UNIVERSITYW

This is a repository copy of An Evaluation of Phonetic Spell Checkers.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/89524/

Version: Accepted Version

Other:

Hodge, Victoria Jane orcid.org/0000-0002-2469-0224 and Austin, Jim orcid.org/0000-
0001-5762-8614 (2001) An Evaluation of Phonetic Spell Checkers. UNSPECIFIED,
Department of Computer Science, University of York, UK.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

An Evaluation of Phonetic Spell Checkers

Victoria J. Hodge Jim Austin
Dept. of Computer Science, Dept. of Computer Science,
University of York University of York

Heslington Heslington

York, UK York, UK

YO10 5DD YO10 5DD
vicky@cs.york.ac.uk austin@cs.york.ac.uk

Abstract

In the work reported here, we describe a phonetic spell-checking algorithm, Phone-
tex which integrates aspects of Soundex and its extension Phonix. It is designed to
provide a phonetic component for an existing typographic spell checker. We increase the
number of letter codes compared to Soundex and Phonix. We also integrate phonetic
rules but use far less than Phonix which was designed for South African name matching
or Rogers and Willett’s Phonix extension which was designed for 17th century spellings
as these includes many rules that are redundant in a contemporary word-based domain.
We evaluate our algorithm by comparing it to phonetic spell checkers, Soundex and
Editex and four benchmark spell checkers (Agrep, MS Word 97 & 2000 and UNIX
‘ispell’) using a list of phonetic spelling errors. We find that our approach has supe-
rior recall (accuracy) to the alternative approaches although the higher recall is at the
expense of precision (number of possible matches retrieved). We intend to integrate it
into an existing spell checker so the precision will be improved by integration thus high
recall is the aim for our approach in this paper.

Keywords: Data Cleaning, Phonetic Spell Checker, Phonetic Code Generation.

1 Introduction

In this paper, we develop a phonetic spell checker - Phonetex. Phonetic errors are more
difficult to correct than other spelling errors as they distort the misspelled word more than
a single insertion, deletion or substitution error [7]. Therefore, we develop a phonetic spell
checker intended to integrate with an existing typographic spell checker [6] and handle pho-
netic misspellings not covered by the typographic approach. Pfeifer et al. [8] evaluated
phonetic error correction methods on proper names and recommended integrating a con-
ventional n-gram approach with a phonetic component for optimum recall which endorses
our combined approach [6]. There are various phonetic spell checkers currently used such
as Soundex [7] which produces codes to represent words but the quality of matches is poor
[13] due to the limited code permutations. The Phonix [5] extension of Soundex produces
better quality matches and is intrinsically more flexible than merely converting words di-
rectly to phonetic codes due to the use of phonetic transformation rules. However, Gadd’s
implementation [5] incorporates a large number of phonetic rules for South African name
matching and Rogers and Willett’s Phonix extension [10] was designed for 17th century
spellings so many rules are not relevant in a contemporary word-based spell checker. In

0 1 2 3 45 6
aeiouhwy bpfv cgjkgsxz dt 1 mn r

Table 1: Table showing the Soundex codes for each letter

0 12 3 4 5 6 7 8 9
aeiouy bp ckq dt 1lr mn gj fpv sxz csz

Table 2: Table showing the Editex code groups. The groups are not disjoint as scores are
calculated using equivalence groups. The groups reflect phonetic correspondences where
letters that are pronounced similarly are grouped together so s and z are equivalent to x in
group 8 and equivalent to ¢ in group 9.

this paper, we describe and evaluate our phonetic approach, Phonetex, which aims for high
recall. We envisage Phonetex being integrated with a typographic approach [6] so max-
imising precision is less essential. We just need to integrate candidate matches from the
phonetic and typographic components to score and rank the words. We therefore revise the
Phonix 4-character code approach by increasing the number of letter codes to maximise the
word code permutations while maintaining phonetic similarity and reducing the number of
phonetic rules to a core rule base to minimise comparisons and maximise speed.

Our approach is language independent; it just requires the sound-alike letter codes and
rules to be generated prior to implementation. It is simple, flexible and produces high recall
(retrieval accuracy). There are two fundamental issues for phonetic spell checkers, speed and
accuracy. In this paper we concentrate on the latter. We describe and comparatively evalu-
ate a selection of spelling methodologies that include phonetic matching. Some approaches
such as Soundex [7] or Editex [13] have been designed specifically for phonetic spelling while
other approximate matching techniques used in spelling checkers such as Agrep are suitable
for phonetic matching. All algorithms match a query word against a stored lexicon (word
list).

Soundex (see [7] for details) was developed early in the 20th century and maps the let-
ters of the alphabet on to a series of numeric codes with the exception of the first letter of
the word which is mapped to itself (see table 1 for the codes and figure 1 for the algorithm
in pseudocode). Each word is encoded by concatenating the codes of its constituent letters,
ignoring 0s and only indexing the first letter if adjacent word letters map to identical code
values. In Soundex the word code is limited to four characters (first letter|0-6|0-6|0-6). If
there are less than four non-zero characters then the word code is padded with 0s. Words are
matched by comparing their respective Soundex codes and counting the number of matching
and aligned phonetic code characters. Soundex retrieves many false positives during match-
ing (see table 5) due to a large set of letters mapping to each letter code value and many
of these false positives do not sound like the target word. Soundex also does not rank the
retrieved matches, words either match or they do not; the only score available is a count of
the number of matches in the word code (from 0 to 4).

Editex [13] is an integration of Soundex code mapping listed in table 2 and a revised Edit
Distance algorithm detailed in figure 2. Editex was designed for name error correction.
The revised Edit Distance [13] counts the number of insertions, deletions or substitutions

code[1] := word[1]; // where code and word are indexed from 1 to m
i = 2;
for n in 2 to lengthOf (word) {
If Soundex(word[n]) == 0 then skip;
ElseIf Soundex(word[n]) == Soundex(word[n-1]) then skip;
Else {
code[i] := Soundex(word[n]);
i:=1i+1;
}
}
If code has less than three digits then pad with Os.
Truncate code at 4 characters giving letter|digit|digitl|digit.

Figure 1: Figure listing the Soundex algorithm in pseudocode. Skip jumps to the next loop
iteration. The function Soundex() returns the appropriate code mapping for the letter.

edit(0,0) =0

edit(i,0) = edit(i — 1,0) + d(s;—1, Si)
edZt(OaJ) dZt(O .7 - 1) + d(Jj—1 J)
edit(i, j) = minfedit(i — 1,7) + d(s;—1, 8i)

edit(i,j — 1) + d(t;_1,t;)
edit(i — 1,5 — 1) + r(si, t;)]

Figure 2: Figure listing the Editex algorithm taken from [13] where s1 s2...s; is the misspelling
and tts...t; is the target word from the lexicon.

required to convert the query word to each lexicon word in turn. In function r(a,b) in figure
2, equivalent letters score 0, equivalent code group letters score 1 and dissimilar letters score
2. The function d(a,b) is identical to r(a,b) except if a is h or w and a # b then d(a,b)
returns 1. The letter comparison value is assigned as a cumulative lexicon word score. The
lexicon word with the lowest score is deemed the best match. Edit Distance can be slow
for a large dictionary as it has O(mn) running time as all m letters of the query word are
compared to all letters of each of the n lexicon words in turn.

Agrep [11] is a fast sub-string matching algorithm that performs the edit distance scoring.
It identifies the words in the lexicon that are at most & insertions, deletions or substitutions
from the query word. Agrep essentially uses arrays of binary vectors and pattern matching,
comparing each character of the query word in order, to determine the best matching lexicon
word. The binary vector acts as a mask so only characters where the mask bit is set are
compared, minimising the computation required. Agrep is not specifically aimed at phonetic
matching but is an ideal comparative algorithm.

Our Phonetex methodology adopts the Phonix approach of combining Soundex-type codes
with phonetic transformation rules to produce a phonetic code for each word. We studied
the etymology of the English language detailed in the Concise Oxford English Dictionary
(COED), spelling errors gathered from Internet News Groups and handwritten text and

0 1234 56789AB CD
aeiouhwy bd f gj k 1 mnprsztyv

Table 3: Table giving our codes for each letter.

"hough — hb “rough — r8
“cough — k3 “tough — t3
“chough — s3 “enough — €83
“laugh — 13 “trough — tA3
“ps = s “wr —r

‘pt =t "kn - n

pn — n “gn —n

"mn —+n X =z
sc(elily) = s 1. (iju)gh(-a) = - 2. gh > g
+ti(alo) — s gn$ - n

ph = f gns$ — ns

L. c(elilyh) +s2.c =k q—k

mb$ — m +x — ks

Table 4: Table of the phonetic transformation rules in our system. Italicised letters are
phonetic codes - all other letters are standard alphabetical letters. ~ indicates ‘the beginning
of a word’, § indicates ‘the end of the word’ and + indicates ‘1 or more letters’. Rule 1 is
applied before rule 2.

integrated the most salient rules from Phonix and aspell [2]. The Phonetex rule base en-
compasses the COED as well as the smaller dictionaries used in the evaluation here. We
only included rules that apply generally to produce a generic core rule base so any rules
that have frequent exceptions were not included. Phonetex also uses a larger number of
letter codes than Soundex, Phonix or Editex. We use fourteen characters compared to just
seven in Soundex, nine in Phonix and ten in Editex. All letter groups are disjoint in our
approach. The letters are translated to codes indexed from 0-D in hexadecimal to allow a
single character representation for each letter code to ensure only the required length word
codes are produced. The increased number of code permutations prevents too many words
mapping to each code so we can minimise false positive words returned as a match that in
fact only match poorly. Note that we devised our rule base and code mappings prior to
obtaining the phonetic spelling error dataset used in our evaluation in this paper.

In Phonetex, any applicable transformation rules are initially applied to the word. The
phonetic transformation rules are given in table 4. The code for the word is then generated
as per the basic Soundex algorithm listed in figure 1 with the length limited to four or six
characters for our evaluation in this paper and using the letter mappings given in table 3.
The letters ¢, g and x do not map to a letter code as they are always translated to other
letters by transformation rules: c—s or c—k, q—k and x—z or x—ks.

Methodology Best Match Best Match Best Match Best Match Top 10 Top 10

Correct Recall Retrieved Average Correct Recall
Phonetex4 352 0.98 3907 11.1 306 0.85
Phonetex6 340 0.94 1645 4.83 325 0.90
Soundex 330 0.92 6875 20.83 215 0.60
Editex 324 0.90 515 1.43 347 0.96
Agrep 308 0.87 2191 7.02 304 0.84
MS Word 2000 344 0.96
MS Word 97 339 0.94
ispell 250 0.69

Table 5: Table giving the recall and precision for a selection of spell checkers using a test
set of 360 phonetic misspellings.

2 Evaluation

For our evaluations we use three dictionaries, each augmented with the correct spelling of
our query words where necessary to ensure total coverage of all spelling errors in all lexi-
cons. We use the UNIX ‘spell’ dictionary containing 29,187 words, the Beale dictionary [4]
containing 7,287 words and the CRL dictionary [1] with 45,243 words.

We evaluate our methodology with word code lengths of four and six (Phonetex4 and Phone-
tex6 respectively) to compare the effect on recall and precision of different code lengths and
against the other three methodologies described (Soundex, Agrep and Editex) using 360
phonetic spelling mistakes extracted from various spelling lists [2, 3]. Note that we devised
our phonetic code mappings and transformation rules with no prior knowledge of the spelling
errors evaluated here. The misspellings range from only one error (insertion, deletion or sub-
stitution) from the correct spelling to five errors (for example ‘apresteate’ for ‘appreciate’).

For the UNIX ‘spell’ lexicon in table 5, we list the number of times the correct word is
selected with the group of best matches in column 2. The group of best matches may con-
tain a large number of candidate matches so in column 6 we list the number of times the
correct word is present in the top 10 matches where the matches are sorted by score and
then sorted alphabetically if the scores are equal. This gives two recall figures a best match
where the number of candidates is unlimited in column 3 and a top 10 only score listed in
column 7. For our methodology and Soundex we defined the ‘best match’ as the set of words
matching the highest number of code characters (for example four of four, three of four etc.).
We list the total number of words retrieved with all correct best matches in column 4. We
then divided this figure by the number of correct best matches to get the average number
of words retrieved with a correct best match listed in column 5. The best match average
will be lower for methodologies that rank matches (Agrep and Editex) and thus employ
finer-grained scoring and grouping rather than those that simply retrieve a single set of best
word code matches as with Soundex and our Phonetex. We include the number of correct
matches for MS Word 97 & MS Word 2000 and also UNIX ‘ispell’ as benchmarks. We used
the standard supplied dictionaries for both MS Word! and ‘ispell’ so we do not include a

IThe lexicons included some of the phonetic misspellings as variants of the correct spelling, for example
‘miniscule’ was stored as a variant of ‘minuscule’, ‘imbed’ as a variant of ‘embed’ in the MS Word lexicon.
We counted these as detecting the correct spelling. We also checked that the correct spelling of each word

Beale CRL
Methodology Best Match Best Match Best Match Best Match

Correct Recall Correct Recall
Phonetex4 354 0.98 346 0.96
Soundex 337 0.94 334 0.93
Editex 335 0.93 329 0.91
Agrep 337 0.94 302 0.84

Table 6: Table giving the recall for different lexicon sizes using a test set of 360 phonetic
misspellings and the Beale [4] and CRL [1] lexicons.

precision figure for these two benchmarks as we felt a precision comparison would be invalid
when the algorithms use different dictionaries.

In table 6 we compare Phonetex4 against Soundex, Editex and Agrep on different lexi-
con sizes to investigate the effect of lexicon size on best match recall accuracy using the test
set of 360 phonetic misspellings. We list the number of times the correct word is selected
with the group of best matches in column 2 for the Beale lexicon and column 4 for the
CRL lexicon with the corresponding recall figures for Beale and CRL in columns 3 and 5
respectively. We only compare the spell checkers that may be trained with varying size
lexicons.

3 Conclusion

From table 5, we can see that our methodology Phonetex4 has the highest recall (best
match and top ten inclusive), only failing to find eight words from 360. The best match
recall is in fact higher than the recall for Word 2000 for 360 phonetic spelling errors. The
average number of words retrieved with the correct best match for Phonetex4 is 11.1, only
Soundex has a higher average. However, we intend to integrate the methodology into our
existing typographic spell checker [6] so high recall is our motivation as the typographic
spelling methods will help minimise the false positives and thus increase precision. Phone-
tex4 generally fails on phonetic misspellings where a letter has been inserted or deleted.
The phonetic word code thus also has a letter code inserted or deleted so the misspelt word
code does not align with the word code for the correct spelling. However, typographic spell
checkers are designed to overcome such errors, for example n-gram matching [8, 9] so the
Phonetex4 errors will be corrected. Zobel and Dart [12] deduced that n-gram error cor-
rection substantially outperformed a stand-alone phonetic spell checker for a list of general
spelling errors. We feel the phonetic component should be used to augment the existing
typographic approach [6] and thus improve recall as [8, 9] identified by handling phonetic
errors missed by the typographic approach. [9] identified only a slight improvement but the
authors limited the phonetic component to transformation rules applied before the n-gram
indexing. We envisage running the phonetic and typographic components in parallel and
integrating the candidate matches from each using a suitable fine-grained similarity metric
to score and rank the set of candidate matches [6].

We can see from table 5 that Phonetex4 has higher best match recall than Phonetex6.

not correctly matched was present in the lexicon before counting the matches.

Insertion and deletion errors in the phonetic misspellings have more affect on the longer
word code and cause fewer correct matches to be retrieved. This agrees with Rogers and
Willett’s [10] assertion that longer codes increase precision at the expense of recall. If the
user required a higher precision than we would recommend our methodology with code
length six, which retrieves 4.8 words on average. It has higher best match recall than Agrep,
Editex and Soundex and it is certainly not unreasonable for five words to be suggested to
the user by a spell checker. Phonetex6 has lower best match retrieval than Editex top 10
retrieval but Editex is slow due to the underlying Edit Distance algorithm which iteratively
accumulates a word score with running time O(mn) for a lexicon of m words of average
length n. If the user required a stand-alone phonetic spell checker returning the top 10
matches where speed of retrieval is not of overriding importance then Editex would be the
optimum methodology of those evaluated but it correctly identifies 5, 19 and 17 fewer words
than Phonetex4 best match recall for the UNIX ‘spell’, Beale and CRL lexicons respectively
and is slow due to the O(mn) run time growth.

Table 6 demonstrates that Phonetex maintains high recall across lexicon sizes for best match
retrieval ranging from 0.96 for the large 45000+ dictionary to 0.98 for the smaller dictionar-
ies. Phonetex4 outperforms the comparative methods evaluated in table 6 across all lexicon
sizes. We feel we have demonstrated the generic use of Phonetex across various lexicon sizes
and compositions.

There is a trade-off when developing a phonetic spell checker between including adequate
phonetic transformation rules to represent the grammar and maintaining an acceptable re-
trieval speed. To represent every possible transformation rule would produce an unfeasibly
slow system yet sufficient rules need to be included to provide an acceptable quality of re-
trieval. We feel that our rule base is sufficient for the spell checker we are developing as the
phonetic module is intended to integrate with alternative typographic spelling approaches
such as those detailed in [7]. We have identified a small rule base of core transformation
rules applicable to all English dictionaries to cover general phonetic spelling rules. We have
specifically only included rules that apply generally and have few exceptions. We do not
account for infrequent exceptions as these would create an intractably large rule base and
prevent rapid retrieval; we have mapped sc(elily) — s which applies with the exception of
sceptic pronounced skeptic. However, we feel our recall and coverage are high for the system
developed.

4 Acknowledgement

This work was supported by an EPSRC studentship.

References

[1] Web page ftp://ftp.ox.ac.uk/pub/wordlists.
[2] Aspell. Web page http://aspell.sourceforge.net/.

[3] F. Damerau. A technique for Computer Detection and Correction of Spelling Errors.
Communications of the ACM, 7(3):171-176, 1964.

[4] Elcom Ltd - Password Recovery Software. Web page
http://www.elcomsoft.com /prs.html.

[5] T. Gadd. PHONIX: The Algorithm. Program, 24(4):363-366, 1990.

[6] V. Hodge and J. Austin. A Novel Binary Spell Checker. In Accepted for International
Conference on Artificial Neural Networks, Vienna, August, 2001.

[7] K. Kukich. Techniques for Automatically Correcting Words in Text. ACM Computing
Surveys, 24(4):377-439, 1992.

[8] U. Pfeifer, T. Poersch, and N. Fuhr. Retrieval effectiveness of proper name search
methods.

[9] A. M. Robertson and P. Willett. Searching for historical word-forms in a database of
17th-century English text using spelling-correction methods. In Proceedings of the 15th
Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 256—265, Copenhagen, Denmark, 1992.

[10] H. J. Rogers and P. Willett. Searching for historical word forms in text databases
using spelling-correction methods: Reverse error and phonetic coding methods. Journal
of Documentation, 47(4):333-353, Dec. 1991.

[11] S. Wu and U. Manber. Fast Text Searching With Errors. Communications of the ACM,
35, Oct. 1992.

[12] J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software Practice
and Ezxperience, 25(3):331-345, Mar. 1995.

[13] J. Zobel and P. Dart. Phonetic String Matching: Lessons from Information Retrieval.
In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Zurich, Switz, 1996.

