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Abstract. Thermoacoustic scattering is a principal scattering mechanism in the ultrasonic
characterisation of water-continuous colloids. Thermal effects are particularly important in
highly concentrated systems, where non-propagational thermal fields surrounding the disperse
particles overlap. For low concentrations, the single sphere solution of Epstein and Carhart has
become a popular tool for determining the particle size distribution. However, for small particle
sizes it suffers from ill-conditioning that can make the solution numerically unstable. This
problem has been resolved, by Harlen et. al. (2001, SIAM Journal on Applied Mathematics, 61
1906–1931), who obtained an asymptotic solution for low concentrations that is valid when the
particle diameter is small compared to the wavelength. In this paper we will use this asymptotic
method to calculate the effects of multiple scattering that occur at higher concentrations. We
use the addition translation theorem to calculate the effects of multiple scattering between a
pair of spheres of different sizes and show how this affects the close-field scattering pattern.

1. Introduction
Ultrasonic techniques are becoming increasingly popular tools for characterising soft solids and
colloids. In particular, ultrasound spectroscopy can be used to measure non-intrusively particle
sizes within opaque materials in food, chemical and pharmaceutical manufacturing, where other
techniques, such as, light scattering, are ineffective.

The first theory of ultrasound propagation in dispersions was developed by Lord Rayleigh [1].
This theory was then extended to fog and solid particles by Epstein and Carhart [2] and Allegra
and Hawley [3], respectively. In thermoacoustic scattering the sound wave is scattered by the
differences in thermal properties between the phases. The transmission problem reduces to
the solution of a pair of coupled Helmholtz equations for the acoustic and thermal scattering
fields. The acoustic field describing the scattered sound, with wavenumber kc, while the thermal
field represents the temperature fluctuations near the droplet boundaries and has a complex
wavenumber kT . This thermal wave decays rapidly with distance and the inverse of |kT |
represents the distance heat can diffuse over the period of the radiation.

The ECAH (Epstein and Carhart and Allegra and Hawley) calculation does not account
for multiple scattering within a suspension and so only provides accurate solutions for low
concentrations. Lloyd and Berry [4] developed a method of including multiple scattering based
on an infinite number of energy shells. However this method is only applied to the acoustic field
and so does not consider the changes to the scattering from the overlap of the thermal fields
between neighbouring droplets. Gaunaurd, Huang and Strifors [5] have formulated a method
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for calculating the scattering from a pair of spheres of different sizes at arbitrary angles to the
incidence wave. They make use of the translation addition theorem to determine the secondary
scattering of the scattered acoustic wave from a neigbouring sphere.

For the case of the scattering of a plane wave by a single spherical droplet, an analytical
solution of the ECAH can be obtained as an infinite sum of spherical Bessel and Hankel functions.
However, in the long acoustic wavelength limit kca� 1 (where a is the particle radius), typical
of many colloids, the solution for the coefficients is ill-conditioned [6]. However by treating kca
as a small parameter, a regular perturbation solution can be found that converges rapidly on
the solution [6–8].

In this paper we use this perturbation approach to address the multiple thermoacoustic
scattering between a pair of spherical droplets. In section 4, we consider how the thermal fields
interact when the spheres are within a distance of 1/|kT | of one another. This is then used this
to correct the far-field scatting pattern from which the attenuation is calculated. In section 5 we
discuss the how the accuracy of the coefficients of the far-field scatting pattern depends upon
the number of terms used in the near field expansions, particularly when the spheres are close.

2. Motivation
The motivation behind this work is the need to develop a theory for thermoacoustic scattering
in colloids that is accurate for high concentrations. In figure (1) we compare the attenuation
predicted by the ECAH theory with that measured in monodisperse silicon oil-in-water emulsions
for concentrations ranging from 5 to 50 %. While the model is reasonably accurate at the
lower concentrations. For concentrations above 20% the theory substantially over-predicts the
attenuation. Furthermore, applying the correction of Lloyd and Berry does not correct this.

The explanation of this discrepancy can be found by examining the decay length of the
thermal field around the oil droplets, which is given by [9] as

δT =

√
2τ

ρCpω
, (1)

where τ, ρ, Cp and ω are thermal conductivity, density, specific heat capacity and angular
frequency respectively. At low concentrations the droplets are sufficiently far enough apart
that these fields don’t interact. However if

δT ≥
d

2
, (2)

where d is the distance between the centre of neighbouring droplets, then the thermal field of
two droplets will overlap. From this we can define the critical concentration φC at which the
thermal fields between neighbouring particles will overlap. This critical volume fraction is given
by [10]

φC =

(
1

1 + δT
a

)3

, (3)

which for the case of the experimental in figure (1) is approximately 18%.

3. Low Frequency Thermoacoustic scattering
In thermoacoustic scattering the scattered field is written as the sum of an acoustic and a
thermal wave so that the velocity potential is given by eikcz + ϕ + ψ in the continuous phase
and ϕ′ + ψ′ in the suspended phase, where eikcz is the incident plane wave, ϕ and ϕ′ are the
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Figure 1. Attenuation spectrum based on the ECAH approach for a silicone oil-in-water
emulsion of particle radius 0.23µm for different concentrations. It can be seen that when the
concentration rises above the critical volume fraction φC given in (3) (in this case φC = 18%)
the theory significantly overpredicts the attenuation. Experimental data from Herrmann [11].

scattered acoustic fields in the two phases and ψ and ψ′ the thermal fields. Each of the four
fields satisfies a Helmholtz equations [2],(

∇2 + k2c
)
ϕ = 0,

(
∇2 + k2T

)
ψ = 0 in the continuous phase, (4)

and (
∇2 + k

′2
c

)
ϕ′ = 0,

(
∇2 + k

′2
T

)
ψ′ = 0 in the droplet phase, (5)

where the acoustic and thermal wave numbers are given by kc = ω
c (1 + iα) and kT = (1+i)

√
ω
2σ ,

respectfully. Here c, α and σ are the wave speed, attenuation coefficient and the thermometric
conductivity.

The thermal and acoustic waves are coupled through the boundary conditions at the phase
boundaries, where we have continuity of:

Normal velocity

∂

∂n

(
eikcz + ϕ+ ψ

)
=

∂

∂n

(
ϕ′ + ψ′

)
, (6)

Pressure

eikcz + ϕ+ ψ = ρ̂(ϕ′ + ψ′), (7)

Temperature

Γc

(
eikcz + ϕ

)
+ Γtψ = Γ′cϕ

′ + Γ′tψ
′, (8)
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Heat flux

Γc
∂

∂n

(
eikcz + ψ

)
+ Γt

∂

∂n
ψ = τ̂

(
Γ′c

∂

∂n
ϕ′ + Γ′t

∂

∂n
ψ′
)
, (9)

where Γc,Γ
′
c,ΓT and Γ′T are as described in [8].

In most applications the radius of colloidal particles is much smaller than the length of the
acoustic waves, so that |kca| � 1. For this low frequency limit we can follow the approach of
Harlen et al. [8], and find a pertubation solution for the limit when the acoustic wavelength is
large compared to droplet radius, kca� 1 but where the width of the thermal δT is comparable
with particle radius so that|kTa| ∼ 1.

The external Helmholtz equation (4) is first transformed by defining,

ϕ̃ = e−ikc(r−a)ϕ. (10)

where r is radial distance from the origin, to a give a regular problem at infinity, allowing us to
seek regular perturbation solution as power series in ikca,

(ϕ̃, ϕ′, ψ, ψ′) =

∞∑
n=0

(ikca)n(ϕ̃n, ϕ
′, ψ, ψ′) (11)

This series converges provided |kca| < ln(2) [13] and converges rapidly, giving accurate answers
with just a few terms, when |kca| << 1 [8]. Substituting the expansion into the Helmholtz
equations (4) gives the following system, for n ≥ 0,

∇2ϕ̃n = − 2

ar

∂

∂r
(rϕ̃n−1), for the continuous phase (12)

and

∇2ϕ′n =

(
k′c
kc

)2

ϕ′n−2, for the dispersed phase. (13)

The thermal fields remain given by Helmholtz equations with(
∇2 + k2T

)
ψn = 0, in the continuous phase (14)

- -�
eikz

d

r1
a

θ1

r2

b

θ2

Figure 2. Set up for the two particle problem with a plane wave travelling parallel to the
placement of two different sized spheres of radii a and b respectively separated by a distance d.
We have a plane wave described by eikcz where z is the coordinate along the axis of the particle
centres and r1, θ1 and r2, θ2 denote the polar coordinates with the origin based on centres of the
spheres 1 and 2 respectively.
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and (
∇2 + k′2T

)
ψ′n = 0, in the dispersed phase (15)

The boundary conditions at the phase boundaries can be grouped into pairs. The pressure
and normal velocity boundaries give one pair relating ϕ̃n, ϕ

′
n, ψn and ψ′n, where the thermal

conditions gives relations between ϕ̃n−2, ϕ
′
n−2, ψn and ψ′n, where ψ0 = ψ1 = ψ′0 = ψ′1 = 0. From

this solutions can be calculated sequentially in the order, {ϕ̃0, ϕ
′
0},{ϕ̃1, ϕ

′
1}, {ψ2, ψ

′
2}, {ϕ̃2, ϕ

′
2},

{ψ3, ψ
′
3}, . . . . At order n = 0 the solution is simply {ϕ̃0 = 0, ϕ′0 = 1/ρ̂}.

4. Low frequency thermoacoustic scattering by two spherical droplets
We now consider the thermoacoustic scattering solutions for two spheres, which for simplicity
we assume are arranged parallel to the direction of the incident wave, separated by a distance
d, as shown in figure (2). We use two polar coordinate systems, denoted by (r1, θ1) and (r2, θ2)
centred on particles 1 and 2 respectively.

Following the method of Gaunaurd [5], we express the thermal wave in the continuous phase
as the sum of two spherical wave expansions centred on the particle centres. Since we have
chosen the particles to lie along the axis of the incident wave the solution is axisymmetric so
that we only need to retain the p = 0 terms (the more general case is given in reference [5]), so
that

ψn =

∞∑
q=0

[
Anqh

(1)
q (kT r1)Pq(cos θ1) +Bnqh

(1)
q (kT r2)Pq(cos θ2)

]
(16)

As we also need to consider the boundaries around both particles, the solution needs to be
expressed solely in terms of ri and θi, where i = 1, 2 depending on whether we are considering
solutions about the first sphere, (1), say, or the second sphere, (2). To do this we use the
translation theorem to express the solution in terms of coordinates centred about particle A,

ψ(1)
n =

∞∑
q=0

[
Cnqh

(1)
q (kT r1) +Dnq

∞∑
m=0

Q
(2)
T (qm)(d)jq(kT r1)

]
Pq(cos θ1), (17)

where

Q
(2)
T (qm)(d) = iq−m(2q + 1)

q+m∑
σ=|q−m|

iσb(qm)
σ h(1)σ (kTd), (18)

and

b(qm)
σ = (2σ + 1)

(
q m σ
0 0 0

)2

, (19)

where the Wigner 3− j symbols are defined by [12]. Similarly, about the second particle (2),

ψ(2)
n =

∞∑
q=0

[
Dnqh

(1)
q (kT r2) + Cnq

∞∑
m=0

(−1)q+mQ
(2)
T (qn)(d)jq(kT r2)

]
Pq(cos θ2). (20)

The thermal fields inside particle (i) are given by

ψ(i)
n =

∞∑
q=0

c(i)nqjq(kT ri)Pq(cos θi). (21)

The solution for the external acoustic field can be written as

ϕ̃n =

∞∑
q=0

Anq

(
a

r1

)q+1

Pq(cos θ1) +

∞∑
q=0

Bnq

(
b

r2

)q+1

Pq(cos θ2) + In, (22)
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where In is a particular solution of the inhomogenous equation and for n = 0 and n = 1, In = 0.
Again we can use the translation theorem to express this in terms of the coordinate system
around particle (1) as

ϕ̃(1)
n =

∞∑
q=0

[
Anq

(
a

r1

)q+1

+Bnq

∞∑
m=0

Q
(2)
c(qm)

(r1
a

)q+1
]
Pq(cos θ1) + In, (23)

and internally in sphere (1)

ϕ(1)
n =

∞∑
m=0

a(1)nq

(r1
a

)q
Pq(cos θ1) + I(1)n , (24)

where I
(1)
n is a particular solution of the inhomogeneous equation, where I

(1)
0 = I

(1)
1 = 0,

I
(1)
2 = k

′2
c /k

2
ca

2ρ̂. Together with the equivalent equations centred on particle (2). Applying
the boundary conditions at the particle interfaces gives a system of linear equations for the
unknowns Anq and Bnq or Cnq and Dnq.

5. Results
Solving these systems allows us to us to study the close field interactions between the particles,
as seen in figures 3 through 6. In figure 3 we show thermal field for the case of a 200nm and
a 1 µm particle. The black dashed lines show the extent of the thermal field δT around each
particle. In this case the thermal field of the smaller particle is engulfed by the field of the larger
particle. Consequently the scattering is dominated by the larger particle.

In figure 4 to 6 we show how the thermal field around two particles of equal size (1 µm)
varies as the particle separation changes. In figure 4 the proximity of the particles to each other
means that there is heavy overlapping of the thermal fields. As a consequence the total thermal
field appears equivalent to that of a single larger particle. This reduces the acoustic attenuation
from that of two isolated particles.

The two particles are separated a little further apart in figure 5, with just a small overlap
of the thermal fields. However, there are still significant particle-particle interactions mediated
through the thermal field. Finally, we can see in figure 6 the particles are much further apart.
In this case the thermal field is approximately equal to that of the superposition of the thermal
fields from two isolated particles so that the two particles are not coupled thermally.

One issue with solving the linear systems given by applying the boundary conditions to the
expansions given in equations (17) and (23) is the number of terms in q required to obtain an
accurate solution. Figures 7 and 8 show the errors in the terms A20 and A22 of the acoustic
field respectfully, which are the terms that dominate the far field scattering pattern. When
the particles are well separated only a small number of terms are required to give an accurate
answer. In these cases the coupling is through the acoustic field. As expected, it can be seen
that when the particles are closer together that a larger number of terms are required to give
an accurate answer. However, even in the limit d = 2a when particles are in contact with one
another the series converge and can be computed with a moderate number of terms.

6. Conclusion
We have demonstrated how the perturbation solution for solving thermoacoustic scattering in
the long wave limit can be applied to the scattering by two closely separated spherical particles.
This allows us to examine the extent of overlapping of the thermal fields and hence estimate
the degree to which the overlapping of thermal fields reduces the thermoacoustic attenuation
in a concentrated colloid. The next step is to generalise these results to multiparticles at a
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Figure 3. The thermal field of two particles,
a = 2·10−7m, b = 1·10−6m and d = 2b. The black
circles show the thermal wave decay described in
(1).

Figure 4. The thermal field of two particles,
a = 1 · 10−6m, b = 1 · 10−6m and d = 2.2a.
The black circles show the thermal wave decay
described in (1).

Figure 5. The thermal field of two particles,
a = 1·10−6m, b = 1·10−6m and d = 3a. The black
circles show the thermal wave decay described in
(1).

Figure 6. The thermal field of two particles,
a = 1·10−6m, b = 1·10−6m and d = 6a. The black
circles show the thermal wave decay described in
(1).

general angle of incidence in order to quantify these effects. This will provide a method for more
accurately describing acoustic propagation in more higher concentration colloids than is given
by current theories.
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Figure 7. The error of A20 as a function for
different distanced between the particles.
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