have a single global minimum and

does not require initial values. A classic LLS method is the

Patlak plot (3), but in 2004 Murase (11) introduced a LLS
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method for the extended Tofts model. Simulations demon-

strated that this improves calculation times significantly

without an associated cost in accuracy and precision. The

method is rapidly becoming a standard in applications of

DCE-MRI (12–15).

A LLS method for the more general 2CXM and 2CFM

has not yet been proposed in the field of DCE-MRI, but

in nuclear medicine it is well-known that such more gen-

eral models can be linearised too (9,16–20). The purpose

of this study is to develop a LLS method for the 2CXM

and 2CFM, and evaluate calculation time, accuracy and

precision using simulated data. A standard NLLS with a

single set of initial values is used as a point of comparison.

METHODS

Theory

Definitions

The 2CXM and 2CFM are depicted graphically in Fig-

ure 1. The key difference is that the flux out of the ex-

travascular space is either directed back into the plasma

space (2CXM) or directly to the outside (2CFM). Since

the physiological interpretation of the parameters is not

relevant for the purposes of the paper, the conventional

notations of the 2CFM parameters (6) are modified to

emphasize the symmetries and eliminate redundant nota-

tions.

Figure 1: Diagrams of the 2CFM (left) and 2CXM (right).

The four independent model parameters are the plasma

volume vp, the extravascular volume ve, the plasma flow

Fp and the permeability-surface area product PS. The

mean transit times of the blood (Tp), extravascular com-

partment (Te) and combined system (T ) have the same

form in both models:

Tp =
vp
Fp

, Te =
ve
PS

, T =
vp + ve
Fp

[1]

The measured tissue concentration C(t) is a weighted av-

erage of the concentrations cp(t) and ce(t) in the individual

spaces:

C = vpcp + vece [2]

The mass-balance for ce(t) is the same for both models

(writing c′e for the time-derivative of ce):

vec
′

e = PS(cp − ce) [3]

The difference between 2CXM and 2CFM lies in the mass-

balance for cp(t). Given the arterial concentration ca(t),

we have (4,6):

2CFM : vpc
′

p = Fp(ca − cp) [4]

2CXM : vpc
′

p = Fp(ca − cp) + PS(ce − cp) [5]

We assume that cp(0) = ce(0) = ca(0) = 0 which imme-

diately leads to the initial conditions

C(0) = C ′(0) = 0 [6]

Non-Linear Least Squares

The NLLS method is based on an explicit analytical solu-

tion of the models (⊗ is convolution):

C(t) = Fp

(

T − T−

T+ − T−

e−t/T+ +
T+ − T

T+ − T−

e−t/T
−

)

⊗ ca(t)

[7]

The difference between 2CXM and 2CFM lies in the rela-

tion between T± and the physiological parameters Fp, vp,

PS, ve. The formulae are most straightforward in terms

of the mean transit times (Eqs.[1]):

2CFM : T+ = Te, T− = Tp [8]

2CXM : T± =
1

2

(

T + Te ±

√

(T + Te)
2
− 4TpTe

)

[9]

The conventional NLLS method uses gradient-descent

type techniques to minimise the mean-square difference

between left- and right hand sides of Eq.[7].
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Linear Least Squares

The LLS method is based on a reduction of the two

first-order differential equations for the unmeasurable con-

centrations cp(t) and ce(t) (Eqs.[3, 4, 5]) to a single

second-order differential equation for the measurable con-

centration C(t) (Eq.[2]). The derivation follows a stan-

dard recipe that applies more generally to arbitrary N -

compartment models (17).

We will present the derivation in more detail for the

2CFM alone, as the procedure is exactly the same for

the 2CXM. First, differentiate Eq.[2] and use Eqs.[3, 4]

to eliminate c′e and c′p:

C ′ = Fp(ca − cp) + PS(cp − ce) [10]

Then repeat the same process: differentiate Eq.[10], use

Eqs.[3, 4] to eliminate c′e and c′p, and simplify the result:

C ′′ = Fpc
′

a−(Fp−PS)
Fp

vp
(ca−cp)−PS

PS

ve
(cp−ce) [11]

We have now produced 3 equations (Eqs.[2,10,11]) that

only contain two unknown functions cp(t) and ce(t). The

first two of these equations are used to solve for these

unknown functions, and the results are then inserted into

the third. Explicitly, solving Eqs.[2,10] for cp and ce leads

to:

cp =
PSC − (Fpca − C ′)ve
PSvp + (PS − Fp)ve

[12]

ce =
Fpvpca + (PS − Fp)C − vpC

′

PSvp + (PS − Fp)ve
[13]

Inserting Eqs.[12, 13] into Eq.[11] then leads to a single

second-order equation that only depends on the data C,

ca, and the unknown model parameters. The result is most

transparent when expressed in terms of the parameters Fp,

T , Tp, Te. After some simplification a very similar result

arises for 2CFM and 2CXM:

C ′′ = −αC − βC ′ + γca + Fpc
′

a [14]

The parameters (α, β, γ) are defined as:

2CFM : α =
1

TeTp
, β =

Te + Tp

TeTp
, γ =

FpT

TeTp
[15]

2CXM : α =
1

TeTp
, β =

Te + T

TeTp
, γ =

FpT

TeTp
[16]

To avoid the problems associated with numerical differen-

tiation of noisy data, Eq.[14] can be integrated twice over

time. Using the following notation for the integral:

f̄(t) =

∫ t

0

f(τ) dτ [17]

this leads to:

C(t) = −α ¯̄C(t)− β C̄(t) + γ ¯̄ca(t) + Fp c̄a(t) [18]

If the data C(t) and ca(t) are measured at N time points

t0, t1, . . . , tN−1, then Eq.[18] leads to a system of N linear

equations. They can be summarised as a matrix equation

C = AX where C = [C(t0), . . . , C(tN−1)] is an array

holding the measured concentrations, andX = [α, β, γ, Fp]

contains the unknowns. The 4 × N -element matrix A is

given explicitly by:

A =

























− ¯̄C(t0) −C̄(t0) ¯̄ca(t0) c̄a(t0)

− ¯̄C(t1) −C̄(t1) ¯̄ca(t1) c̄a(t1)

...
...

...
...

− ¯̄C(tN−1) −C̄(tN−1) ¯̄ca(tN−1) c̄a(tN−1)

























[19]

The matrix elements can be calculated via Eq.[17] by nu-

merical integration of the data C(tn) and ca(tn). The ma-

trix equation can be solved using standard methods for

linear least squares problems. Since the typical number

of time points in DCE-MRI is in the 100’s, and there are

only 4 unknowns, this presents a strongly overdetermined

system.

It remains to derive the physiological parameters T , Te,

Tp from given α, β, γ, Fp by inverting Eqs.[15,16]. For the

2CXM this is most straightforward:

T =
γ

αFp
, Te =

β

α
− T, Tp =

1

αTe
[20]

In the 2CFM, the formula for T is the same, but Te and

Tp are the solutions of a quadratic equation:

Tp =
β −

√

β2 − 4α

2α
, Te =

β +
√

β2 − 4α

2α
[21]

A second solution could be derived by reversing the roles

of Tp and Te, but in reality it is safe to assume that
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contrast agent passes faster through the microvasculature

than through the extravascular space (Tp < Te). Since α

and β are measured there is no a priori guarantee that

these solutions are real. In case they are not (β2 < 4α)

the best solution in the least squares sense is:

Tp = Te =
β

2α
[22]

The parameters vp, ve and PS can be derived from Fp, T ,

Tp, Te by inverting Eqs.[1]:

vp = FpTp, ve = Fp(T − Tp), PS =
ve
Te

[23]

Weighted Linear Least Squares (WLLS)

Eq.[18] can be generalised by multiplying both sides with

an arbitrary weighting function W (t):

WC = −αW ¯̄C − βWC̄ + γ W ¯̄ca + Fp Wc̄a [24]

With W (t) = 1 this reduces to the LLS, but a large num-

ber of possible weighting functions W (t) could be used.

To investigate the effect and potential of weighting we will

consider in this study the strategy W (t) = ca(t), i.e. we

use the signal itself for weighting the data. As the arterial

input function is strongly weighted by the first pass data,

one would expect this to improve the accuracy in the pa-

rameters Fp and Tp which are mainly determined by the

high-frequency components occuring in this time window.

Simulation setup

Simulations were used to evaluate the sensitivity of the

LLS to two important types of data error, random noise

and temporal undersampling. Simulations were performed

for the 2CFM and the 2CXM, but as results were nu-

merically very similar only 2CFM results are shown in

this paper for reasons of clarity. Simulations were writ-

ten in IDL 6.4 (Exelis VIS, Boulder, CO) conducted on

a desktop PC with a 3.4 GHz Intel Core processor and

32GB memory. All simulation code can be found online

(https://github.com/plaresmedima/Linear-2CM).

As the 2CFM is typically applied to renal data, a repre-

sentative set of five whole-kidney tissues were defined: one

representing normal kidneys with parameter values mea-

sured in healthy volunteers (6), and four pathological kid-

neys taken from a recent patient study (21). Cases were

selected by identifying the kidneys corresponding to the

10th and 90th percentiles in Te and vp. The parameters

are summarised in Table 1.

Tp (sec) Te (sec) vp ve

Normal 6.5 125 0.24 0.62

Patient 1 9.5 102 0.17 0.24

Patient 2 13.9 153 0.31 0.24

Patient 3 7.27 117 0.19 0.26

Patient 4 10.3 214 0.29 0.18

Table 1: Parameter values of the simulated data sets.

To generate an exact ground-truth C(t), one of the five

tissue types was selected at random with equal proba-

bility, and C(t) was calculated with the analytical solu-

tion (Eq.[7]). A literature-based arterial input function

ca(t) was used (22), prepadded with zeroes to create a

20s baseline. C(t) and ca(t) were created at a pseudo-

continuous temporal resolution of 10msec for times rang-

ing from t = 0s to a total of Tacq = 300s. All convolutions

in this study are calculated using a formula that is op-

timised for convolutions with an exponential factor (see

Appendix).

Measurements with a given uniform sampling interval

TR (sec) and Contrast-to-Noise Ratio (CNR) were simu-

lated. CNR is defined in this study as the ratio of peak

arterial concentration to the standard deviation (SD) of

the noise, ie. CNR = max(ca)/SD. In DCE-MRI this is a

better measure for the noise level than SNR as the analy-

sis is performed on signal changes rather than on absolute

signal values. The first time-point t0 of the measurement

was determined by selecting a random number from a uni-

form distribution on the interval [0,TR]. Then time-points

tn = t0 + nTR were added with n = 1, . . . , N − 1 and

N = ⌊Tacq/TR⌋. Downsampled C(tn) and ca(tn) were

created by interpolating linearly between the values of the

pseudo-continuous curves, and Gaussian noise was added.

The LLS matrix (Eq.[19]) was calculated by numer-

ical integration of the measured C(tn) and ca(tn) us-
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ing the trapezoidal rule. The least-squares system was

solved by inverting the 4×4 normal equations, i.e. X =

(ATA)−1ATC. The NLLS was implemented by fit-

ting the analytical solution (Eq.[7]) using the Levenberg-

Marquardt algorithm with the function MPFIT (23). Con-

volutions were calculated with the iterative formula in the

Appendix. Partial derivatives with respect to the model

parameters were calculated numerically and default values

were used for the termination tolerance (10−3) and max-

imum number of iterations (200). No constraints were

placed on any of the parameters, and fixed initial values

were used. They were taken at approximately half the ex-

act values in normal tissue to avoid a bias with respect

to a particular tissue type (Tp = 3s, Te = 60s, vp = 0.1,

ve = 0.3).

For each reconstruction Pi of a parameter P = Fp, PS,

Tp, Te, the error Ei(P ) was determined as a percentage of

the exact value:

Ei(P ) = 100 ∗
Pi − P

P
[25]

The goodness-of-fit was quantified in a similar way as the

relative distance between the fitted concentrations Cfit
i (tn)

and measured concentrations Cmsr
i (tn):

Ei(C) = 100 ∗
‖Cfit

i − Cmsr
i ‖2

‖Cmsr
i ‖2

[26]

Simulations for given TR and CNR were repeated 10,000

times to determine the distribution of results. The median

relative error E50 was recorded as a measure of the system-

atic error, and the 90% confidence interval CI = E95 −E5

as a measure of the random error.

The performance of the LLS or WLLS was quantified

via two figures of merit (FoM), one for the accuracy and

one for the precision:

FoM (Accuracy) = |E50(NLLS)| − |E50(LLS)| [27]

FoM (Precision) = CI(NLLS)− CI(LLS) [28]

A positive (negative) FoM means that the LLS improves

(reduces) the accuracy or precision. Numerically, a FoM

of 1% implies that LLS reduces the systematic or random

error by 1% of the exact parameter value. FoM’s were

determined explicitly for 3 different protocols:

• Protocol 1 (CNR=50 and TR=1.25s) models single-

voxel data at high temporal resolution (and thus high

noise levels).

• Protocol 2 (CNR=10000 and TR=12.5s) models ROI

data at low temporal resolution (and thus low noise

levels).

• Protocol 3 (CNR=10000 and TR=1.25s) models ideal

conditions of high temporal resolution and low noise

levels.

Protocol 1 and 2 represent realistic boundary regimes, and

may be used to measure Fp-maps (protocol 1) or ROI-

based PS (protocol 2). Protocol 3 represents a limiting

case of error-free data that cannot be realised in practice

but is useful to help understand the fundamental behavior

of the methods. Realistic CNR and TR values for proto-

col 1 were estimated by measurement on a patient data

set acquired with a standard 2D acquisition protocol (6).

Values for protocol 2 were estimated on the same data

after time-averaging to a TR of 12.5s.

RESULTS

Figure 2 provides an illustration of the data and model

fits at the highest noise level considered in this study. The

plots show that the fit to the data is significantly poorer

with LLS than with NLLS, which provides an almost ex-

act reconstruction of the underlying concentrations de-

spite high levels of noise.

Table 2 provides the FoM’s under the conditions of high

noise and high temporal resolution (protocol 1). In this

regime the LLS is associated with a significant loss in accu-

racy in all parameters (−30% on average). Adding weight-

ing improves the accuracy in all parameters, but it is still

lower than with NLLS (−9% on average). The effect on

precision depends on the parameter: LLS causes a major

loss in precision for Tp (−95%),but improves the precision

for PS and Te. In this case the weighting has a benefit as

it reduces the loss in precision for Tp. But the effect re-

mains significant and also leads to a reduction in precision

of Fp.
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Table 3 provides the FoM’s under the opposite condi-

tions of low noise and low temporal resolution (protocol

2). Under these conditions the LLS shows a clear improve-

ment in accuracy (+10% on average) and precision in all

parameters. In this particular scenario there is no numer-

ical benefit in adding a weighting with W (t) = ca(t). The

gain in precision is +4763% on average, but this is largely

determined by an outlier (Te). Excluding this, the gain in

precision is still +129% on average.

Table 4 provides the FoM’s under the ideal circum-

stances of protocol 3 (low noise and high temporal resolu-

tion). The results show that LLS leads to small changes

in both accuracy (0.1% improvement on average) and pre-

cision (0.1% loss on average). As for protocol 2 there is no

numerical benefit in adding a weighting with W (t) = ca(t)

in this particular scenario.

Figure 3 shows that the differences in accuracy and

precision are small under the ideal conditions of proto-

col 3. The distinction between LLS and NLLS is most

pronounced in the parameter Fp, where NLLS and LLS

produce relative errors in the range 0.4% ± 0.6% and

0.2%± 0.4%, respectively (median ± half of 90% CI).

Figure 4 visualises the transition in the low-noise regime

from protocol 3 (high temporal resolution) to protocol 2

(low temporal resolution) in more detail. The figure shows

that the improved accuracy and precision of the LLS per-

sists across the whole range of temporal resolutions, be-

coming gradually more pronounced towards protocol 2 at

the low temporal resolution (right side of the plot).

Figure 5 visualises the transition in the high temporal

resolution regime from protocol 3 (low noise) to protocol

1 (high noise). The figure shows that the errors increase

in a systematic manner with CNR, showing the stronger

noise-sensitivity of LLS. For a measurement targeting the

vascular parameters Fp and Tp, the NLLS is more reliable

at all noise levels. The NLLS is also preferred for the

permeability parameters PS and Te, except in the high-

noise limit of protocol 1 where the WLLS is the optimal.

Regarding the calculation time, the LLS method is

faster than the NLLS method by a factor of 200, i.e. two

orders of magnitude. In absolute terms, for an MR im-

age of 256× 256 pixels the computation time on a laptop

PC is 3 sec and 9 min for the LSS and NLLS methods,

respectively.

LLS WLLS

Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp -19 -5 -3 -17

Tp -45 -95 -9 -32

PS -31 32 -16 4

Te -23 1810 -7 1985

Table 2: Figures of Merit (FoM) for LLS and WLLS for pro-

tocol 1 at high noise level (CNR=50) and high temporal reso-

lution (TR=1.25s).

LLS WLLS

Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp 14 265 -14 122

Tp 13 49 -13 -242

PS 7 74 6 -40

Te 6 18664 -0.1 18680

Table 3: Figures of Merit (FoM) for LLS and WLLS for pro-

tocol 2 at low noise level (CNR=10000) and low temporal res-

olution (TR=12.5s).

LLS WLLS

Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp 0.27 -0.11 0.1 -0.2

Tp 0.15 -0.14 0.01 -0.2

PS -0.01 -0.1 -0.13 -0.2

Te -0.01 -0.1 -0.07 -0.3

Table 4: Figures of Merit (FoM) for LLS and WLLS for pro-

tocol 3 under ideal conditions of low noise level (CNR=10000)

and high temporal resolution (TR=1.25s).

DISCUSSION

As expected, the LLS leads to a massive reduction in com-

putation time with a factor 200. The current study showed

a reduction from 9 min to 3 sec for a 256×256 matrix, but

the total saving depends on computing hardware, imple-

mentation details, and the number of time points in the
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Figure 2: : Example of simulated data for single-voxel curve (protocol 1) at TR=1.25s and CNR=50. (a) The figure shows

results in the arterial plasma. The dashed line represent the exact concentration. The insert gives the Figures of Merit for

each of the parameters in this particular case. (b) The figure shows results in the tissue with an overlay of the LLS fit (full

line). The dashed line represent the exact concentration and the diamonds indicate the simulated measurements. (c) The figure

shows results in the tissue with an overlay of the NLLS fit (full line). The dashed line represent the exact concentration and

the diamonds indicate the simulated measurements.

Figure 3: The error distribution for protocol 3 under ideal conditions of low noise level (CNR=10000) and high temporal

resolution (TR=1.25s). Results are shown for each method (LLS - top row, WLLS - middle row, NLLS - lower row) and for

each parameter (Fp - column 1, Tp - column 2, PS - column 3, Te - column 4, goodness-of-fit - column 5).
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Figure 4: Error distribution at fixed CNR=10000 (low noise level) but variable TR. The circles indicate the median error and

the error bars represent the 90% confidence interval. Results are shown for each method (LLS - top row, WLLS - middle row,

NLLS - lower row) and for each parameter (Fp - column 1, Tp - column 2, PS - column 3, Te - column 4, goodness-of-fit -

column 5).

Figure 5: Error distribution at fixed TR=1.25s (high temporal resolution) but variable CNR with a minimum of CNR=50.

The circles indicate the median error and the error bars represent the 90% confidence interval. Results are shown for each

method (LLS - top row, WLLS - middle row, NLLS - lower row) and for each parameter (Fp - column 1, Tp - column 2, PS -

column 3, Te - column 4, goodness-of-fit - column 5).
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data. It also depends on the implementation of the NLLS.

In this study a fixed initial value was used rather than

a grid of initial values, and in that sense the estimate

of NLLS calculation time represents a best case scenario.

The improvement in calculation time is not of practical

significance for a ROI-based analysis, where other steps in

the analysis form the main bottlenecks (e.g. data trans-

fer, segmentation). However for a pixel-based analysis the

improvement may have significant implications for clini-

cal practice. The effect may also be important for other

methods that use pixel-based tracer-kinetic modeling as

an intermediate step, such as model-based segmentation

or registration techniques, or data undersampling strate-

gies using the temporal structure as a constraint.

The effect of LLS on accuracy and precision is more

ambiguous. Key observations are summarised in Figure

6. As a general rule, the LLS is preferred at low-noise

conditions and the NLLS at high temporal resolution. In

the ideal conditions where these two regimes meet (proto-

col 3), their performance is comparable and both can be

used interchangeably. The NLLS is slightly more reliable

as the gain in precision offsets the loss in accuracy, but

the differences are small and not likely to be significant

for clinical applications. In that sense, the LLS may be

preferred in view of its computational benefit. There is

no benefit of adding a weighting with W (t) = ca(t) ex-

cept for the leakage parameters under conditions of very

high noise and high temporal resolution (protocol 1). This

regime is less relevant as all measurements are unreliable

under these conditions. For the same reasons the regime

of low temporal resolution and high noise level is not of

practical interest (upper right corner of Fig.6).

The systematic error of the LLS at higher noise levels

is unexpected from an MRI perspective as previous ex-

periences with the linearised extended Tofts model have

shown an improved accuracy at higher noise levels (11,25).

In part, this discrepancy may be due to implementation

differences in the NLLS between the current and previ-

ous studies (11). However, it is likely that the effect is

mostly due to the added complexity of a 2nd-degree linear

model. A key difference with the extended Tofts model is

that the linearised equation of the 2CXM or 2CFM con-

Figure 6: Summary of the observations regarding accuracy

and precision. The figure maps different experimental condi-

tions in the TR - CNR plane showing the location of the three

protocols for which the Figures-of-Merit have been simulated

(circles) and the different limiting regimes of high/low noise

level and high/low temporal resolution (dotted lines). Opti-

mal choices of methods (NNLS, LLS) are indicated next to the

respective protocols.

tains a second-order derivative. This leads to the double

integrals in Eq.[18] which effectively add a strong weight

on the later time points where little temporal structure

is available. As a result the solution becomes less well

determined than in the NLLS, where the first-pass data

carry a strong weight due to the high signal values in this

regime. This is also consistent with the observation that

a weighting factor W (t) = ca(t) reduces the systematic

errors significantly: at high temporal resolution the func-

tion ca(t) is dominated by the first pass where most of

the temporal structure can be found. The chosen weight-

ing does not remove the error completely, but alternative

weighting strategies have not been explored and could lead

to further improvement. An alternative solution that may

be worth considering is the use of the differential form

combined with temporal filtering to reduce the noise sen-

sitivity (25). However, it is not clear whether this remains

beneficial in second order.

In the nuclear medicine literature it is well-known

that LLS methods for 4-parameter 2-compartment models
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cause a bias in the parameters (9,16,17,20,26,27). There

is no a priori guarantee that these observations translate

to DCE-MRI (or DCE-CT). Noise levels, temporal resolu-

tions and acquisition times generally lie in entirely differ-

ent regimes. A more fundamental difference lies in the typ-

ical data structure of first-pass DCE-MRI or -CT, where

all high-frequency information is stored in a narrow and

early time interval. This explains why the weighting effect

of the double integration is more significant in DCE-MRI.

Nevertheless, our study confirms that LLS at high noise

levels causes a bias in all DCE-MRI parameters.

This raises the question of whether the solutions pro-

posed for PET could help to reduce the bias. Feng et al.

(9,17) proposed a generalized linear least squares (GLLS)

method, which has found some use in pixel-based param-

eter estimation for PET (28). However a more recent

comparative study indicated that it still exhibits large

bias and poor precision at higher noise levels (20). Zeng

et al. (19) proposed a more general weighted integration

method to address the problem. Instead of integrating the

linear equation (Eq.[11]) twice over time, it is multiplied

with wavelets g(t, T ) on a support t ∈ [0, T ], and inte-

grated once over that interval. Despite appearances, this

method is not fundamentally different from double inte-

gration, and it is identical when the wavelets are chosen

as g(t, T ) = T − t. This follows from the identity:

∫ T

0

dt (T − t)f(t) = ¯̄f(T ) [29]

Hence, one would not expect an improved performance.

Zeng et al. (19) did not observe a bias, but the scope of

their simulations was limited and restricted to data with

low temporal resolution and relatively low noise levels.

This corresponds roughly to the low-noise regime where

we have also observed that the LLS is more robust (lower

right corner of Fig.6). The wavelet-based method does

have the advantage that different families of wavelets can

be used, but there is no evidence that this would eliminate

the observed bias.

Another question that could be asked is whether the

LLS problem suffers from ill-posedness and could bene-

fit from regularisation. At first glance the strong noise

sensitivity of a parameter like Te could be seen as an in-

dication thereof, but the problem appears in the NLLS

as well. In this case the sensitivity of Te most likely re-

flects a limitation of the data: the “population” contains

a case (patient 4) with a Te-value (214s) that is relatively

close to the acquisition time Tacq (300s). In that case the

washout of tracer is not well-resolved and its transit time

cannot be determined reliably except with ideal noise-free

data. As part of the development process it was also eval-

uated whether the errors could be improved by regular-

ising the solution using truncated singular value decom-

position. We found that this only introduced systematic

error, which indicates that the problem is not ill-defined

(data not shown).

This work also raised a number of issues that require

further study. One important point is the effect of weight-

ing (Eq.[24], and the choice of a suitable weightW (t). Our

purpose here was to demonstrate that adding a weight may

have a significant effect on the results, but the choice of

an optimal weighting strategy is a non-trivial issue that

deserves a more in-depth study. Possibly a sensitivity

analysis involving partial derivatives may be used in se-

lecting an optimal weight (29). Experience in other areas

has demonstrated that a suitable weighting strategy may

have a significant impact on the results (24), but it is cur-

rently unclear whether these conclusions apply here. A

second issue is the risk of data or model errors leading

to a situation where no exact solution to Eq.[21] exists.

In that case the best solution is one with equal transit

times (Eq.[22]) which is not physiological. It is currently

unclear under what conditions exactly this problem may

arise. To get some insight we counted the number of times

the problem occurred and found that it never happened

in any of our simulated data. Possibly the problem may

arise when significant model errors are present, but this

requires further investigations. A third issue is the role

of a delay between artery and tissue. It is a limitation

of the method as discussed here that a delay parameter

was not included in the model. This is often added to

correct for a shift due to upstream AIF sampling (5). In

NLLS approaches a delay is typically determined from a

separate procedure at the cost of significant computation

times (30). These methods can easily be adapted to apply

10



to LLS methods as well.

CONCLUSION

The LLS method for solving the 2CXM or 2CFM reduces

the computation times by two orders of magnitude, and is

at least as accurate and precise as the NLLS at low noise

levels. At higher noise levels the LLS becomes exceed-

ingly inaccurate compared to the NLLS, but this may be

improved by using a suitable weighting strategy.
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Appendix

The NLLS implementation in this study uses an efficient

and accurate iterative algorithm for the evaluation of a

convolutions with an exponential factor:

f(t) = a(t)⊗
e−t/T

T
≡

1

T

∫ t

0

dτ a(τ) e−(t−τ)/T [A1]

The algorithm applies to situations where the function

a(t) is measured and thus only available at discrete times

t0 = 0, t1, t2, . . . , tn−1 (not necessarily uniformly spaced).

With T = 0 the result is f(t) = a(t). With T 6= 0

the integral is evaluated by interpolating linearly between

the values ai = a(ti), leading to an iterative formula with

starting value f(t0) = 0:

f(ti+1) = e−xif(ti) + aiE0(xi) + a′i TE1(xi) [A2]

where

E0(x) =

∫ x

0

e−(x−u)du = 1− e−x [A3]

E1(x) =

∫ x

0

ue−(x−u)du = x− E0(x) [A4]

and

xi ≡
ti+1 − ti

T
, a′i ≡

ai+1 − ai
ti+1 − ti

[A5]

Compared to standard numerical convolution, Eq. [A2] is

more accurate because the exponential factor is not ap-

proximated. It is also more efficient computationally due

to its iterative nature.

To prove the results, consider first the case T = 0:

lim
T→0

e−t/T

T
∗ a(t) = δ(t) ∗ a(t) = a(t) [A6]

For any other T , note that the initial value is f(t0) = 0

since t0 = 0. Now given f(ti), the value f(ti+1) can be

determined by splitting up the integral and substituting

u = (τ − ti)/T :

1

T

∫ ti+1

0

dτ a(τ) e−(ti+1−τ)/T

=
1

T

∫ ti

0

dτ a(τ) e−(ti+1−τ)/T

+
1

T

∫ ti+1

ti

dτ a(τ) e−(ti+1−τ)/T

=
1

T

∫ ti

0

dτ a(τ) e−xi−(ti−τ)/T

+

∫ xi

0

du a(ti + Tu) e−(xi−u)

≈ e−xif(ti) +

∫ xi

0

du (ai + a′iTu) e
−(xi−u)

Eq. [A2] then follows directly from the definitions [A3,A4].

The linear interpolation between data points is made in

the second term of the last line, and is the only approxi-

mation made.
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